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Abstract

Trend-trend break stationarity versus difference-fractional difference
stationarity around macroeconomic fluctuations has been a long
standing debate. This paper proposes a new class of nonlinear
autoregressive integrated models that covers a wide range of processes
including two special cases of trend-trend break stationarity and
difference stationarity. The new model is derived from a stochastic
delay-differential equation based on the analysis of mechanics of a class
of economic systems in which there are a restoring regulation with time
delay, a resistance and exogenous disturbances. It is demonstrated that
the mean of disturbances and the resistance coefficient determine the
slope of time trend, thereby exogenous impact and shifts in the
resistance can lead to trend breaks. The model can generate the
fluctuations between stationary and nonstationary state, and the typical
nonlinear dynamics such as self-sustained oscillation, limit cycle and
chaos. The critical value to bifurcate these obviously different dynamics
seems to depend on the relative strength of the restoring force to the
resistance, which will be further studied. An indicator to measure the
nonstationarity of economic time series is developed and used to
evaluate three empirical series.
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1. Introduction

Economic theories can provide nothing about the structure of

economic time series, so econometricians have to uncover the hidden

structure by recognizing the important features of economic data. The

data features recognized include trend stationarity (TS)-trend break

stationarity, difference stationarity (DS)-fractional difference stationarity

(i.e., integration-fractional integration), long memory, mean reversion,

nonlinearity and chaos. Trend-trend break stationarity versus difference-

fractional difference stationarity around macroeconomic fluctuations has

been a long standing debate. However recent research suggests that

there are certain connections among them (Granger and Teräsvirta [5];

Andersson and Teräsvirta [1]; Granger and Hyung [4]). An interesting

problem is whether these data features result from a common data

generating mechanism. This paper attempts to deal with the issue by

modeling systematically a class of economic variables like prices. We

develop a nonlinear differential equation whose discrete version

encompasses trend-trend break stationarity and difference stationarity,

as well as chaos and limit cycle as its special cases. We are required to

incorporate as much available background theory as possible in

modeling. The sense of the worth of applying physical approach for

modeling economics can trace back to Hamburger [6], who modeled

business cycles using the Van der Pol equation (also see Tong [12] and

Mohammed [9]). In this paper we utilize the physical analogy to model.

Consider an object with mass m, position ( ),ty  velocity ( )ty  and

acceleration ( )ty  at time t. From Newton’s second law, the acceleration

( )ty  of the object is directly proportional to the net force F acting upon

the object and inversely proportional to the mass m of the object, denoted

by ( ) mFty =  or ( ).tymF =  In actual modeling, F often includes

random forces in stochastic systems (Tong [12]). Here we let ( )ty

represent the price of a certain product at time t. Then ( )ty  is the price

adjustment (the change in price), ( )ty  is the rate of change of the price

adjustment, F is the sum of the forces acting upon the price movement,

and m is a scalar referring to market scale of the product.
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Price adjustment relates costs but the costs resist price change. Some

economic factors like fixed-price contracts that provide a disincentive to

change induce the stickiness of price change. Hence there is always a

resistance in price movement. Responses to price adjustment usually

reflect the power of the resistance, thereby we assume that the resistance

is a nonlinear function of the price adjustment ( ),ty  denoted by ( )[ ].tyf

Prices tend to revert to market normal level whenever they deviate

from that normal level by market competition. Central banks also design

various financial policies to maintain price stability. We call the force

to revert prices to market normal level the restoring force and assume

that it is a nonlinear function of the deviation ( ) ( )tty µ−  from normal

level ( ),tµ  denoted by ( ) ( )[ ].ttyg µ−  There ( )tµ  is defined to be the

unconditional mean of price by ( ) ( ).tyEt =µ  There is always a time delay

in the regulatory effect of g, because g only responds after the deviation

( ) ( )tty µ−  has occurred. A delay parameter τ is thus embedded in

( ) ( )[ ].: τ−µ−τ− ttygg

Price movement in an open system is disturbed by unexplained

shocks (forces not explicitly taken into account), explained but

unpredictable shocks (e.g., changes caused by an oil crisis or a war), and

the impact of the related economic variables such as monetary shocks. To

simplify matters, we only consider unexplained shocks, expressed by a

Gaussian variable with a non-zero mean ( ).te  The impact of other shocks

is further discussed in Subsection 3.2.

2. Derivation of Models

If an economic variable is under the influence of the forces described

above, its motion can be described as the following stochastic delay-

differential equation:

( ) ( )[ ] ( ) ( )[ ] ( ),tettygtyftym +τ−µ−τ−+= (1)

where f and g are two nonlinear continuous functions satisfying
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Assumption A.

(a) ( ) 0<xxH  for 0≠x  and ( ) ( );xHxH −=−

(b) ( ) ( ( ) )δ+−= 1xOxH  for large x  and ;0>δ

(c) ( )xH  has second order continuous derivatives at ,0=x

where H denotes either f or g.

Assumption A(a) is given for the following reasons. The function ( )gf

is one in which an increase or decrease in the variable being regulated

brings about responses that move the variable in the direction opposite to

the direction of the change (the sign of the derivation) as the nature of a

resistance (a restoring force). The functions f and g are thus required to

satisfy ( ) 0<xxH  for .0≠x  Further the response to the rising or falling

price adjustment or the restoring regulation to a positive or negative

deviation is usually symmetrical. Therefore, f and g are set to be odd

functions by ( ) ( ).xHxH −=−  Assumption A(b) is an integrable condition

to avoid an explosive solution due to f and g, because we wish to describe

such a system where economic breakup could not occur (see Granger and

Andersen [3]). To perform time series analysis, we need to obtain the

discrete version of equation (1) by applying Taylor series expansion.

Assumption A(c) is set to achieve this aim.

Let h be the interval of the time series. Then the regulatory delay is

the integral part of ,hτ  denoted by k, implying that ,h≥τ  ( ),thyyt =

,1−−=∆ ttt yyy  ( )[ ],hktkt −µ=µ −  and ( ).theet =  Let ~tt ec −=ε i.i.d.

( ),,0 2σN  where ( ).teEc =  The initial values of ( ) 11 ...,, −−− yy k  and 0y

are set to be constants with probability 1. The discrete version of
equation (1) is given by

( ) .
2

2

tktkt
tt yg

h
y

fc
h

ym
ε+µ−+






 ∆+=

∆
−− (2)

The equation can be regarded as a generalized equation in the following

sense. From equation (2), we can derive two autoregressive processes as

follows:
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Theorem 1. Let .1=h  Suppose that ( )xf  and ( )xg  satisfy Assumption

A.

(i) Equation (2) approximates a nonlinear autoregressive integrated

process (abbreviated as NLARI):

( ) ,22110 tktktttt vygyayaay +µ−γ+++= −−
∗

−− (3)

,1,
1

1,,1, 210 α+
=γ

α+
=ζζ−=ζ+=γ= ∗∗

mm
aaca

( ) ( ) tttt veEct
a

ytcyf εγ==
ζ−

+=
α

+=µ′−=α ∗,,
1

,0 0
00

for small ,tyE ∆  where ( ) ( ) 0,0,1,2,1 21 >γ−∈∈ ∗aa  and ;0>α

(ii) Equation (3) approximates a stationary autoregressive process

around a trend (abbreviated as TSAR):

,221110 tktkttt vyayayatddy +++++= −−−

( )0,,1 ga
c

d k ′−=ββγ−=
α
βγ= ∗∗ (4)

for small ( ),Var ty  where 1,0 ≥< kak  and .0>β

Proof. See Appendix A.

Remark 1. From Assumption A(a), ( ) ( ) ,000 == gf  implying that

( ) xxf α−≈  and ( ) xxg β−≈  around .0=x  Then we call α the resistance

coefficient, β the restoring force coefficient, and ( ) ( ) 11 −α+β=γ mm  the

restoring force coefficient relative to the resistance.

Remark 2. According to Wold’s theorem, any stationary time series
has an approximate stationary and invertible ARMA representation.
Therefore, if the disturbance { }tv  is serially correlated stationary

pattern, equations (3) and (4) can be extended into a nonlinear
autoregressive integrated process NLARI with the general order lag.

Remark 3. In most cases tyE ∆  for the logs of original series { }tx

is less than txE ∆  by ( ) ,log 1−=∆ ttt xxEyE  so the linearization

condition “small tyE ∆ ” is easily satisfied. This suggests that equation

(3) is likely a good practical approximation to the logs of economic series.
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3. The Structure of NLARI

3.1. Encompassing DS and TS

From (2) to (4), we have

( )

( )
( )

( ) ( )
( ) ( )













<−∈∈
−∈∈

−
−

=
=

α=
α=

==

.0,0,1,2,1:TSAR
0,1,2,1:ARI

walkrandomnear
2nintegratioorder2near

2nintegratioorder2

Varsmallfor)3(.Eq
0for)3(.Eq

large,0for)3(.Eq
small,0for)3(.Eq

0for)2(.Eq

21

21

kt aaa

aa

I

I

y

g

g

g

gf

It is shown that equation (2) covers a wide range of processes including

( ),2I  near ( ),2I  near random walk, ARI and AR with special coefficient

ranges.

3.2. Exogenously impact

This subsection focuses on the impact of exogenous shocks to the

dynamics of the NLARI (3). The drift in (3), ( ) ,1
0

−α+= mca  where

( ),teEc =  reflects the mean disturbance relative to the resistance,

thereby 0a  is a key parameter to reflect exogenous disturbances.

Equation (3) can be expanded as follows:

   ( )∑ ∑ ∑∑
+=

−

= =

−

=
−

∗
−−−−

∗− εζγ+µ−ζγ+α+=
t

ki

i

j

t

i

i

j
ji

j
jkijki

j
t ygtcyy

1

1

0 1

1

0

1
0 (5)

(for proof see Appendix A). From the expansion (5), the values of ( )teE

and α determine the slope of trend tc 1−α  that dominates the dynamics of

the process { }ty  if ( )∑ =
∗
−

∗∗ +εγ
t
i kii g

1
 is of a probability order less than t.

We thus see that trend breaks may result from the shift in ( )teE  due to

various exogenous factors including casual shocks like those induced by

an oil price crisis or a war, as well as the shift in the value of α. In the

following subsection, we show other factors to result in trend breaks.
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3.3. Endogenously fluctuations

This subsection investigates how the deterministic terms of the
NLARI (6) influence the dynamics of the process. To do this, we let

( ) ( )00 0 == aeE t  and the value of ( )teVar2 =σ  be unchanged in each

case. The function ( ) ( )2exp xxxg β−=  satisfies Assumption A and so is

chosen as the restoring force function. To simplify matters, let
.1== mk  Equation (3) can be specified by

( )
[( ) ]

,
exp

1
2

01

01
21 t

t

t
ttt v

yy

yy
yyy +

−

−
γ−ζ−ζ+=

−

−
−−

.
1

,
1

,
1

1
α+

ε
=

α+
β=γ

α+
=ζ t

tv (6)

We can demonstrate that α+<β 24  if the NLARI (6) approximates a

stationary TSAR (for proof see Appendix B). This suggests that the
NLARI (6) may possess more complex dynamics if .24 α+≥β  From

Figure 1 we see that when ,624 =α+≥β  the NLARI (6) exhibits

serious oscillations that are very different from the case 624 =α+<β

(in each case ,01.0,1 =σ=α  and the initial values are zero). When

,6<β  the NLARI process fluctuated as if Gaussian white noise for

,1=β  and oscillates between unit root process ( )0=β  and Gaussian

white noise for .04.0=β  When ,6≥β  the dynamics of the NLARI

process is closely to random self-sustained oscillations for ,06.6=β

random limit cycle for ,8=β  and random chaos for .12=β  Interestingly,

it is shown that a larger value of β corresponds to the smaller amplitudes
of the fluctuations plotted by the NLARI process for ,24 α+<β  while a

larger value of β is accompanied by the larger amplitudes for .24 α+≥β

The latter suggests that a larger restoring force can induce the overshoot
and overcompensate resulting in serious oscillations.

4. A Measure of Nonstationarity

This section develops an indicator to measure the nonstationarity.

We first introduce the series { }ntstY 1, =  and { } ,1,
m
sstY =  where =stY ,
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( )∑ = +−
− s

i istys
1 1

1  and { }N
jjy 1=  is generated by the NLARI ( ).tmsnN ==

For the two special cases of the NLARI, ARI and TSAR, we have the
following.

Theorem 2. Suppose ( ) .0=teE  Let λ be an integer larger than one.

( )i  For ARI,

( )
∞→

ζ−

λ⇒
−

λ tasXY
st

st 2,
11

1

for a given s, where ( ).,0~ 2σγ∗NX

( )ii  For TSAR,

∞→
λ

⇒λ sasXYs st
1

,

for a given t.

Otherwise the results ( )i  and ( )ii  hold for ( ).ttt yEyy −=∗

Proof. See Appendix B.

Corollary 1. Suppose ( ) 0=teE  and λ is an integer larger than one.

The ratio of the sample standard errors of { }stY λ,  and { }stY ,  is given by

( )∗i  For ARI

( ) ( )

( )

λ≈










−










−
=λ

λ

st

Y
se

st

Y
se

r
st

st

s

1

1

,

,

for large m and a given s;

( )∗ii  For TSAR

( )
( )
( ) λ

≈=λ λ 1

,

,

st

st
t

Ysse

Ysse
r

for large n and a given t.
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From Corollary 1, the data supports ARI if ( ) ,λ=λsr  the data

supports TSAR if ( ) ,1 λ=λtr  and the data is closely tied to neither ARI

nor TSAR but it may tend toward ARI or TSAR if ( ) ( )λλ<λ st rr ,,1

.λ<  Thus ( )λsr  and ( )λtr  reflect the nonstationarity and stationarity of

the NLARI, called the nonstationarity ratio and the stationarity ratio,

respectively.

As an example, we applied the nonstationarity ratio ( )λsr  to evaluate

the Canada/US foreign exchange rate (EXCAUS), the effective federal

funds rate (FEDFUNDS) and the unemployment rate (UNRATE) over

1971:1 to 2005:12. They were three monthly series without time trend

implying that ( ) .0=teE  Table 1 reports the values of ( )λsr  for the

common logarithms of the three series. It is shown that the three series

were between the integrated nonstationary and stationary state.

UNRATE was closest to stationary and the farthest from the integrated

state, but EXCAUS was close relatively to the integrated state. Our

result is consistent with other empirical results.

5. Concluding Remarks

This paper proposes a new class of nonlinear autoregressive
integrated NLARI process that can make transition from DS to TS as the
relative restoring force coefficient γ  changes. The existence of the NLARI

explains why it is difficult to distinguish between DS and TS in empirical
research. We have discussed how exogenous impact leads to trend breaks
under the endogenous structure. It has been demonstrated that both the
mean of disturbances and the resistance coefficient determine the slope
of time trend, thereby the changes in them can cause trend breaks if

( )∑ =
∗
−

∗∗ +εγ t
i kii g

1
 is of a probability order less than t. Simultaneously,

we have investigated how the deterministic part of the NLARI dominates
the dynamics of the process. The bifurcation of the NLARI from
stationary state to serious nonlinear oscillations seems to depend on

whether β is smaller than .24 α+  The issue refers to complex bifurcation

theory in random dynamic systems and so remains in future.
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Our results appear to be close to previous relevant work. For

example, the NLARI with the p-order lag appears to be very similar to

smooth transition autoregressive model (STAR)

( ) ( ) ( )∑ ∑
=

−
=

−− ε+µ−δΦ











µ−β+µ−α=µ−

p

j
tdt

p

j
jtjjtjt yyyy

1 1

; (7)

if the transition function Φ is specified as ( ) −=µ−δΦ − 1; dty

[ ( ) ]22exp µ−δ− −dty  (see Michael et al. [8]; Peel and Taylor [10]; Taylor et

al. [11]). However, there is not any relationship in economic meaning or

innumeracy connection among the parameters µβα ,, jj  and tε  in

equation (7), particularly µ is not time-dependent. Therefore, the NLARI

is essentially different from the STAR. The latter cannot be expected to

detect how economic endogenous structure and exogenous impact

influence the dynamics of economic time series.

An indicator to measure the nonstationarity, ( ),λsr  has been

introduced and used to evaluate three empirical series. However, the

method was not developed into a test-of-significance approach. It seems

to be very difficult to obtain the sampling distribution of ( )λsr  or the

analytic limit distribution of the NLARI process that can fluctuate

between stationary and nonstationary state.

The next work is to estimate the NLARI including the delay

parameter k and provide evidence that the NLARI can capture the

long-memory and mean reverting properties in economic time series. But
the NLARI is not suitable for analyzing the samples with very
high- or low- frequency. A very high-frequency series usually corresponds
to a long-delayed regulation, while a very low-frequency series easily

involves a large interval that violates the discrete requirement .h≥τ

Both cases likely lead to poor results.
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Appendix A

Proofs of Theorem 1 and Equation (5). Assumption A implies

that f is bounded and ( ) .00 =f  We can expand ( )xf  in a Taylor series as

follows:

( ) ( ) ( ) ( )[ ] ( ) .
2

0 22
t

t
tt y

yf
yfyf ∆

∆θ′′
+∆′=∆

Suppose ( ).tpt rOy =∆  Then ( ).tpt rOy =∆  If ( ),1oyE t =∆  then

( )1ort =  by Corollary 5.1.1.1 in Fuller [2]. Therefore,

( ) ( ) ( ) ( ) ( ) ( ),00 2
ttptt yfrOyfyf ∆′≈+∆′=∆

provided by Corollary 5.1.5 in Fuller [2]. Then equation (2) approximates

( ) ( ) ( ) .110112
tktkttt m

yg
m

yf
m

c
m

y ε+µ−+∆′+=∆ −−

Let ( ).0f ′−=α  The condition ( ) 0<xxf  leads to ( ) 00 <′f  and

.0>α  Therefore, the first order approximation of f for equation (2) is

given by

211 −− α+
−







α+
++

α+
= ttt y

m
my

m
m

m
cy

( ) .11
tktkt m

yg
m

ε
α+

+µ−
α+

+ −−

Let

.,1,,1, 210 ζ−=ζ+=
α+

=ζ
α+

=γγ= ∗∗ aa
m

m
m

ca

We obtain equation (3)

( ) ,22110 tktktttt ygyayaay εγ+µ−γ+++= ∗
−−

∗
−−

which can be rewritten as

( ) ( ) .1 021 tktktttt ygayyy εγ+µ−γ+=ζ+ζ+− ∗
−−

∗
−−
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Letting L−=∆ 1  (L is the lag operator), the above equation is given

by

( ) ( ) ( ) ,11 0 tktktt ygayLL εγ+µ−γ+=−ζ− ∗
−−

∗

which yields

( ) ( )
LL

yga
yL tktkt

t ζ−
ε

γ+
ζ−
µ−

γ+
ζ−

=− ∗−−∗
111

1 0

( )∑ ∑
−

=

−

=
−

∗
−−−

∗ εζγ+µ−ζγ+
α

=
1

0

1

0

.
t

j

t

j
jt

j
ktjkt

j ygc

Let

∑ −

= −
∗ εζ=ε

1

0

t

j jt
j

t

and

( ) ( )∑ −

= −−−−−−
∗∗

− µ−ζ=µ−=
1

0
.

t

j jktjkt
j

ktktkt ygygg

∗∗∗
−

∗
− εγ+γ+

α
+= tkttt gcyy 1

( ) ( )∗
−

∗∗∗
−−

∗
−

∗
− ε+εγ++γ+

α
+= 112 2 ttktktt ggcy

∑ ∑
= =

∗∗∗
−

∗ εγ+γ+
α

+=
t

i

t

i
ikigcty

1 1
0 .

Define ∑ =
∗ε=ξ t

i it 1
.  Obviously, ( ) 1

011
−α+==µ cyyE  and

[ ( )] [ ( )]., 111111 ξ=µ−ξ=µ− ∗∗ gEygEy

Since ~tε i.i.d. ( ) tN ε−σ ,,0 2  and tε  have identical distributions and it

follows that 1ξ−  and 1ξ  have identical distributions. Hence, ( )1ξ
∗g  and
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( )1ξ−
∗g  have identical distributions. From the condition ( ) ( ),xgxg −=−

we have

[ ( )] [ ( )] [ ( )],111 ξ−=ξ−=ξ ∗∗∗ gEgEgE

implying that [ ( )] 01 =ξ∗gE  and [ ( )] .011 =µ−∗ ygE  Then,

( ) ( ).,2 1222022 ξ+ξ=µ−
α

+=µ= ∗gycyyE

Similarly, 2ξ  and 2ξ−  have identical distributions and it follows that

( )12 ξ+ξ ∗g  and ( )12 ξ−+ξ− ∗g  have identical distributions, leading to

{ [ ( )]} 012 =ξ+ξ ∗∗ ggE

and

{ ( ) [ ( )]} ,0121 =ξ+ξ+ξ ∗∗∗ gggE

which yields .3 1
03

−α+=µ cy  By the inductive method, we easily prove

that

.
1

0
00 t

a
ytcyt ζ−

+=
α

+=µ

We have thus completed the proofs of Theorem 1(i) and equation (5).

For small ( ),Var ty  one can ignore everything except the linear terms

of the Taylor series expansion for ( ).ktktyg −− µ−  Then, the first-order

approximation of g in equation (3) is given by

( ) ( ) ( ) .
01

1
2

m
y

m
g

yy
mm

cy t
ktktttt

ε
+µ−

′
+−α⋅−=∆ −−−

Let ( ).0g ′−=β  Since ( ) ,0<xxg  we have .0>β  Therefore,

,2211 tktkttktt eyayayacy ++++βµγ+γ= −−−−
∗∗

where ζ−=ζ+= 21 ,1 aa  and .βγ−= ∗
ka  Since 0y  and 1−y  are constants

with probability 0,1 µ  is a constant. Taking expectations of both sides of
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the model results in

( ) 211 −−
∗ ζµ−µζ++γ=µ ttt c

and it follows that ( ) ( ) cLL t
∗γ=µ−ζ− 11  implying that

( ) .
1

1
α

=
ζ−

γ=µ−
∗ cc

L t

Therefore, .1
0 tcyt

−α+=µ  We can write

[ ( ) ]1
0

−∗∗
−

∗∗ α−+βγ+γ=βµγ+γ cktycc kt

( ) tcckyc 11
0

−∗−∗ αβγ+αβ−β+γ=

.say,10 tdd +≡

This derives equation (4).

Next, we will demonstrate that equation (4) describes a strictly
stationary process. Let kλλλ ...,,, 21  denote the roots of equation

.01 2
21 =−−− k

kLaLaLa

Equation (4) has the expansion

∑ ∑
∞

= =
− λ=ϕϕ+=

0 1
0 ,,

j

k

s

j
ssjjtjt bvby

where kyyy −− ...,,, 10  are constants with probability 1, implying that

...,, 10 −vv  are zero. The expansion can be rewritten as

∑ ∑
−

= =
− λ=ϕϕ+=

1

0 1
0 .,

t

j

k

s

j
ssjjtjt bvby

If 1
0

≥λs  for a certain ,0s  then ( )tyVar  diverges, which is contradicted

by the assumption that ( )tyVar  is small. Hence 1
0

<λs  and the

process { }ty  is second-order stationary. Since ty  is a linear combination

of Gaussian white noise ,tv  the joint distribution of tyyy ...,,, 21  is

multivariate normal for ....,,2,1 t  Equation (4) thus describes a strictly

stationary process.
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Appendix B

Proof of “ α+<β 24 ”. For the stationary process TSAR(4) with

,1=k  two roots 1λ  and 2λ  of the equation ( ) 01 2
21 =−+− LaLaa k  or

must satisfy the conditions 11 <λ  and .12 <λ  From the relationship

between the equation and the roots, we have

α+
β−α+=λ+λ=+

1
2

211 kaa

,
1

1
212 α+
=λλ=−a

implying that

α+
β−α+=++

1
1

21 aaa k

( ) α+
−

α+λ
+λ=

1
1

1
1

2
2

( ) .say2λ≡ f

Since

( ) ( ) .1,11 22
22

1
1

−− α+>λ<λα+=λ

It can be proved that

( )
α+

+=






α+
−=λ=λ

1
21

1
1

2max2 ff

for ( ) ( ) 12
2

2 11 −− α+≤λ<α+  and

( ) ( )
α+

+=−=λ=λ
1

2112max2 ff

for ( ) .11 2
2

1 <λ<α+ −  Therefore, ( ) ( ) ,121 1
max2

−α++<λf  so that

α+
+<

α+
β−α+

=++
1

21
1

1
21 aaa k

and then .24 α+<β
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Appendix C

Proof of Theorem 2. Since ( ) 0=teE  means ,0yt =µ  equation (3)

can be written as

( )∑ ∑
= =

∗
−

∗∗∗∗ −γ+εγ+=
t

i

t

i
kiit yygyy

1 1
00 ,

where kiyy −
∗ =0  for ki <  otherwise .00 yy =∗  Therefore, we can write

( )∑
=

+−=
s

i
istst y

s
Y

1
1,

1

( )
( )( )

∑ ∑ ∑ ∑
=

+−

= =

+−

=

∗
−

∗∗∗∗ −γ+εγ+=
s

i

ist

j

s

i

ist

j
kjj yyg

sss
y

1

1

1 1

1

1
0

0 11

( )
( )( )

∑ ∑
−

=

−

=

∗
−

∗∗∗∗ −γ+εγ+=
st

i

st

i
kii yyg

s
y

1

1

1

1
0

0

[ ( ) ( ( ) )]∑
=

∗
−+−

∗∗
+−

∗ −+ε




 −−γ+

s

i
kistist yyg

s
i

1
011

11

( ( ) ) ( )
( )

∑
−

=

∗∗ +−+εγ=
st

i
ppi sOsto

1

1

.1

In the last line, the term ( ( ) )stop 1−  is obtained by

( )
( )

( ( ) )
( )

∑ ∑
−

=

−

=

∗∗
−

∗ −=












ε=−

st

i
p

st

i
ipki stooyyg

1

1

1

1
0 1

due to ( ( ) )( )∑ −
=

∗ −=ε
st

i pi stO
1

1
.1  The term ( )sOp  is given by

[ ( ) ( ( ) )] ( )∑
=

∗
−+−

∗∗
+− =−+ε





 −−

s

i
pkistist sOyyg

s
i

1
011

11
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because g is bounded and 10 <ζ<  implying that ∗g  is bounded.

Similarly,

( ( ) ) ( )
( )

∑
λ−

=

∗∗
λ λ+λ−+εγ=

st

i
ppist sOstoY

1

1
, .1

Using the above two formulas yields result ( ).i

For a stationary process, TSAR (4) can be written as

∑∞
= −

∗∗ εφγ+=
00 ,

j jtjt yy  where ∑∞
=

∗ ∞<φ
0

.
j jj  It is shown that

( ) ( )∑ ∑∑
= =

∞

=
−+−

∗∗
+− εφγ+==

s

i

s

i j
jistjistst yysY

1 1 0
101,

( )
∑ ∑

+−=

∞

=
−

∗∗ εφγ+=
ts

sti j
jijy

11 0
0 .

From the Beveridge-Nelson composition (Hamilton [7, p. 504]), we have

( )

0
1 0

1

1 0
, ysY

ts

i j

st

i j
jijjijst +












εφ−εφγ= ∑∑ ∑ ∑

=

∞

=

−

=

∞

=
−

∗
−

∗∗

( )

( ) ,0
0 0

1
1

1

1

y
j j

jstjjtsj

ts

i

st

i
ii +













εφ−εφγ+













ε−εγ= ∑ ∑∑ ∑

∞

=

∞

=
−−−

∗

=

−

=

∗

where ( )...21 +φ+φ−=φ ∗
+

∗
+ jjj  and ∑∞

=
∞<φ

0
.

j j  We have

( ) ( )∑ ∑
∞

=

∞

=
−−− =εφ−εφ

0 0
1 .1

j j
pjstjjtsj O

Therefore,

( ) 
















+εγ= ∑

+−=

∗
ts

sti
pist

s
O

s
Ys

11
,

11
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and similarly

( )
,11

11
, 





















λ
+ε

λλ
γ= ∑

λ

+λ−=

∗

λ

st

sti
pist

s
O

s
Ys

leading to Theorem 2 ( ).ii°  We have completed the proof of Theorem 2.

Figure 1. The obviously different dynamics of the NLARI (6) in the
cases 624 =α+<β  and .624 =α+≥β  (a) :6<β  the NLARI (6) is as

if Gaussian white noise for ,1=β  unit root process for ,0=β  and

between Gaussian white noise and unit root process for .04.0=β  (b)

:6≥β  the NLARI (6) is closely to random self-sustained oscillations for

,06.6=β  random limit cycle for ,8=β  and random chaos for .12=β
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Table 1. The values of the nonstationarity ratio ( )λsr

Series 1=s 2=s

2=λ 3=λ 4=λ 2=λ 3=λ 4=λ

UNRATE 1.2710 1.4491 1.5881 1.2496 1.4118 1.5316

FEDFUNDS 1.3180 1.6065 1.8125 1.3486 1.5692 1.7247

EXCAUS 1.4440 1.7407 2.0169 1.4223 1.7543 2.0474

λ  for ARI 1.4142 1.7321 2.0000 1.4142 1.7321 2.0000

UNRATE (unemployment rate): seasonally adjusted/percent/monthly/
January 1971 to December 2005;

FEDFUNDS (effective federal funds rate): percent/monthly/January
1971 to December 2005;

EXCAUS (Canada/US foreign exchange rate): Can$ to one
US$/monthly/January 1971 to December 2005.

Source of Data: Federal Reserve Economic Data
(http://research.stlouisfed.org/fred2/).


