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Abstract 

The effect of thermal radiation on the natural convection flow past an 
impulsively started infinite vertical plate in a rotating fluid is 
investigated in the form of exact solution by applying Laplace 
transformation technique. The optically thin radiation limit is 
considered and the working fluid is taken to have Prandtl numbers 

,71.0Pr =  7.0 and 100.0 and the effects of varying the radiation 

parameter F, the variation of Grashof number G, rotation parameter Ω  
and time are discussed. 

1. Introduction 

The first exact solution of the Navier-Stokes equation was given by 
Stokes [21], which explains the motion of a viscous incompressible fluid 
past an impulsively started infinite horizontal plate in its own plane. This 
is known as Stokes’s first problem in the literature. If the plate is in a 
vertical direction and given an impulsive motion in its own plane in a 
stationary fluid, then the resulting effect of buoyancy forces was first 
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studied by Soundalgekar [18] by the Laplace transformation technique 
and the effects of heating or cooling of the plate by free convection 
currents were discussed. Now if the stationary mass of fluid is made to 
rotate about this vertical plate, how buoyancy forces, centrifugal forces 
and Coriolis forces affect the flow past this moving plate. This has not 
been studied in the literature. From the physical point of view, this is 
very complex situation, and then an exact solution is not possible. 
However, if the system is rotating very slowly, the square and higher 
order terms in the centrifugal forces can be neglected and then the 
system is acted only by the thermal buoyancy force and Coriolis force, 

respectively, given by ( )∞−βρ− TTg0  and ,2 0 V×Ωρ−  where ,g  Ω  and 

V  are the gravitational vector force, rotation and velocity vectors 

respectively. A more general case where all these forces are taken into 
account is studied by Ker and Lin [13], while studying the combined 
convection in a rotating cubic cavity. The interaction of natural 
convection with thermal radiation has increased greatly during the last 
decade due to its importance in many practical applications. Radiation 
effects on the free convection flow are important in context of space 
technology and processes involving high temperature and very little is 
known about the effects of radiation on the boundary layer flow of a 
radiating fluid past a body. 

Several investigations have been carried out on problem of heat 
transfer by radiation as an important application of space and 

temperature related problems. Greif, Habib and Lin [8] obtained an exact 
solution for the problem of laminar convective flow in a vertical heated 

channel in the optically thin limit. In the optically thin limit, the fluid 
does not absorb its own emitted radiation which means that there is no 

self absorption but the fluid does absorb radiation emitted by the 
boundaries. Viskanta [23] investigated the forced convective flow in a 
horizontal channel permeated by uniform vertical magnetic fluid taking 

radiation into account. He studied the effects of magnetic field and 
radiation on the temperature distribution and the rate of heat transfer in 

the flow. Later Gupta and Gupta [9] studied the effect of radiation on the 
combined free and forced convection of an electrically conducting fluid 

flowing inside an open-ended vertical channel in the presence of a 



RADIATION EFFECTS ON FLOW PAST … 135

uniform transverse magnetic field for the case of optically thin limit. 

They found that radiation tends to increase the rate of heat transfer to 
the fluid there by reducing the effect of natural convection. Soundalgekar 

and Takhar [19] first, studied the effect of radiation on the natural 
convection flow of a gas past a semi-infinite plate using the Cogly-
Vincentine-Gilles equilibrium model (Cogly et al. [3]). Later, Hossain and 

Takhar [11] analyzed the effect of radiation using the Rosseland diffusion 
approximation which leads to non-similar solution for the forced and free 

convection of an optically dense viscous incompressible fluid past a 
heated vertical plate with uniform free stream and uniform surface 

temperature,  while Hossain et al. [10] studies the effect of radiation on 
free convection from a porous vertical plates. Muthucumaraswamy and 

Kumar [15] studied the thermal radiation effects on moving infinite 
vertical plate in the presence of variable temperature and mass diffusion. 

Further studies on radiation effects with different physical have been 
done by different authors. Few of them are Takhar et al. [22], Raptis and 
Perdikas [17], Das et al. [4], Pop et al. [16], Kumari and Nath [14], 

Ibrahim et al. [12], Abo-Eldahab and Gendy [1], El Arabawy [5], 
Elbashbeshy and Dimian [6], Ganesan and Loganathan [7]. 

The objective of the present study is to investigate free convection 

flow of an optically thin viscous incompressible fluid from an impulsively 
started vertical isothermal flat plate. The plate being rotating in unison 

with the stationary fluid when radiation  effect is included involving the 
Cogly-Vincentine-Giles equilibrium model. Solutions are presented in 

graphical as well as tabular form. Various values of the radiation 
parameter, rotation parameter, Grashof number are considered for fluid 

having Prandtl number 0.7,71.0Pr =  and 100.0. 

2. Mathematical Analysis  

Consider an infinite plate maintained placed vertically in an infinite 

expanse of stationary radiating fluid at constant temperature ∞′T  

coinciding with the plane .0=′z  The x ′ -axis is taken along the plate in 

the vertically upward direction and the z′ -axis is taken normal to the 

plate while the y′ -axis is assumed to be in the plane of the plate and 
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normal to both x ′  and z′ -axes. Initially, the fluid and the plate rotate in 

unison with a uniform angular velocity Ω′  about z′ -axis. Relative to the 

rotating fluid, the plate is given an impulsive motion, so that it moves 

with a velocity 0U  in its own plane along the x ′ -axis and the plate 

temperature is raised or lowered to .wT ′  The plate being of infinite 

length, all the physical variables are functions of z′  and t′  only. The 

following assumptions are made in this investigation: 

(a) The fluid physical properties are assumed constant and the 
density variation in the body force term in momentum equation is 

assumed where the Bussinesq approximation is involved. 

(b) The fluid is assumed to be gray, emitting and absorbing but non-
scattering medium. 

(c) The optically thin radiation limit is considered where the radiative 

heat flux term appearing in the energy equation can be simplified by 
using the Cogly-Vincentine-Giles equilibrium model. 

Under these assumptions, the governing equations of the laminar 

boundary layer flow problem under consideration can be written as 
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In the optically thin limit, the fluid does not absorb its own emitted 
radiation that is there is no self absorption, but it does absorb radiation 

emitted by the boundaries. Under this assumption Sparrow and Cess [20] 
showed that the following relation holds 

,44 44
wMp

r TKTK
z
q ′σ−′σ=
′∂

∂
 

where pK  and MK  are the Planck mean and the modified Planck mean 
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absorption coefficient respectively and σ being the Stefan-Boltzmann 

constant. Cogley et al. [3], have shown that in the optically thin limit for 

a non-gray gas near equilibrium, that 
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where wKλ  is the absorption coefficient, λbe  is the Planck function and 

the subscript w refers to values at the wall. Further simplifications can 

be made concerning the spectral properties of radiating gases, but are not 
necessary for our investigation. Substitution of equation (4) in (3) yields 
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Here the subscript w indicates that all quantities have been evaluated at 

the reference temperature wT  (plate temperature at .)0=′z  

The initial and boundary conditions are 
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All the physical variables are defined in the Nomenclature. On 
introducing the following non-dimensional quantities, 
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then the equations (1) to (6), we have 
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with following initial and boundary conditions: 
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Here .iVUq +=  

We now solve equations (7) and (8) subject to the initial and boundary 
conditions (9) by the usual Laplace-transform technique. The solutions 

are given by 
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We have separated iVUq +=  into real and imaginary parts and the 

numerical values of U and V are computed. During computation, it is 
observed that the arguments of the error function involved in (11) are 

complex, so we use the following well known formula (Abramowitz and 
Stegun [2] ) to separate into real and imaginary parts. 
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3. Results and Discussions 

The results incorporating the effects of radiation on the velocity and 
temperature profiles are presented in Figures 1 and 2. Figure 1 shows the 

variation of U (the component of velocity in the direction of motion of the 

plate) with Z for different values of the radiation parameter F, at time 

.2.0=T  It is observed that the axial velocity decreases for increasing the 

radiation parameter. Likewise the transverse velocity profiles are 

presented in Figure 2, which demonstrates the decreasing (increasing) 

behaviors. The negative sign for V in this figure indicates that this 

component is transverse to the main flow direction x in the clockwise 

sense. To see the effect of the Grashof number G, the axial and transverse 

velocity profiles are presented in Figures 3 and 4 respectively keeping the 

other parameters fixed. It is showed that increasing the values of G, both 

axial and transverse velocity increases. 

The results for the non-radiating problem in the presence of rotation 

are presented in Figures 5 and 6 and show the effect of rotation on the 
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axial and transverse velocity profiles. Figure 5 shows that the axial 

velocity at any given instant and at a given height from the plate 

increases with increasing rotation. On the other hand Figure 6 shows 

that at a given instant the transverse velocity component V increases 

with increasing in rotation. We observe from the Figures 7 and 8, that the 

axial and transverse velocity decreases with increasing Prandtl number 

.Pr  

4. Skin-friction 

From the velocity field, we now study the effects of these parameters 

on the skin-friction. It is given by 
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And in non-dimensional form, it becomes 
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We have computed numerical values of xτ  and yτ  and these are listed in 

Table I. 

Table I. Values of skin-friction 

t F Pr Ω  G xτ  yτ  

0.2 0.0 0.71 0.4 0.4 1.0746 0.2715 

0.2 0.5 0.71 0.4 0.4 1.2712 0.2965 

0.2 0.5 0.71 0.4 0.6 1.2732 0.3438 

0.2 0.5 0.71 0.4 0.8 1.2752 0.3911 

0.2 0.5 0.71 0.6 0.4 1.2612 0.4095 

0.2 0.5 0.71 0.8 0.4 1.2556 0.5124 

0.2 0.7 0.71 0.4 0.4 1.2611 0.2475 

0.2 1.0 0.71 0.4 0.4 1.2366 0.2080 

0.2 0.5 7.0 0.4 0.4 1.4727 0.1988 

0.2 0.5 100.0 0.4 0.4 1.8082 0.0568 
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We observe from the table that as compared to non-radiating case 

,0=F  the axial skin-friction xτ  is always greater in the presence of 

optically thin limit and decreases with increasing the radiation 

parameter F. But transverse skin-friction yτ  is always less for optically 

thin limit and decreases with increasing F. Also xτ  decreases with 

rotation parameter Ω  and increases with increase in the Prandtl number 

.Pr  The transverse skin-friction yτ  is found to increase with Ω  and 

decreases as Pr  increases. From the table we conclude that for greater 

values of G, both xτ  and yτ  increases. 

5. Conclusions 

  i. Axial and transverse velocity decreases for increasing the 

radiation parameter. 

 ii. Increasing the values of G and ,Ω  both axial and transverse 

velocity increases. 

iii. Axial and transverse velocity decreases with increasing Prandtl 

number. 

iv. The axial skin-friction xτ  is always greater in the presence of 

optically thin limit and decreases with increasing the radiation 

parameter F. But transverse skin-friction yτ  is always less for optically 

thin limit and decreases with increasing F. 

Nomenclature 

pC   specific heat at constant pressure  

erfc  complementary error function 

g  gravitational acceleration 

G  Grashof number 

K  thermal conductivity 

Pr  Prandtl number  

t′   time 
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t  dimensionless time 

T ′   fluid temperature 

wT ′   temperature of the plate 

∞′T   temperature of the fluid away from the plate 

0U   reference velocity of the plate 

U ′   fluid velocity in x ′ -direction 

U  non-dimensional fluid velocity in x-direction 

V ′   fluid velocity in y′ -direction 

V  non-dimensional fluid velocity in y-direction 

rq   radiative flux 

F  radiation parameter 

x ′   co-ordinate along the plate 

y′   co-ordinate normal to zx ′′ -plane 

z′   co-ordinate normal to the plate 

Symbols 

β   thermal expansion coefficient 

0ρ   reference fluid-density 

µ   fluid viscosity 

τ′   skin-friction 

Ω   non-dimensional rotation parameter 

θ   dimensionless temperature 

Ω′   rotation parameter 

ν   kinematic viscosity 

τ   dimensionless skin-friction 

ρ   fluid density  



RADIATION EFFECTS ON FLOW PAST … 143

References 

 [1] E. M. Abo-Eldahab and M. S. El Gendy, Radiative effect on convective heat transfers 
in an electrically conducting fluid at a stretching surface with variable viscosity and 
uniform free stream, Physica Scripta 62 (2000), 321.  

 [2] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover 
Publications, New York, 1965.  

 [3] A. C. Cogly, W. C. Vincentine and S. E. Gilles, Differential approximation for 
radiative transfer in a non-gray gas near equilibrium, American Institute of 
Aeronautics and Astronautics Journal 6 (1968), 551.  

 [4] U. N. Das, R. K. Deka and V. M. Soundalgekar, Radiation effects on flow past an 
impulsively started vertical plate – an exact solution, J. Theo. Appl. Fluid Mech. 1 
(1996), 111. 

 [5] H. A. M. El Arabawy, Effect of suction/injection on the flow of a micropolar fluid past 
a continuously moving plate in the presence of radiation, Int. J. Heat Mass Transfer 
46 (2003), 1471. 

 [6] E. M. A. Elbashbeshy and M. F. Dimian, Effect of radiation on the flow and heat 

transfer over a wedge with variable viscosity, Applied Mathematics and 
Computation 132 (2001), 445. 

 [7] P. Ganesan and P. Loganathan, Radiation and mass transfer effects on flow of an 
incompressible viscous fluid past a moving vertical cylinder, Int. J. Heat Mass 

Transfer 45 (2002), 4281. 

 [8] R. Greif, I. S. Habiband and J. C. Lin, Laminar convection of a radiating gas in a 
vertical channel, Journal of Fluid Dynamics 46 (1971), 513. 

 [9] P. S. Gupta and A. S. Gupta, Radiation effect on hydromantic convection in a 
vertical channel, Int. J. Heat Mass Transfer 17 (1974), 1437.  

 [10] M. A. Hossain, M. A. Alim and D. A. S. Rees, Effect of radiation on free convection 

from a porous vertical plate, Int. J. Heat Mass Transfer 42 (1999), 181. 

 [11] M. A. Hossain and H. S. Takhar, Radiative effect on mixed convection along a 
vertical plate with uniform surface temperature, Int. J. Heat Mass Transfer 31 
(1996), 243. 

 [12] F. S. Ibrahim, M. A. Mansour and M. A. A. Hamad, Lie-group analysis of radiative 
and magnetic field effects on free convective and mass transfer flow past a semi-
infinite vertical flat plate, Electronic J. Differential Equation 39 (2005), 1.  

 [13] B. T. Ker and T. F. Lin, A combined numerical and experimental study of air 
convection in differentially heated rotating cubic cavity, Int. J. Heat Mass Transfer 
39 (1996), 3193.  

 [14] K. Kumari and G. Nath, Radiation effects on mixed convection from a horizontal 
surface in a porous medium, Mech. Res. Comm. 31 (2004), 483. 



M. K. MAZUMDAR and R. K. DEKA 144

 [15] R. Muthucumaraswamy and G. Senthil Kumar, Heat and mass transfer effects on 
moving vertical plate in the presence of thermal radiation, Theoret. Appl. Mach. 
31(1) (2004), 35.  

 [16] S. R. Pop, T. Grosan and I. Pop, Radiation effect on the flow near the stagnation 
point of a stretching sheet, Technisch Mechanik 2592 (2004), 100.  

 [17] A. Raptis and C. Perdikis, Radiation and free convection flow past a moving plate, 

Int. J. Appl. Mech. Engng. 4 (1999), 817.  

 [18] V. M. Soundalgekar, Free convection effects on Stokes’s problem for a vertical plate, 
American Society of Mechanical Engineers, Journal of Heat Transfer 99C (1977), 
499. 

 [19] V. M. Soundalgekar and H. S. Takhar, Radiative convective flow past a semi infinite 
vertical plate, Modelling Measure and Cont. 51 (1992), 31. 

 [20] E. M. Sparrow and R. D. Cess, Free convection with blowing or suction, J. Heat 
Tran. 83 (1961), 387.  

 [21] G. G. Stokes, On the effect of internal friction of fluids on the motion of pendulums, 
Camb. Phil. Trans. IX (1851), 8. 

 [22] H. S. Takhar, R. S. R. Gorla and V. M. Soundalgekar, Radiation effects on MHD free 
convection flow of a radiating gas past a semi infinite vertical plate, Int. J. 
Numerical Methods Heat Fluid Flow 6 (1966), 77.  

 [23] R. Viskanta, Effect of transverse magnetic field on heat transfer to an electrically 
conducting and thermal radiating fluid flowing in a parallel plate channel, ZAMP 14 
(1963), 353. 

 

 



RADIATION EFFECTS ON FLOW PAST … 145

 

Figure 1. Axial velocity profiles for ,4.0,71.0Pr,2.0 === Gt .4.0=Ω  

 

Figure 2. Transverse velocity profiles for ,2.0=t  ,71.0Pr =  ,4.0=G  
.4.0=Ω  
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Figure 3. Axial velocity profiles for ,3.0,71.0Pr,2.0 === Ft .4.0=Ω  

 

Figure 4. Transverse velocity profiles for ,3.0,71.0Pr,2.0 === Ft  

.4.0=Ω  
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Figure 5. Axial velocity profiles for ,3.0,71.0Pr,2.0 === Ft .4.0=G  

 

Figure 6. Transverse velocity profiles for ,3.0,71.0Pr,2.0 === Ft  

.4.0=G  
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Figure 7. Axial velocity profiles for ,3.0,4.0,2.0 === FGt .4.0=G  

 

Figure 8. Transverse velocity profiles for ,2.0=t  ,4.0=G  ,3.0=F  

.4.0=Ω  


