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Abstract

In this paper the Weibull length-biased distribution is studied from

reliability point of view. The hazard rate function is derived and its

behavior is examined; it is shown that the hazard rate function is

upside down bathtub shaped for values of the shape parameter that

are less than unity and increasing otherwise. Bayes estimates of the

reliability function are obtained and compared with their maximum

likelihood counterpart using a numerical example and simulation study.

1. Introduction

The Weibull distribution plays an important role in life testing

and reliability studies. If T  is a random variable having the Weibull

distribution, then its p.d.f. takes the form

( ) ( ) .0,0,0,exp1 >θ>β≥θ−βθ= β−β ttttg (1.1)
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Suppose that the lifetime of a given sample of items is Weibull and

that the items do not have the same chance of being selected but each one

is selected according to its length or life length, then the resulting

distribution is not Weibull but Weibull length-biased. Length-biased

distributions find various applications in biomedical area such as family

history and disease, survival and intermediate events and latency period

of AIDS due to blood transfusion (Gupta and Akman [3]), the study of

human families and wildlife populations (Patill and Rao [7]). Much work

was done to characterize relationships between original distributions and

their length-biased versions. A table for some basic distributions and

their length-biased forms is given by Patill and Rao [7] such as

Lognormal, Gamma, Pareto and Beta distributions. Relationships in the

context of reliability were treated by several authors such as Patill et al.

[8], Gupta and Kirmani [4] and recently by Oluyede and George [6]; in

these works the survival function, the failure rate, and the mean residual

life functions of the length-biased distribution were expressed as

functions of their counterpart of the original distribution. The density of

the length-biased version of the Weibull distribution in (1.1) can be

obtained by applying the following definition:

( ) ( )
( )

.
tE
ttg

tf = (1.2)

Hence the Weibull length-biased density is given by

( ) .0,,0,
1

11
2

>βθ>







β

Γ

θβ=
βθ−β







 +
β

t
et

tf
t

(1.3)

It can be noted that (1.3) is a generalized gamma as defined by Stacy

[9] with parameters .11,,

1

+
β

=θ=ηβ β
−

k  The Weibull length-biased

(abbreviated through the text as WLB) distribution includes the gamma

distribution ( )1=β  as special case which is the length-biased version of
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the Exponential distribution, tends to normal distribution for ( )448.3≈β

and gives the length-biased version of Rayleigh distribution for ( ).2=β

The reliability function of the WLB distribution is given by

( ) .
11

,11

1






 +
β

Γ







 θ+
β

γ
−=

βt
tR (1.4)

The numerator represents the incomplete gamma function defined as

( ) ∫ −−=γ
x

ta dtetxa
0

1 ., (1.5)

The outline of this paper is as follows: the hazard rate function and

its properties are given in Section 2. In Section 3, the MLEs of the

parameters of the WLB distribution are given in Subsection 3.1, while

Subsections 3.3 and 3.4 are devoted to Bayesian and approximate

Bayesian estimation of the reliability function of the same distribution.

In Section 4, a numerical example and simulation study are given to

compare between the MLE and Bayes estimates of the reliability function

alongside comments in our findings.

2. Hazard Rate Function

The hazard rate function is defined by the ratio ( ) ( )( ),tRtf  it takes

the form

( ) .
,111

11
2















 θ+
β

γβ−






β

Γ

θβ=
β

θ−β
+

β β

t

et
th

t
(2.1)

In order to study the behavior of this hazard rate we apply the results of

Glaser [2] given in the form of Lemma 2.1.

Lemma 2.1. Let T be a continuous random variable with twice

differentiable density function ( ).tf  Define the quantity ( ) ( )
( ) ,
tf
tf

t
′

−=η  where



S. A. SHABAN and NAIMA AHMED BOUDRISSA4

( )tf ′  denotes the first derivative of the density function with respect to t.

Suppose that the first derivative of ( ),tη  named ( ),tη′  exists. Glaser [2]

gave the following results:

1. If ( ) ,0<η′ t  for all ,0>t  then the hazard rate is monotonically

decreasing failure rate (DFR).

2. If ( ) ,0>η′ t  for all ,0>t  then the hazard rate is monotonically

increasing failure rate (IFR).

3. If there exists ,0t  such that ( ) 0>η′ t  for all ( ) ( ) 0;0 00 =η′<< ttt

and ( ) 0<η′ t  for all ( );0tt >  in addition to that ( ) ,0lim
0

=
→

tf
t

 then the

hazard rate is upside down bathtub shaped (UBT ).

Using the above lemma we prove the following theorem for the model

in (1.3).

Theorem 2.1. Let T be a non negative random variable having the

Weibull length-biased (WLB) distribution. Then its hazard rate ( )th  is

IFR for values of the shape parameter that are greater than or equal to one

( ),1≥β  and UBT otherwise – it means for ( ).10 <β<

Proof. Let ( ) ( )1−θβ=η βt
t

t  and ( ) ( ( ) ).11
2

βθ−β+β=η′ t
t

t

According to the values of the shape parameter β:

 1. For ,1<β  it is easily seen that the third part of the lemma follows;

where 0t  is solution of ( ) ( )( ) .10
1

00 β
−β−θ=⇒=η′ tt  It results that the

hazard rate is UBT shaped.

 2. For ( ) ,1,1
2t

t =η′=β  this is strictly positive function for all values

of t. It results from Lemma 2.1 that ( )th  is IFR, in this case also the WLB

distribution reduces to gamma distribution with shape parameter







 =+

β
= 211k  with an increasing hazard rate.



ON THE RELIABILITY OF THE WEIBULL LENGTH BIASED … 5

3. For ( ) 0,1 >η′>β t  for all t, then the hazard rate is monotonically

increasing (IFR); this agrees with the theorem given in Gupta and
Kirmani [4] which indicated that the length-biased version preserves the
IFR property of the original random variable.

The shapes of the hazard rate of the WLB distribution for special

values of the shape parameter β are illustrated in Figure (a); the scale

parameter θ was taken to be unity since it does not influence the shape of

the hazard rate.

Figure (a). The Hazard rate of the WLB distribution for

given values of the shape parameter β.

3. Estimation of Reliability

In this section the maximum likelihood estimates of the two
parameters of the WLB distribution and their variance-covariance matrix
are derived in order to use them to find the MLE of the reliability
function and its variance, next Bayes and approximate Bayes estimates
of the same function are obtained.

3.1. Maximum likelihood estimates of the parameters

Suppose that a sample was drawn from (1.3), then the logarithm of
the likelihood function is given by

( ) ( ) .1lnln11lnln2
11
















β

Γ−θ





 +
β

+θ−β+β= ∑∑
=

β

=

nnttnl
n

i
i

n

i
i (3.1)
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Differentiating (3.1) with respect to θ and β in turn and equating the

derivatives to zero, gives

( ) ,0
ˆ

1
ˆ
1

1

ˆ
=

θ









+

β+−∑
=

β
n

t
n

i
i (3.1.a)

( ) ( ) ( ) ,0ˆln
ˆ
1

ˆ
lnˆln

ˆ
2

2
1

ˆ

1

=







θ−









β
Ψ

β
+θ−+

β ∑∑
=

β

=

ntttn
n

i
ii

n

i
i (3.1.b)

where the Psi-function ( )aΨ  is defined as (see Abramowitz and Stegun

[1]).

( ) ( )( )( ) ( )
( )

.0,ln >
Γ
Γ′=Γ

∂
∂=Ψ a

a
a

a
a

a (3.2)

Solving (3.1.a) for θ̂  gives

( )

.

1
ˆ
1

ˆ

1

ˆ∑
=

β









+

β=θ
n

i
it

n

(3.3)

Replacing it in equation (3.1.b), we obtain

( )

( ) ( )

( )∑

∑
∑

=

β

=

β

=






















+

β
−+

β n

i
i

n

i
iin

i
i

t

ttn

tn

1

ˆ

1

ˆ

1

ln1
ˆ
1

ln
ˆ

2

( ) ,0
ˆ
11

ˆ
1lnlnln

ˆ
1

ˆ

2
=






















β
Ψ+








+

β
−−














β
+ ∑

=

β ntn
n

i
i (3.4)

which gives an equation in β̂  only. This nonlinear equation does not seem

to have a closed form solution and must be solved iteratively to obtain the

estimate of the shape parameter which will be replaced in (3.3) to get the
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MLE of the scale parameter θ, or the system of the two equations can be

solved simultaneously. The asymptotic observed variance-covariance

matrix of the estimates can be obtained by inverting the information

matrix with elements that are the negatives of the second derivatives of

the likelihood function with respect to the parameters θ and β evaluated

at the MLE of the parameters. The second derivatives of the log

likelihood function are given by

,
11

22

2

20
θ







 +
β−=

θ∂

∂=
n

ll

( ) ,ln
2

1

2

11
θβ

−−=
β∂θ∂

∂= ∑
=

β nttll
n

i
ii

2

2

02
β∂

∂= ll

( )( ) ( ) ( ) ,

1
12ln2ln2

3
1

2
2

















β







β

Ψ′
+






β

Ψ+θ−
β

−θ−
β

−= ∑
=

β nttn
n

i
ii (3.5)

where ( ).Ψ′  is the derivative of the digamma function.

3.2. Maximum likelihood estimate of the reliability function

Using the invariance property of the maximum likelihood method,

the MLE R̂  of the reliability R can be obtained by replacing θ̂  and ,β̂

the maximum likelihood estimates of θ and β, respectively, in the formula

(1.4) and is given by

( ) .

1
ˆ
1

ˆ,1
ˆ
1

1ˆˆ









+

β
Γ









θ+

β
γ

−==

βt

tRR (3.6)
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Using Taylor expansion of order one of R̂  about the parameter estimates

we can write

( ) ( ).ˆˆˆ β−β
β∂

∂+θ−θ
θ∂

∂+= RRRR

By taking the expectation of the above formula and from the properties of

the MLE, it results that R̂  is asymptotically unbiased estimate of R with

asymptotic variance:

( ) ( ) ( ) ( ),ˆ,ˆCov2ˆVarˆVarˆVar
22

βθ
β∂

∂
θ∂

∂+β







β∂
∂+θ







θ∂
∂= RRRRR (3.7)

where the variances and the covariance of the maximum likelihood
estimates of the parameters can be obtained by inverting the information
matrix with elements that are the negatives of (3.5).

3.3. Bayes estimate of the reliability function

Suppose that a little information is available about the parameters,
and then the appropriate prior for this case assuming independence is
Jeffreys’ vague prior given by

( ) .1,
θβ

∝βθπ (3.8)

∝  being the sign of proportionality. Using Bayes theorem which
combines the likelihood function with the prior given in (3.8), we obtain
the following joint posterior:

( ) ( ) .lnexp
1

,
11

111
12













β+θ−







β

Γ

θβ∝βθπ ∑∑
==

β
−





 +
β− n

i
i

n

i
i

n

n
n

ttt (3.9)

The Bayes estimate of the reliability function with respect to the squared
error loss function is given by

( ) ( )( )

( ) ( )

( )

,

,

,
~

1

2

0 0

0 0
C
C

ddt

ddttR

ttREtR =

βθβθπ

βθβθπ

==

∫ ∫

∫ ∫
∞ ∞

∞ ∞

(3.10.a)
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with

( ) ,ln11lnexp
1

11

0 1 1

12

1 β
































 +
β

−β







β

Γ















 +
β

Γβ
= ∫ ∑ ∑

∞

= =

β

−

dtnt
n

C
n

i

n

i
ii

n

n

(3.10.b)

( )

∫ ∫
∑∑∞∞

+
==

β
−





 +
ββ−

βθ
















β

Γ














β+θ−θ














 θ+
β

βγ−






β

Γβ

=
0 0

1
11

111
12

2 .
1

lnexp,111

dd

ttt

C
n

n

i
i

n

i
i

n
n

(3.10.c)

To obtain the variance of ( )tR
~

 we use the following formula:

( ) ( ) ( ),~~~
Var 22 tREtREtR −= (3.10.d)

where

( ( ) )

( ) ( )

( )

,

,

,

1

3

0 0

0 0

2

2

C
C

ddt

ddttR

ttRE =

βθβθπ

βθβθπ

=

∫ ∫

∫ ∫
∞ ∞

∞ ∞

(3.10.e)

( )∫ ∫ ∑∑
∞∞

==

β
+

−




 +
ββ−

βθ












β+θ−
















β

Γ

θ













 θ+
β

βγ−






β

Γβ
=

0 0 11
2

1112
12

3 .lnexp
1

,111

ddtt
t

C
n

i
i

n

i
in

n
n

(3.10.f)

No closed form solutions exist for the integrals in (3.10.a) and (3.10.e)

even if one of the two parameters is known. Numerical integration and

approximate methods may be used in this case.

3.4. Approximate Bayes estimate of reliability

Lindley [5] gave an alternative method to approximate the integrals

that occur in Bayesian statistics when the analytical method is not
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attractable. The form of ratio of integrals considered by Lindley [5] is as

follows:

( ) ( )( )

( ) ( )( )
,

exp

exp

∫
∫

ηηη

ηηη

dlv

dlw
(3.11)

where ( )mηηη=η ...,,, 21  is a vector parameter, ( )ηl  is the logarithm of

the likelihood function and ( ).w  and ( ).v  are arbitrary functions of η. Let

( ) ( )ηπ=ηv  the prior density of the parameter η, ( ) ( ) ( )ηπη=η uw  and

( ) ( )( ),ln ηπ=ηρ  the ratio in (3.11) will be the posterior expectation of the

function ( )ηu  under the squared error loss function and it is given by

( )( )
( ) ( ) ( )( )

( ) ( )( )
.

exp

exp

∫
∫

ηηρ+η

ηηρ+ηη
=η

dl

dlu
uE (3.12)

The basic idea to evaluate this ratio is to expand on Taylor series the

functions involved in it about the maximum likelihood η̂  of η, this leads

to the following formula, where the first term omitted is ( ):2−nO

( )( ) ( )∑ ∑ σσ+σρ++η
ji kji

klijlijkijjiij uluuutuE
, ,,

,
2
12

2
1~ (3.13)

where each suffix denotes differentiation once with respect to the

variable having that suffix; this means

( )
,

3

kji
ijk

l
l

η∂η∂η∂
η∂=  

( )
,

2

ji
ij

u
u

η∂η∂
η∂=  

( )
,

i
i

u
u

η∂
η∂=  

( )
,

i
i η∂

ηρ∂=ρ  etc. ijσ  is

the ( )ji,  element of the observed variance-covariance matrix. All the

quantities in (3.13) are to be evaluated at the MLE of η and the

summation run over all suffixes from one to m (the dimensionality of η).

Lindley [5] gave the one-parameter and two-parameter versions of

(3.13).

To find the approximate Bayes estimate of the reliability function we

need the following:
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1. The third derivatives of the log likelihood function which are given
by

,
11

2
33

3

30
θ







 +
β=

θ∂

∂= nll

( )∑
=

β−
θβ

=
β∂θ∂

∂=
n

i
ii ttnll

1

2
32

3

12 ,ln2

,
222

3

21
θβ

=
β∂θ∂

∂= nll

( )( ) .ln616

161

ln4
24

1

3
33

3

03


















θ−






β

Ψ+
β








β

Ψ′
+

β








β

Ψ ′′

β
+θ−

β
=

β∂

∂= ∑
=

β nttnll
n

i
ii

2. The derivatives of the logarithm of the prior function given by

( ) ( )( ) .lnln,ln, β−θ−=βθπ=βθρ

Differentiating this function with respect to each parameter in turn
yields:

 
( )

,1,
1 θ

−=
θ∂
βθρ∂

=ρ        
( )

.1,
2 β

−=
β∂
βθρ∂

=ρ

3. The derivatives of the reliability function:

Differentiating the reliability function given in (1.4) with respect to θ and

β in turn gives:

- The first derivatives:

( ) ( )
,

1
exp

1
1

1 βθ
−=








β

Γ

θ−θβ
−=

θ∂
∂=

ββ+β ttfttRR

( ) ( ) ( ).11
1

1
ln

2
1

2 R
I

tf
ttRR −



















β
+

β








β

Ψ
−








β

Γβ
+








β
−=

β∂
∂=
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- The second derivatives:

( )
,1

2

2

11 







βθ
+−

βθ
−=

θ∂

∂= βt
ttfRR

( ) ( ) ( ) ,1
1

ln1ln
22

2

12



















β
+

β








β

Ψ
+

β

θ−θ−
βθ

−=
β∂θ∂

∂= βtt
ttfRR

( )














 β+θ−







β

Ψ
β

+





 θ−

β
−

β
−=

β∂

∂= β ln1211ln
ln

22

2

22 tt
ttftRR

( )
,

11
1

1

12
2

223

21







































β








β

Ψ
−

β








β

Ψ′

β

−+







β

Γβ







 −







β

Ψ
+ R

II

where

( ) ,ln
0

1

1 dxexxI

t
x∫

βθ
−β=    and   ( )( ) .ln

0

1
2

2 dxexxI

t
x∫

βθ
−β=

Using all the above results evaluated at the MLE of the parameters and

setting ( ) ( ) ( )tRuu =θβ=η ,  in (3.13) such that: ( ,11 Ru =  ,22 Ru =

,1111 Ru =  ,122112 Ruu ==  )2222 Ru =  yield

( ) ( ) ( ).ˆˆ
~~

tRtRtR ∆+≈ (3.14.a)

To get the second posterior moment of the reliability function we

put ( ) ( ) ( )tRuu 2, =θβ=η  the first and the second derivatives of this

function are: ,2 11 RRu =  ,2 22 RRu =  ( ),2 11
2
111 RRRu +=  == 2112 uu

( )RRRR 12212 +  and ( )RRRu 22
2
222 2 +=  we get

( ( ) ) ( ) ( ).ˆˆ 222 tRtRttRE ∆+≈ (3.14.b)
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- If we suppose that the shape parameter is known, we get

( ) ( )
( )

,
ˆ
1ˆ

1ˆ2

ˆ
ˆ ˆ










β
−θ

+β
=∆ βt

n

tft
tR (3.14.c)

( ) ( )
( )

( ) ( ) ,ˆ
ˆ
1ˆ

ˆ

ˆ

1ˆ

ˆ
ˆ ˆ2


















β
+θ+

β+β
=∆ β tRt

tft

n

tft
tR (3.14.d)

where ( )tf̂  is the WLB density evaluated at the MLE of the unknown

parameters. Note that ( )tR̂∆  and ( )tR2ˆ∆  tend to zero as the sample size

n tends to infinity, and the Bayes estimate approaches the MLE.

- If the scale parameter is assumed to be known, we get

( ) ,
ˆ
2

ˆˆ
ˆˆ

ˆ2
1ˆ

1

34222

1

3 



























β
−









β
+









β
++









β
+=∆

−−
nADnBCRRnADtR (3.14.e)

( ) .
ˆ
2

ˆˆ
ˆˆˆˆ

ˆ
ˆ

1

34222
2
2

1

3
2











































β
−









β
+









β
+++









β
+=∆

−−
nADnBCRRRRnADtR (3.14.f )

4. Numerical Example and Simulation Results

In this section a numerical example is given to illustrate the above

methods and simulation is carried out to study the behavior of the three

estimates of the reliability function of the WLB distribution.

4.1. Numerical example

To illustrate the above formulas and methods the following data were

taken from Gupta and Akman [3], they represent millions of revolutions

to failure for 23 ball bearings in fatigue test:

17.880 28.920 33.000 41.520 42.120 45.600 48.480 51.840

51.960 54.120 55.560 67.800 68.640 68.640 68.880 84.120

93.120 98.640 105.120 105.840 127.920 128.040 173.400
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These data have been previously fitted assuming several distributions

such as lognormal, Inverse Gaussian, length-biased inverse Gaussian

and Weibull distribution. Fitting the above data with the original

Weibull distribution gives the following results:

094.2ˆ =β  and 510864.9ˆ −×=θ

,
107.010903.4

10903.410279.2
5

58










×−
×−×= −

−−
V

which are close to the results obtained by Thoman et al. [10] ( 102.2ˆ =β

).10490.9ˆand 5−×=θ

In the present work the Ball bearings data were also fitted using the

length-biased Weibull. The parameters were estimated by the maximum

likelihood method via iterating the system (3.1.a) and (3.1.b) using the

package Mathcad 2001, the following results were found

.10768.1ˆand571.1ˆ 3−×=θ=β

The observed variance-covariance matrix was also evaluated and it is

given by

.
095.010058.8

10058.810883.6
4

46










×−
×−×= −

−−
V

At %5=α  level of significance the Kolmogorov-Smirnov test does not

reject that this data come from a WLB distribution since the computed

statistic 136.023 =D  is less than the theoretical statistic ( )05.023D

.247.0=

The MLE, the Bayes and approximate Bayes estimates of the

reliability function of the WLB distribution were obtained for certain

values of time; for comparison the same estimate using the original

distribution are also given in the following table:
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Table (a). MLE, Bayes and approximate Bayes estimates
of the reliability function with variances

Estimates ( )tR̂

(MLE)

( )tR
~

(Bayes estimate)

( )tR
~~

 (Approximate Bayes
estimate)

Time t Length-biased Original Length-biased Original Length-biased Original

10 0.992

(2.487(–4))∗

0.988

(2.671(–4))

0.955

(6.314(–9))

0.904

(4.118(–5))

0.990

(3.246(–5))

0.984

(7.694(–5))

15 0.979

(1.834(–3))

0.972

(1.462(–3))

0.921

(7.928(–9))

0.859

(5.732(–5))

0.974

(1.812(–4))

0.966

(3.049(–4))

20 0.958

(7.171(–3))

0.949

(4.829(–3))

0.884

(8.703(–9))

0.816

(6.906(–5))

0.952

(5.336(–4))

0.942

(7.551(–4))

50 0.695

(0.253)

0.700

(0.141)

0.664

(6.543(–9))

0.6

(8.246(–5))

0.693

(6.224(–3))

0.697

(6.104(–3))

80 0.370

(0.502)

0.385

(0.310)

0.487

(3.128(–9))

0.441

(6.085(–5))

0.380

(6.464(–3))

0.395

(6.634(–3))

100 0.209

(0.384)

0.218

(0.236)

0.397

(1.697(–9))

0.358

(4.511(–5))

0.223

(4.443(–3))

0.232

(4.604(–3)

173 0.011

(8.534(–3))

8.24(–3)

(1.462(–3))

0.185

(4.314(–11))

0.169

1.244(–5)

0.019

(1.185(–4))

0.015

(6.473(–5))

( ) .10487.24487.2 4−∗ ×=−

From Table (a) we observe that ( )tR̂  and ( )tR
~~

 are very close, while ( )tR
~

presents a slight difference for the original and the length-biased
distribution. The Bayesian method gives the smallest variances for all
values of t for the two distributions.

4.2. Simulation Results

In order to study the behavior of the three estimates of the reliability

function, 1000 samples were generated from the WLB distribution with

sample sizes: ,10=n  20, 30, 50, 100 for certain values of the shape and
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scale parameters, and values of time corresponding the following true

values of reliability: 0.99, 0.95, 0.85, 0.75, 0.5, 0.25, 0.05, respectively.

(Tables for this study are available from authors upon request.) From

this study we concluded that

1. The variance, bias and mean square error (MSE) decrease as

increasing the sample size n for almost all values of time t and all the

given combinations of parameters for the three methods of estimation.

2. Increasing the time t for a fixed sample size n the MSE increases

for values of reliability ( ) 5.0≥tR  and decreases for the other values of

reliability for the three methods except for the approximate Bayesian

method, when both parameters are less than unity the MSE start to

decrease from ( ) .75.0<tR

3. The Bayesian method does not behave well when both parameters

are less than unity.

4. The maximum likelihood gives the best estimates with the smallest

MSE.
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