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Abstract

This paper explores the locus of butterfly points of a quadrangle ABCD in

the plane. These are the common midpoints of three segments formed

from intersections of a butterfly line with the lines ,,,, BCADCDAB

,AC  and BD. The locus is the nine-point-conic of ABCD that goes

through the midpoints of the segments ,,,,, ACBCADCDAB  and BD.

We also consider the problem to determine when two quadrangles share

the nine-point-conic. Our proofs use analytic geometry of the rectangular

Cartesian coordinates.

1. Introduction

The classical butterfly theorem claims that whenever chords AB and

CD of a circle γ intersect at the midpoint S of the third chord PQ, then S

is also the midpoint of the segments XY and UV formed by the

intersections ,,, UYX  and V of the lines ,,, ACBCAD  and BD with the

line PQ (see Figure 1).
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Figure 1. The point S is the body and the triangles ADS

              and BCS are the wings of the butterfly.

In recent years there has been a considerable activity in improving

this interesting result. First it was observed in [23] that the line PQ could

be replaced by any line  in the plane of the circle and take for the point S

the projection of the center O of γ onto . This was extended by the first

author in [2] and [3], where the circle is replaced by any conic γ, the point

S is a point on line of symmetry z of γ and the line  is the perpendicular

to z at S. The reference [24] contains yet another improvement of this by

replacing the line of symmetry z with any line  and taking for the point

S the intersection of  with the diameter of the conic γ which is conjugate

to the line .

A further extension is accomplished in the first author’s article [4]

where he introduced the following technical definition in order to get

shorter statements.

A pair ( )S,  consisting of a line  and a point S on it is said to have

the butterfly property with respect to the quadrangle ABCD provided S is

a common midpoint of segments dbca ,  and ,fe  where ,,, cba

,, ed  and f  are intersections of  with lines ACDACDBCAB ,,,,
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and BD. In this situation we shall write ( ) ABCDS,  or ABCD
S

and use also the phrase “the line  has the butterfly property with respect

to ABCD at the point S”. Of course, we consider lines  and quadrangles

ABCD for which all six intersections ,,,,, edcba  and f  are

well defined points in the (finite) plane.

The main results in [4] show that for most points S in the plane of a

conic γ there is a unique line  such that ( ) ABCDS,  holds for every

quadrangle ABCD inscribed to γ.

The article [22] explores for a given cyclic quadrangle ABCD what is

the locus of all projections S of the circumcenter O of ABCD on lines 

with the property that the relation ( ) ABCDS,  holds.

This locus is shown to be the equilateral hyperbola that goes through

the circumcenter O and the midpoints of segments

,,,,, BDBCADACAB  and CD. It also goes through the intersection of

diagonals (AC and BD) and the intersections CDAB ∩(  and )BCAD ∩

of opposite sides.

The goal of this paper is to lift the assumption that ABCD is a cyclic

quadrangle from results in [22]. Our approach is through the analytic

geometry. Perhaps some or all of our results could be proved

synthetically (see the last sentence on p. 61 of [22]). However, with this

miraculous method in [22] only a very special case of cyclic quadrangles

was covered. We hope that one cannot impose methods of proofs and

discovery in mathematics and that with computers our “heavy

calculations” are in fact far easier to follow for an average person than to

master projective or affine geometry.

2. Butterfly Points of Strong Quadrangles

In order to avoid repetitions of the phrase “without parallel diagonals
or parallel opposite sides” we first introduce a broad class of quadrangles
that will be subjects of our investigation.
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We shall say that the quadrangle ABCD is strong provided the lines

,, ACAB  and AD intersect in the points ,, FE  and G with the lines

,, BDCD  and BC. The triangle EFG is called the diagonal triangle of

ABCD.

Let ABCD be a quadrangle in the plane. Then a point S from this

plane is called a butterfly point of ABCD or a ABCDβ -point if there is a

line  through S such that the relation ( ) ABCDS,  is true.

Let us begin with a technical result which clarifies our definition of

the relation ( ) ., ABCDS  It shows that it suffices to require that

only midpoints of two among segments dbca ,  and fe  coincide.

Lemma 1. Let ABCD be a strong quadrangle. Let a line  intersect the

lines ,,,,, ACDACDBCAB  and BD in the points edcba ,,,,  and

.f  Let bdac MM ,  and efM  be midpoints of the segments dbca ,  and

.fe  If any two of these midpoints coincide, then they all coincide.

Proof (in Cartesian coordinates). We assume that the points

CBA ,,  and D have the rectangular Cartesian coordinates

( ) ( ) ( )vu,,0,1,0,0  and ( )., VU  Let ,0 uUu =  ,0 vVv =  ,1 uVu =

,1 vUv =  ,2 Uuu −=  ,2 Vvv −=  ,11 uvw −=  .11 uvW +=  Let 0=++ hgyfx

be the equation of the line . Note that .022 ≠+ gf  Solving linear

equations we easily find coordinates of all points and discover that the

distances ,bdac MM  efac MM  and efbd MM  are the absolute values

of 
αγεϕαγβδ 2

,
2

MKMK  and ,
2βδεϕ
MK  where

( ) ( ) +−=ϕ+=ε+=δ+=γ+−=β=α fUvgufVgUfgvfuvgfuf 1,,,,1, 22

( )( )2
0

2
02

22 ,, gvWfgfuwvfMgfKVg ++−=+= ( )2
2020

2 2 gvvfguvTfh +++

and .11 uuUvwT +−=  That the lemma holds is now obvious.

Our first theorem is a version of Theorem 3 in [22] that holds for all
strong quadrangles and not only for the ones inscribed to a circle.
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Theorem 1. For any strong quadrangle ABCD the locus of all

ABCDβ -points is the nine-point-conic ( )ABCDcc 99 =  that goes through

the vertices of its diagonal triangle EFG and through the midpoints of

segments ,,,,, ACDACDBCAB  and BD.

Proof. In this proof we shall use the same assumption and notation

about the points CBA ,,  and D as we did in the proof of Lemma 1.

Let ( )qpP ,  be a ABCDβ -point. Let 0=−−+ gqfpgyfx  be the

equation of the line  with the property that P is the common midpoint of

segments ,, dbca  and .fe  (Note that the real number f cannot be

zero because then the lines  and AB would be parallel.) This is true

provided the following two conditions iK  hold

Figure 2. The quadrangle ABCD with its nine-point-conic.

( ) ( ) ,022 =+−+− iiiii CqgBfApgbfa  with indices 2,1=i  and with

coefficients 2102221211 ,,,,0, AuAvbWVBabvBa ==−===−==

wCUu =−= 10 ,  and .012 gvfvC +=  Since in each equation iK  the

variable f appears linearly, we can solve it easily and get two quotients

iQ  for values of f. Hence, it must be .021 =− QQ  The difference on the
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left hand side has the following polynomial

( ) 654
2

32
2

199 242 kqkpkqkpqkpkABCDcc ++−+−==

as the only factor that could be zero, where wkuvkvvk === 3202201 ,,

( ) ( ) ( )VvvvVuuvkwvvkUvuu 22,2, 11
2
1

2
1520411 +−++−=+=−+  and

.06 wvk =  We conclude that the locus of all ABCDβ -points is a conic

whose equation is .09 =c  It is now easy to check that the midpoints

,,,,, EDCBA ′′′′′  and F ′  of segments ,,,,, ACDACDBCAB  and BD as

well as the vertices ,, FE  and G of the diagonal triangle lie on this conic.

Theorem 2. Let ABCD be a strong quadrangle. Then the circumcircle

O of the triangle ABC is a ABCDβ -point if and only if either ABC has a

right angle or ABCD is a cyclic quadrangle.

Proof. This follows immediately from the fact that the value of the

polynomial 9c  for 
2
1=p  and 

v
uvuq

2

22 −+=  (the coordinates of the

circumcircle of the triangle ABC ) is the quotient

( ) ( ) ( ( ) ( ) )
2

222222

2

1

v

VuvuUVUvuuvuu −+−−+−−+

and that ( ) ( ) 02222 =−+−−+ quvupqpv  is the equation of the

circumcircle of the triangle ABC.

An easy consequence of Theorem 2 is the following corollary which
includes Theorem 3 in [22]. We also describe precisely what are the lines
with the butterfly property in this situation.

Corollary 1. The nine-point-conic 9c  of a strong cyclic quadrangle

ABCD is an equilateral hyperbola which goes through the center O of its
circumcircle.

For OP =  let P=  be the normal of the equilateral hyperbola 9c

in O and for every point { }OcP \9∈  let P=  be the perpendicular at P

to the segment OP. Then the line  has the property that P is a common

midpoint of segments ,, dbca  and ,fe  where ,,,,, edcba  and

f  are intersections of  with lines ,,,,, ACDACDBCAB  and BD.
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Proof. The first part is an easy consequence of Theorem 2 and the

following two well-known theorems. A strong quadrangle ABCD is cyclic

if and only if the circumcenter O of the triangle ABC is the orthocenter of

its diagonal triangle EFG. A conic which goes through the vertices and

the orthocenter of a triangle is an equilateral hyperbola.

In order to prove the second part, which describes precisely the
position of the line with the butterfly property, we must repeat the proof

of Theorem 1 under the assumption that ( ) ( ) ( ),,,0 vTCuTBTA ===

and ( )wTD =  are points on the unit circle, where ( ) .
1

2,
1

1
22

2










++

−=
x

x

x

xxT

Let uvwuvwswvus ++=++= 21 ,  and .3 uvws =  Then the equation

of 9c  is

( ) ( ) ( ) ( ) 022 13
2

1332
2

31 =++−−+−+− qpssqsspqsspss

and the parameter u is 
( ) ( )( )

( ) ( ) .
2

212

3131

31
ssqwvupss

qsspvw
−−++−

−−+−β
 Since the

perpendicular at P to the line OP is ,022 =−−+ qpqypx  we conclude

that this line will agree with the butterfly line 0=−−+ gqfpgyfx  if

and only if P satisfies the above equation of the equilateral hyperbola .9c

When ,OP =  then the normal to 9c  at P and the butterfly line of the

same point of course both have the equation ( ) .02 31 =++ yssx

3. Centers as Butterfly Points

Our next theorem shows that the center of a conic through the

vertices of a triangle ABC will be the butterfly point of a strong

quadrangle ABCD if and only if the point D is on this conic. It could

therefore be regarded as a converse of Theorem 3 in [4].

Theorem 3. Let ABCD be a strong quadrangle. Then the center S of a
nondegenerate conic Γ through the vertices of the triangle ABC is a

ABCDβ -point if and only if D lies on Γ.

Proof. In this proof we shall use the same assumption about the
points CBA ,,  and D as we did in proof of Lemma 1 and Theorem 1.
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Figure 3. The center Z of a conic Γ through the vertices of ABC is a

ABCDβ -point if and only if D is on Γ.

A conic has the equation

.0222 22 =+++++ feydxcybxyax

When we substitute coordinates of points A, B and C for x and y and solve
these linear equations in d, e and f, we conclude that the equation of our
conic Γ that goes through the vertices of ABC is

( ) ( ) ( ) ,0,,, =−=Γ yvuQyxvQyx

where Q is a function that takes ( )yx,  into .2 22 axcybxyax −++  Let

( )., vuQT =

The above conic will have a center (i.e., it will be either an ellipse or a

hyperbola) provided .02 ≠−=∆ bac  Then the center S is the point

( ) .
2

,
2 







∆
−

∆
−

v
bvTa

v
bTacv

Let xS  and yS  denote the coordinates of S. Then the equation of a

line  through S is ,0=−−+ yx gSfSgyfx  for some real numbers f and

g with .022 ≠+ gf
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We can evaluate SMac  and SMbd  to find that they are absolute

values of 
( )

jj

jj

TSv
KgQfP

∆
+

4
 for 2,1=j  with

( ) ( ),,,2,,,, 12121 cbavTbavwPTTSS −+∆=δ=γ=β=α=

( ) ( ) ( ),,,2, 1221 cbavTbavvPbvTavQ σ−σ+∆=−=

( ) ( ) ( ) ,2,,,,2 2202 bvaubacbavTbavvQ +=τ−τ+∆=

( ) ( ) ( ),12, VWbuaUba −+−=σ

and

( ) ( ) 02, bvVWaba +−=τ

(for our notation see the proof of Lemma 1).

Let us assume for the moment that .01 ≠Q  Then the center S is the

midpoint acM  if and only if .
1

1
Q
Pf

g −=  Substituted into 22 gQPf +  this

value gives ( ) ,,2
2av

VUkΓ  where ( )( ) ( ).1 bvaubvuak ++−=

When the point D lies on the conic Γ, then ( ) 0, =Γ VU  so that S is

also the midpoint .bdM  Hence, S is the ABCDβ -point by Lemma 1.

Conversely, if S is the ABCDβ -point, then ( ) .0, =Γ VUk  In other

words, either ( ) 0, =Γ VU  (when the point D lies on the conic Γ), or

,0=+ bvau  or ( ) .01 =+− bvua  When ,0=+ bvau  then 
v

aub −=  so

that the center of Γ is the midpoint gA  of the segment BC and the line 

agrees with the line BC. In this situation the point b  is not determined

which implies that 0=+ bvau  cannot happen. Similarly, when ( )1−ua

,0=+ bv  then ( )
v

uab −= 1  so that the center of Γ is the midpoint gB  of

the segment AC and the line  agrees with the line AC and we again

conclude that ( ) 01 =+− bvua  cannot happen.
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Note that 1Q  is equal to zero provided either 0=a  or 0=− Vv  or

.0=− bvT  When ,0=− bvT  then ( ) ( )
2

211

v

ubvuauc −+−=  and

,gCS =  the midpoint of the segment AB. Also, ,
v
kFf

gQPf j
jj =+

where 1F  and 2F  are wv 22 −  and .wV +  It follows that the center gC

is the ABCDβ -point if and only if either 0=f  or 01 =F  and .02 =F  If

,0=f  then the line  agrees with the line AB which cannot happen for

the similar reason which prevents 0=+ bvau  and ( ) 01 =+− bvua  to

hold. On the other hand, 01 =F  and 02 =F  only for uU −= 1  and

vV −=  when ABCD is a parallelogram which is ruled out by our

assumption that ABCD is a strong quadrangle.

It remains to consider the case ( ) .0=− Vva  Of course, there are two

subcases 0=a  and .vV =  Since the ordinate of the vertex C is also v,

we infer that the second subcase is impossible because the lines AB and

CD would be parallel.

When ,0=a  then the center S of Γ is the point 




 + 0,

2
2

b
cvbu  on the

line AB and the conic Γ degenerates into two lines (AB and CS) which we
prohibited with our assumptions.

Remark 1. One can wonder if the statement of Theorem 3 is
completely true. Like in the particular case formulated in Theorem 2,
there should be an exception, when S is located on a side of the triangle
ABC. Then D can be anywhere provided the quadrangle ABCD is still
strong.

The following Figure 4 shows that the last claim is wrong.

On this figure ABCD is a strong quadrangle (its diagonal triangle
EFG is well defined), the point S is on the side AB of the triangle ABC
and the center of the circumcircle of ABC but it is not the ABCDβ -point

because for any line through S the point S cannot be the midpoint of the

segment ,ca  where Sa =  and c  are the intersections of the line 

with the lines AB and CD.
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The above theorem gives the possibility to describe every
nondegenerate conic through the vertices of a triangle ABC using the
butterfly property of its center. In particular, we have the following
result for the Feuerbach, Jarabek, and Kiepert equilateral hyperbolas of
ABC. In the statement we use central points from [15].

Figure 4. The counterexample for the above statement.

Recall that the equilateral hyperbola which goes through the points
HCBA ,,,  (or 4X -the orthocenter), and I (or 1X -the incenter) is the

Feuerbach hyperbola of the triangle ABC. When the fifth point is G (or

2X -the centroid) we talk of the Kiepert hyperbola and for O (or 3X -the

circumcenter) as the fifth point we have the Jarabek hyperbola of the
triangle ABC.

Corollary 2. Let ABCD be a strong quadrangle. Then the central
points ,, 11511 XX  and 125X  of the triangle ABC are ABCDβ -points if and

only if D lies on the Feuerbach, Kiepert and Jarabek equilateral hyperbola
of ABC, respectively.

Proof. It is well known that the centers of the three famous named
hyperbolas of the triangle are the central points 11X  (of the Feuerbach

hyperbola), 115X  (of the Kiepert hyperbola), and 125X  (of the Jarabek

hyperbola) (see [16]) so that we can apply Theorem 3 to obtain the
desired conclusion.
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Another version of Theorem 3 is the following statement which was

formulated for cyclic quadrangles in [22] as Theorem 4.

Theorem 4. Let ABCD be a strong quadrangle. Then the locus of

centers S of all nondegenerate conics Γ through the vertices of ABCD is the

nine-point-conic 9c  of the quadrangle ABCD.

Proof. We shall make the same assumptions about points ,,, CBA

and D as in the proof of Theorem 3. Replacing x and y with U and V in

the polynomial ( )yx,Γ  we can solve for c to obtain that the equation of a

nondegenerate conic through the vertices of ABCD is

( ) ( )[ ] 2
201120 22 ybuvawuuUvabyaxxvv −−−+−+

( )[ ] .02 011 =−−−+ ywbvawWVuvv

Its center S is 
( ) ( ) ( ) ( )

( )
( ( ) ( ))
( )

,
22

,,,
22

,,
22

22

22
11










τ+σ+

γ−γ

τ+σ+

βα−βα

baba

VUvvuVa

baba

vVUvVvuu

where

( ) ( ) ( ) ,,21, bVaVbvuavu −=β+−=α

201111 ,, vvVvvuwUvuu =τ−=σ+−=

and

( ) ( ) ( ).121, −+−=γ ubvuauvu

In order to obtain the locus of these centers we will eliminate the real

variable b. This could be done as follows.

Let the coordinates of S be x and y. Let =−=−= FGwxvH ,,2

.,2 112 wWVuvvEwv −−=−  After the multiplication by the

denominator of x and transfer of terms on the left hand side we get the
following equations ( )1e  and ( ).2e

( ) ( )[ ] ,024212 1120
2

0
2 =−+++−− abvuUvExuvHbvGax

[ ] [ ] .0422 20
2

20
2 =−−−+ abFyuvybvvaGyE
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We multiply ( )1e  by yv2  and ( )2e  by H, make their difference, and

solve for b. We get ( ) ,
M

FGyEHab +=  where FHvKyM 0−=  and =K

( ) ( ) ( ) ( ) ( )( ).22433 11000
2
1

2
1 vVvvVuvvVvuvVvvVu +−+++−+++

Substituting this value back into ( )1e  and ( )2e  we obtain 0
2

=Θ
M

LH

and ,0
2

=Θ
M

aLy  where ( ) ( ) ( )wvwVwvwvaL −−−= 22
2  and

( Hxv 20=Θ

) ( ) ( ) .2224 011
2

1122 wvyEVvvuywUvuuvyu +−−++−+−−

It is easy to check that 0=Θ  is in fact the equation of the nine-

point-conic 9c  of ABCD because the coordinates of the midpoints of

segments ,,,,, BDBCADACAB  and CD satisfy it.

On the other hand, if ,0=a  then the conic degenerates into two lines

and if either ,0,0,0,02 =−=−== wVwvwv  or ,02 =− wv  then the

quadrangle ABCD is not strong which happens also when 0=H  and

0=y  (i.e., when uU −= 1  and ).vV −=

4. Quadrangles Sharing the Nine-point-conics

The last Theorem 5 in [22] considers the question if different

quadrangles can share the same nine-point-conic. It shows that for any

cyclic quadrangle ABCD with the circumcenter O and for any circle with

center at O which intersects the lines AB and CD in points P, R and Q, S

the quadrangles ABCD and PQRS have the same nine-point-hyperbola

(see Figure 4, i.e., Figures 6-8 in [22] without honeycombs).

We shall now prove an analogous result for an arbitrary strong

quadrangle ABCD. We discover that there is a conic ω with the property

that for any of it points there is a simple construction σ that gives a

quadrangle PQRS that shares the nine-point-conic with ABCD.
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Figure 5. Cyclic quadrangles ABCD and PQRS with the concentric
circumcircles and the identical nine-point-hyperbolas.

The steps of the construction σ go as follows. Let ABCD be a strong
quadrangle. Let A′  and C′  be midpoints of segments AB and CD. Let X

be a point different from A′  and .C′  Let P be the orthogonal projection of

X on the line AB and let Q denote the intersection of the line CD and the
parallel through X to the line AB. Let R and S denote the reflections of
points P and Q at the points A′  and ,C′  respectively. Then we shall say

that PQRS is obtained from X and ABCD by the construction σ and write
( )., ABCDXPQRS σ=

Of course, when ABCD is a cyclic quadrangle with the circumcenter
O and k is any circle with center at O which intersects the lines AB and
CD in points P, R and Q, S, then for the intersection X of the
perpendicular at P and the parallel at Q to the line AB we have

( )ABCDXPQRS ,σ=  so that our construction σ includes the one from

[22] as a special case (see Figure 4).

Theorem 5. Let ABCD be a strong quadrangle. Then the locus of all
points X with the property that the quadrangles ( )ABCDXPQRS ,σ=  and

ABCD share the nine-point-conic is a conic ω. The conics 9c  and ω are of

the same type. The lines of symmetry of the conic ω are the perpendicular
bisector of the segment AB and the parallel to AB at the midpoint of the
segment CD.
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Figure 6. The quadrangles ( )ABCDXPQRS ,σ=  and ABCD share the

nine-point-conic if and only if X is on the conic ω.

Proof. We shall retain notation from the proofs of Theorems 3 and 4.
Let the coordinates of the point X be s and t. Then the vertices of the

quadrangle PQRS have coordinates ( ) ( ) ,,,0,1,0,
2

2 





 +

− t
v

tuw
QsRsP

and .,
2

2 





 −+

−−
tVv

v
tuUVuv

S  It is clear that the nine-point-conics of

ABCD and PQRS coincide if and only if the midpoints Q′  and S′  of the

segments QR and SP are on ( ).99 ABCDcc =  Note that CSAQ ′′′′  is a

parallelogram (see Figure 5).

Recall that the equation of the conic 9c  is .0=Θ  If we substitute the

coordinates of either Q′  or S′  for x and y in Θ, then we shall get ,
2 2v
Ψ

where

( ) ( ) ( ( ) ).1 0
2

2
2
20 vtVvtwvwssvv ++−−+−=Ψ

We conclude that if the coordinates of the point X satisfy the condition

,0=Ψ  then the quadrangles PQRS and ABCD will have the same

nine-point-conic. Hence, the locus of points X is indeed a conic ω. Since
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the D-invariants (the expression 2bac −  whose sign determines the type

of the conic) of 9c  and ω are ( )wvwv −204  and ( ),20
2
2 wvwvv −  it follows

that 9c  and ω are of the same type. The possibility that ( ) 0=ωD  and

( ) 09 ≠cD  (for )vV =  is ruled out by the assumption that ABCD is a

strong quadrangle.

The statement about the lines of symmetry of the conic ω is easily

checked by substitution. More precisely, if X is a point on ω, then its

reflection ( )ts,1 −  at the perpendicular bisector of the segment AB and

its reflection ( )tVvs −+,  at the parallel to AB through the midpoint of

CD are also on ω.
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