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Abstract

The notions of fuzzy normal spaces, fuzzy almost normal spaces and
fuzzy mildly normal spaces have been defined and investigated in a
Chang’s fuzzy topological space.

1. Introduction

Chang introduced the notion of fuzzy topology in his classical paper

[3]. Balasubramanian and Sundaram [2] introduced the concept of fuzzy

generalized closed sets in Chang’s fuzzy topology as an extension of

generalized closed sets of Levine [7] in ordinary topology. More details

about the generalized closed sets can be found in [4, 5, 9].

Here, we will define the concepts of fuzzy generalized a-closed sets

and fuzzy generalized regular a-closed sets in Chang’s fuzzy topological

space. By using the above mentioned classes of generalized fuzzy closed
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sets we will introduce and study the concepts of fuzzy normal space, fuzzy
almost normal space and fuzzy mildly normal space.

Throughout this paper, by (X, 1) or simply by X will be denoted fuzzy

topological space (fts) due to Chang. The interior, the closure and the
complement of a fuzzy set A will be denoted by int A, clk and 1-A,

respectively.

A fuzzy set A is quasi-coincident with a fuzzy set u, denoted by Aqu, if
there exists x € X such that A(x)+ p(x) > 1. Otherwise we denote Agp

[8].
Definition 1.1. Let A be a fuzzy set of an fts (X, t). Then A is called
(1) a fuzzy open set if and only if A € t [3];
(2) a fuzzy regular open set if and only if A = int(clA) [1];
(3) a fuzzy a-open set if and only if A < int(cl(int 1)) [10].
Definition 1.2. Let A be a fuzzy set of an fts (X, ). Then A is called
(1) a fuzzy closed set if and only if 1 — A € t [3];

(2) a fuzzy regular closed set if and only if 1 - A is a fuzzy regular

open set [1];
(3) a fuzzy o-closed set if and only if 1 — X is a fuzzy a-open set [10].
Theorem 1.1. Let X be an fts.

(1) Any union of fuzzy regular open (resp. fuzzy a-open) sets is a fuzzy

open (resp. fuzzy regular open, fuzzy o-open) set [1];

(2) Any intersection of fuzzy regular closed (resp. fuzzy a-closed) sets is

a fuzzy closed (resp. fuzzy regular closed, fuzzy a-closed) set [10].

Theorem 1.2 [10]. Let L and p be fuzzy sets of an fts X. Then the

following statements are true:
(1) if X is a fuzzy regular closed set, then A is a fuzzy closed set;

(2) if X is a fuzzy closed set, then A is a fuzzy a-closed set;
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(3) if  is a fuzzy a-closed set and cl(int)) < p < A, then p is a fuzzy
a-closed set.

Theorem 1.3 [10]. Let L and p be fuzzy sets of an fts X. Then the
following statements are true:

(1) if X is a fuzzy regular open set, then A is a fuzzy open set;
(2) if M is a fuzzy open set, then A is a fuzzy a-open set;

(3) if A is a fuzzy a-open set and A < p < int(clA), then p is a fuzzy

a-open set.
Theorem 1.4 [1]. Let A be a fuzzy set of an fts X. Then
(1) int(1 — 1) =1 -cli;
(2) cl(int(cln)) = cl(int(cl(int 1)));
(3) int(clr) = int(cl(int(cln))).
Definition 1.3 [6]. Let A be a fuzzy set of an fts X. Then A is called
(1) a generalized fuzzy closed set if and only if clh < p, for each fuzzy

open set p such that A < p;

(2) a generalized fuzzy regular closed set if and only if clA < p, for
each fuzzy regular open set p such that A < p.
Definition 1.4 [6]. Let A be a fuzzy set of an fts X. Then A is called

(1) a generalized fuzzy open set if and only if 1 — L is a generalized

fuzzy closed set;

(2) a generalized fuzzy regular open set if and only if 1-A is a

generalized fuzzy regular closed set.

Theorem 1.5 [6]. Let A be a fuzzy set of an fts X. Then the following
statements are true:

(1) if A is a generalized fuzzy closed set, then A\ is a generalized fuzzy
regular closed set.

(2) if X is a generalized fuzzy open set, then A is a generalized fuzzy
regular open set.
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Theorem 1.6 [6]. Let A and u be fuzzy sets of an fts X. Then the
following statements are true:

(1) if A and w are generalized fuzzy closed (resp. generalized fuzzy
regular closed) sets, then A v pu is a generalized fuzzy closed (resp.

generalized fuzzy regular closed) set;

(2) if A is a generalized fuzzy closed (resp. generalized fuzzy regular
closed) set and L\ < p < clk, then p is a generalized fuzzy closed (resp.

generalized fuzzy regular closed) set;
() if M is a fuzzy closed set, then A is a generalized fuzzy closed set.

Theorem 1.7 [6]. Let A and p be fuzzy sets of an fts X. Then the
following statements hold:

(1) if A and p are generalized fuzzy open (resp. generalized fuzzy
regular open) sets, then A Apn is a generalized fuzzy open (resp.

generalized fuzzy regular open) set;

(2) if A is a generalized fuzzy open (resp. generalized fuzzy regular
open) set and inth < p <A, then u is a generalized fuzzy open (resp.

generalized fuzzy regular open) set;

() if M is a fuzzy open set, then A is a generalized fuzzy open set.
2. Generalized Fuzzy a-closed Sets and Regular a-closed Sets

Definition 2.1. Let A be a fuzzy set of an fts X. Then

aclh = A{u|A <, pis a fuzzy a-closed set} is called a fuzzy

a-closure of A;

aintd = v{u|p < A, pis a fuzzy a-open set} is called a fuzzy

o-interior of \.

Theorem 2.1. Let A be a fuzzy set of an fts X. Then the following
statements are true:

(1) aint(l —A) =1 — acli; (2) aclr = & v cl(int(clr));
(3) aint L = A A int(cl(int 1)); (4) A < aclh < cl);
(5) acli(aclr) = aclh.
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Proof. Let A be any fuzzy set of an fts X. Then

(1) We have aint(l —2)=v{u|u <1-Ax, nis a fuzzy a-open set}
=1-Afl -p|l-p =% 1-pis a fuzzy a-colsed set} =1 — acli.

(2) We put p=»1rvecl(int(clh)). From clp = cld v cl(cl(int(clnr)))
= ¢l v cl(int(clr)) = clr follows that cl(int(clp)) = cl(int(clr)) < p. Hence
uis a fuzzy a-closed set and A < p, so aclh < A v cl(int(cl))).

We suppose that aclh > A v cl(int(clr)). Then, there exist x € X and
t € (0,1) such that oacli(x) <t < Mx)v cl(int(clr))(x). According to

the definition of the fuzzy a-closure of a fuzzy set, there exists a
fuzzy a-closed set p with A <p such that acli(x) < p(x)<t<

Mx) v cl(int(cld))(x). On the other hand, since p is a fuzzy a-closed set
and ) < p, we have cl(int(clp)) < p and A v cl(int(clr)) < p v cl(int(clp)) = p.
It is a contradiction. Hence aclk > A v cl(int(cl))).

(3) It can be proved in a similar manner as (2).

(4) It follows from the fact that every fuzzy closed set is a fuzzy

a-closed set.
(5) It can be proved by using Definition 2.1 and Theorem 1.1(2).
Theorem 2.2. If A is a fuzzy a-open set of an fts X, then aclh =clk =
cl(int2).

Proof. Let A be any fuzzy a-open set. We have A < int(cl(int 1)), so
clh < cl(int &). Therefore clh = cl(int A). Hence

aclh = L v cl(int(cld)) = A v cl(int(cl(int A))) = A v cl(int 1) = A v clh = clA.
Definition 2.2. A fuzzy set A of an fts X is called

(1) a generalized fuzzy a-closed set if and only if aclh < p, for each

fuzzy open set p such that A < p;

(2) a generalized fuzzy regular a-closed set if and only if aclk <, for
u

each fuzzy regular open set p such that A < p.
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Definition 2.3. A fuzzy set A of an fts X is called

(1) a generalized fuzzy a-open set if and only if 1 — A is a generalized

fuzzy regular a-closed set;

(2) a generalized fuzzy regular a-open set if and only if 1-X 1is

generalized fuzzy regular a-closed set.

Remark 2.1. From the above definitions it is not difficult to conclude
that the following diagram of implications is true.

generalized fuzzy closed = generalized fuzzy regular closed
U U

generalized fuzzy o-closed = generalized fuzzy regular a-closed

Example 2.1. Let X = {a, b} and let A, un and v are fuzzy sets
defined by

Ma) =0, 2; Mb) =0, 4; w(a)=0,9; ub) =0, 4; v(a) =0, 1; v(b) =0, 4.

Let 1, = {0, A, u, 1}. By easy computation it can be shown that v is a

generalized fuzzy a-closed set, but it is not a generalized fuzzy closed set.
Also, v is a generalized fuzzy regular a-closed set, but it is not a
generalized fuzzy regular closed set.

If we put 19 = {0, y, 1}, then the fuzzy set v is a generalized fuzzy

regular a-closed set, but it is not a generalized fuzzy a-closed set. Also, v
is a generalized fuzzy regular closed set, but it is not a generalized fuzzy
closed set.

Theorem 2.3. Let L and p be fuzzy sets of an fts X. Then the following
statements hold:

(1) if M is a generalized fuzzy a-closed (resp. generalized fuzzy regular
a-closed) set and A < p < aclk, then u is a generalized fuzzy o-closed
(resp. generalized fuzzy regular a-closed) set;

(2) if X is a fuzzy closed set, then ) is both generalized fuzzy a-closed
and generalized fuzzy regular a-closed;

() if A is a fuzzy a-closed set, then A is both generalized fuzzy a-closed
and generalized fuzzy regular a-closed.
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Proof. (1) Let A be any generalized fuzzy a-closed set and A < p
< aclh. Then aclh < p, for each fuzzy open set p such that A < p. From
u < aclk, we have aclu < acl(aclr) = acli < p.

Hence p is a generalized fuzzy a-closed set.

The other case can be proved in a similar manner.

(2) It can be proved by using the relations aclh < clh = A.

(3) It follows immediately from the relation aclh = A.

Theorem 2.4. Let L and p be fuzzy sets of an fts X. Then the following
statements hold:

(1) if A is a generalized fuzzy a-open (resp. generalized fuzzy regular
a-open) set and o int A < p < A, then pis a generalized fuzzy a-open (resp.

generalized fuzzy regular o-open) set;

(2) if M is a fuzzy open set, then A is both generalized fuzzy o-open and

generalized fuzzy regular o-open;

3) if A is a fuzzy a-open set, then A is both generalized fuzzy a-open

and generalized fuzzy regular a-open.
Proof. It follows from Theorem 2.1(1) and Theorem 2.3.
Definition 2.4. Let A be a fuzzy set of an fts X. Then

gaclh = A{u|A <, pis a generalized fuzzy a-closed set} is called a

generalized fuzzy a-closure of ;

graclh = A{u|A < p, pis a generalized fuzzy regular a-closed set} is

called a generalized fuzzy regular a-closure of A.

Theorem 2.5. Let A be a fuzzy set of an fts X. Then the following
statements hold:

(1) A < groclh < gaclh < acl); (2) gacl(gaclr) = gaclk;
(3) gracl(gracl)) = graclk; (4) acl(gacl)) = aclh = gacl(ocl));
(5) acl(graclr) = aclh = gracl(acl)).

Proof. (1) It follows immediately from Definition 2.2 and Remark 2.1.
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(2) We suppose that gaclh > gacl(gaclh). Then there exist x € X
and t € (0, 1) such that gacli(x) <t < gacl(gaclr)(x). According to the

definition of the generalized a-closure of a fuzzy set, there exists a
generalized fuzzy a-closed set p with A < p such that gocli(x) < p(x) < ¢.

On the other hand, since p is a generalized fuzzy a-closed set and A < p,
we have gaclh <p. Then gacl(gacld) < gaclp =p, so we obtain that
gacl(gacl))(x) < p(x)<t. This is a contradiction. Hence gaclh >
gacl(goacl)).

The equality follows from the last relation and the evident relation
gaclh < gacl(gaclhr).

(3) It can be proved in a similar manner as (2).

(4) Since oclh is a fuzzy a-closed set, it follows from Theorem 2.3(3)
that aclh 1s a generalized fuzzy o-closed set and a generalized fuzzy

regular a-closed set. Hence gacl(acli) = aclh.

We will prove the first equality of (4). From A < gaclh it follows that
aclh < acl(goacl)).

We suppose that oacld > acl(gaclh). Then there exist x € X and
t € (0, 1) such that acl(gacl))(x) > ¢ > acli(x).

Since acli(x) < ¢, from the definition of the fuzzy a-closure of a fuzzy
set, it follows that there exists a fuzzy a-closed set p with A < p such

that acl(gaclr)(x) > ¢ > p(x) > acli(x).

From Theorem 2.3(8), it follows that p is a generalized fuzzy
a-closed set, so p = gaclp. Hence gaclh < gaclp = gacl(aclp) = aclp = p.
Thus acl(gaclr) < p. It is a contradiction, so acl(gacli) < acli.

(5) It can be proved in a similar manner as (4).
3. Fuzzy Normal, Fuzzy Almost and Fuzzy Mildly Normal Spaces

Definition 3.1. An fts (X, 1) is called:
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(1) fuzzy normal if and only if for each pair of fuzzy closed sets A; and
A9 such that A;glLy, there exist fuzzy open sets p; and py, such that
A < pp, Ag < pg and pqpg;

(2) fuzzy almost normal if and only if for each fuzzy closed set A; and
each fuzzy regular closed set A9, such that A;qAg, there exist fuzzy open
sets u; and pg, such that Ay < ug, A9 < py and puyqus;

(3) fuzzy mildly normal if and only if for each fuzzy regular closed sets
A1 and Ag such that A1ghy, there exist fuzzy open sets p; and pg, such
that 7»1 < M, 7\.2 < Ho and l,llq_}.lz.

Remark 3.1. Since each fuzzy regular closed set is a fuzzy closed set,

it is not difficult to prove that the following diagram of implications is

true.

fuzzy normal space = fuzzy almost normal space = fuzzy mildly

normal space
The following example shows that the converse may not be true.

Example 3.1. Let X =1 and let A, u, v,n and o are fuzzy sets
defined by

Mx) =0, 4, for each x e I, u(x)= 0,7, for each x € I, v(x) = 0, 8,
for each x € I,

n(x) = 0, 6, for each x € I, o(x) = 0, 2, for each x € I.

Let 11 = {0, A, u, 1} and 19 = {0, u, v, M, ®, 1}. By easy computation
it can be shown that (X, 1;) is a fuzzy mildly normal space which is not a
fuzzy almost normal space. The fts (X, 19) is a fuzzy almost normal
space, but it is not a fuzzy normal space.

Lemma 3.1. Let X be an fts. Then the following statements hold:

(1) int(cl(int 1)) < cl(int(clr)), for each fuzzy set A of X;

(2) if Aqp, then int(cl(int A))q int(cl(int 1)), for each fuzzy set ) and p
of X.
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Proof. (1) From cl(int 1) < cli, it follows that int(cl(int 1)) < int(cl))
< cl(int(clr));

(2) if Aqu, then L <1 -, so
int(cl(int A)) < int(cl(int(1 — n))) = 1 — cl(int(clp)) < 1 — int(cl(int p)).

Theorem 3.2. Let (X, t) be an fts. Then the following statements are

equivalent:
(1) (X, 1) is a fuzzy mildly normal space;

(2) for each pair of fuzzy regular closed sets Ay and Ay such that

AQMo, there exist fuzzy regular open sets p; and pg, such that
A < pp, Ag < pg and pigus;

(3) for each pair of fuzzy regular closed sets i and iy such that

AQAo, there exist generalized fuzzy open sets p; and p9, such that
M < pp, Ay < pg and pygpg;

(4) for each pair of fuzzy regular closed sets Ay and Ao such that

AQAo, there exist generalized fuzzy o-open sets n; and pg, such that
M < pp, Ay < pg and pyqps;

(5) for each fuzzy regular closed set ) and each fuzzy regular open set p

such that A < u, there exists a fuzzy open set p such that A < p < clp < ;

(6) for each fuzzy regular closed set . and each fuzzy regular open set pn

such that A <y, there exists a fuzzy regular open set p such that

A<p<clp <

(7) for each fuzzy regular closed set . and each fuzzy regular open set p

such that A <y, there exists a generalized fuzzy open set p such that

A<p<eclp <y

(8) for each fuzzy regular closed set . and each fuzzy regular open set p

such that ) < pu, there exists a generalized fuzzy a-open set p such that

A<p<aclp £y
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(9) for each fuzzy regular closed set ) and each fuzzy regular open set p
such that ) <y, there exists a fuzzy o-open set p such that L <p

< aclp £

(10) for each pair of fuzzy regular closed sets Ay and Ay such that
AQAo, there exist fuzzy o-open sets pwy and pg, such that Ay < pq,
Ao < pg and pqus.

Proof. (1) = (5) Let A be any fuzzy regular closed set and let u be
fuzzy regular open set such that A < p. Then Agl — p. According to the

assumption there exist fuzzy regular open sets p and v, such that
A<p,1-p<vand pgv. It followsthat A <p <clp<1-v <

(5) = (2) Let Ay and Ly be any fuzzy regular closed sets such that
A1@rg. Then A; <1 -2Xiy. According to the assumption there exists a
fuzzy open set p such that A <p<clp<1-Aiy. It follows that
A <int(clp) £1-29 and A9 <1-clp = int(1 — p). Then p; = int(clp)
and pg = int(l — p) are fuzzy regular open sets such that A; < pg,
Ay < pg and pigusg.

(2) = (6) Let A be any fuzzy regular closed set and let p be a fuzzy
regular open set such that A <p. Then Aqgl - p. According to the

assumption there exist fuzzy regular open sets ® and v such that

A<o 1-p<vand ogv. We put p = int(clw). Then p is a fuzzy regular
open set suchthat A <p <clp<1-v <y

(6) = (2) Let A; and Ay be any fuzzy regular closed sets such that
A1@Ag. Then Ay <1 —Ag. According to the assumption there exists fuzzy
regular open set p such that A1 <p <clp<1-Aiy. For clp <1-2%y,
there exists fuzzy regular open set o such that clp < © < clo <1 - Aq.
Then A9 <1 -clo = int(1 — ®) and int(1 — ) is a fuzzy regular open set.
Finally, p < clo implies pq int(l — o).

It is not difficult to prove the implications (1) = (3) = (4), 3) = () =
(8) and (2) = (1).
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(4) = (8) Let A be any fuzzy regular closed set and let p be a fuzzy
regular open set such that A < pu. Then Aql - p. According to the

assumption there exist generalized fuzzy a-open sets p and v such that
A<p,1-p<v and pgv. Since v is a generalized fuzzy a-open set and

1-p i1s a fuzzy regular closed set, from 1—p < v follows that 1 —p

<aintv. Thusl-p <aintv<v <1-p.

Since 1-aintv is a generalized fuzzy a-closed set, from p <1

—o int v we obtain that a —clp <1 - aintv. Hence A < p < aclp < p.

(8 = (9) Let A be any fuzzy regular closed set and let p be a fuzzy
regular open set such that A <p. Then Aqgl - p. According to the

assumption there exists a generalized fuzzy a-open set ® such that
A <o < aclo < p Since o is a generalized fuzzy a-open set, from A < o,

it follows that A < aint®. Then, p = aint® is fuzzy a-open set and

A <p<aclp £ aclo < .

(9) = (10) Let 2y and Ay be fuzzy regular closed sets such that
Aqhs. Then A; < 1 — Ag. According to the assumption there exists fuzzy
o-open set py such that A; < p; < oclpyy £1-21g. Then pg =1 - aclp is

a fuzzy a-open set and pigpg.

(10) = (1) Let 2y and Ay be fuzzy regular closed sets such that
A1@Ag. Then A; <1 - Xy. According to the assumption there exist fuzzy
o-open sets v; and vg, such that A; < py, A9 < pg and piqug. We put
p; = int(cl(int puy)) and py = int(cl(int py)). Then p; and py are fuzzy
open sets. From Lemma 3.1(2) follows that p;qus implies p;gps. Hence

(X, 1) is a fuzzy normal space.

Theorem 3.3. Let (X, t) be an fts. Then the following statements are
equivalent:

(1) (X, 1) is a fuzzy normal space (resp. fuzzy almost normal space);

(2) for each pair of fuzzy closed sets Ay and Lo such that Aiqhy, there
exist fuzzy regular open sets py and po, such that A < pq, Ay < pg and

WqHue;
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(3) for each pair of fuzzy closed sets Ay and Ay such that Aiqho, there
exist generalized fuzzy open sets p, and po, such that A < pq, Ag < g
and pqpg;

(4) for each pair of fuzzy closed sets Ay and Ag such that Aiqho, there
exist generalized fuzzy a-open sets n; and pg, such that Ay < py, Ag < g
and piqpe;

(5) for each fuzzy closed set . and each fuzzy open set u such that
A < W, there exists a fuzzy open set p such that A < p < clp < ;

(6) for each fuzzy closed set . and each fuzzy open set u such that
A < W, there exists a fuzzy regular open set p such that A < p < clp < p;

(7) for each fuzzy closed set . and each fuzzy open set u such that
A< u, there exists a generalized fuzzy open set p such that
A<p<clp <

(8) for each fuzzy closed set . and each fuzzy open set u such that
A < W, there exists a generalized fuzzy open o-open set p such that
A<p<aclp <

(9) for each fuzzy closed set . and each fuzzy open set p such that
A < W, there exists a fuzzy a-open set p such that A < p < aclp < y;

(10) for each pair of fuzzy closed sets A; and Ao such that hiqhgy,
there exist fuzzy a-open sets n; and po, such that A < pg, Ag < ng and
H1G M.

Proof. It can be proved in a similar manner as Theorem 3.2.

Theorem 3.4. Let (X, t) be an fts. Then the following statements are
equivalent:

(1) (X, 1) is a fuzzy almost normal space;

(2) for each fuzzy closed set Ay and each fuzzy regular closed set Lo
such that Mqhq, there exist fuzzy regular open sets py and pg, such that

A < pp, Ag < pg and pigus;
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(3) for each fuzzy closed set Ay and each fuzzy regular closed set Lo
such that Aiqhq, there exist generalized fuzzy open sets p; and pg, such

that ki < 1, hg < pg and pqpg;

(4) for each fuzzy closed set Ay and each fuzzy regular closed set Lo
such that Aqhg, there exist generalized fuzzy a-open sets p; and pg,
such that A < puq, Ay < pg and pnique;

(5) for each fuzzy closed set \ and each fuzzy regular open set p such

that A <, there exists a fuzzy open set p such that A < p < clp <y,

(6) for each fuzzy closed set \ and each fuzzy regular open set p such
that A <y, there exists a fuzzy regular open set p such that
A<p<eclp <y

(7) for each fuzzy closed set \ and each fuzzy regular open set p such
that )\ <, there exists a generalized fuzzy open set p such that
A<p<eclp <y

(8) for each fuzzy closed set \ and each fuzzy regular open set p such
that A <y, there exists a generalised fuzzy a-open set p such that
A<p<aclp <

(9) for each fuzzy closed set \ and each fuzzy regular open set p such
that A <y, there exists a fuzzy a-open set p such that L < p < aclp < y;

(10) for each fuzzy closed set Ay and each fuzzy regular closed set Lo

such that Aqhg, there exist fuzzy o-open sets n; and pg such that
A < pp, Ay < pg and pygus.

Proof. It can be proved in a similar manner as Theorem 3.2.
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