HAMILTONIAN CYCLES WITH SIX 3-CONTRACTIBLE EDGES WHICH HAVE THREE CONSECUTIVE NONDEGENERATE SEGMENTS

KYO FUJITA
Department of Life Sciences, Toyo University
1-1-1 Izumino, Itakura-machi, Oura-gun
Gunma 374-0193, Japan

Abstract

We classify all pairs (G, C) of a 3 -connected graph G and a hamiltonian cycle C of G such that C contains precisely six contractible edges of G, C has precisely three nondegenerate segments, and the three nondegenerate segments are consecutive on C.

1. Introduction

In this paper, we consider only finite, simple, undirected graphs with no loops and no multiple edges.

A graph G is called 3-connected if $|V(G)| \geq 4$ and $G-S$ is connected for any subset S of $V(G)$ having cardinality 2 . An edge e of a 3-connected graph G is called contractible if the graph which we obtain from G by contracting e (and replacing each of the resulting pairs of parallel edges by a simple edge) is 3 -connected; otherwise e is called noncontractible. In [2], Dean et al. proved that every longest cycle in a 3-connected graph other than K_{4} or $K_{2} \times K_{3}$ contains at least three contractible edges. Further Aldred et al. [1], Ota [6], Fujita [4], and Fujita and Kotani [5] 2000 Mathematics Subject Classification: 05C40, 05C38.

Keywords and phrases: 3-connected graph, contractible edge, hamiltonian cycle.
classify all pairs (G, C) of a 3 -connected graph G and a longest cycle C of G such that C contains at most five contractible edges of G. In these classifications, it turns out that for all such pairs $(G, C), C$ is a hamiltonian cycle of G. Thus it is desirable that one should obtain a classification of those pairs (G, C) of a 3 -connected graph G and a hamiltonian cycle C such that C contains precisely six contractible edges of G. Along this line of research, the following theorem was proved in [3] (see the paragraph following Lemma 4.3 for the definition of the term "nondegenerate"; also see [3, Section 1] for the definition of Type 1):

Theorem 1. Let G be a 3 -connected graph and let C be a hamiltonian cycle of G. Suppose that C contains precisely six contractible edges of G, and C has four consecutive nondegenerate segments. Then the pair (G, C) is of Type 1 .

In this paper, we consider the case where C has three consecutive nondegenerate segments. More precisely, we prove the following theorem:

Theorem 2. Let G be a 3 -connected graph and let C be a hamiltonian cycle of G. Suppose that C contains precisely six contractible edges of G. Suppose further that C has precisely three nondegenerate segments and they are consecutive on C. Then the pair (G, C) belongs to one of the 7 types, Types 2 through 8, which are defined in Section 2.

The organization of this paper is as follows. In Section 2, we define the type of a pair (G, C) satisfying the assumption of Theorem 2 . Section 3 contains fundamental results concerning noncontractible edges lying on a hamiltonian cycle of a 3 -connected graph. In Section 4, we derive basic properties of a pair (G, C) satisfying the assumption of Theorem 2 , and we complete the proof of Theorem 2 in Section 5.

Our notation and terminology are standard except possibly for the following. Let G be a graph. For $U \subseteq V(G)$, we let $\langle U\rangle=\langle U\rangle_{G}$ denote the graph induced by U in G. For $U, V \subseteq V(G)$, we let $E(U, V)$ denote the set of edges of G which join a vertex in U and a vertex in V; if $U=\{u\}(u \in V(G))$, then we write $E(u, V)$ for $E(\{u\}, V)$. A subset S of $V(G)$ is called a cutset if $G-S$ is disconnected; thus G is 3-connected if
and only if $|V(G)| \geq 4$ and G has no cutset of cardinality 2 . If G is 3-connected, then for $e=u v \in E(G)$, we let $K(e)=K(u, v)$ denote the set of vertices x of G such that $\{u, v, x\}$ is a cutset; thus e is contractible if and only if $K(e)=\varnothing$. If e is noncontractible, then for each $x \in K(e)$, $\{u, v, x\}$ is called a cutset associated with e.

2. Definition of the Type of a Pair (G, C)

In this section, we define the type of a pair (G, C) of a 3 -connected graph G and a hamiltonian cycle C of G such that C contains precisely six contractible edges of G. Throughout this section, we let $n_{0}, n_{1}, n_{2}, n_{3}$, n_{4} and n_{5} be nonnegative integers, and let G denote a graph of order $n_{0}+n_{1}+n_{2}+n_{3}+n_{4}+n_{5}+6$ with vertex set $V(G)=\left\{a_{i} \mid 0 \leq i \leq n_{0}\right\}$ $\cup\left\{b_{i} \mid 0 \leq i \leq n_{1}\right\} \cup\left\{c_{i} \mid 0 \leq i \leq n_{2}\right\} \cup\left\{d_{i} \mid 0 \leq i \leq n_{3}\right\} \cup\left\{e_{i} \mid 0 \leq i \leq n_{4}\right\} \cup$ $\left\{f_{i} \mid 0 \leq i \leq n_{5}\right\}$ such that G contains $C=a_{0} a_{1} \cdots a_{n_{0}} b_{0} b_{1} \cdots b_{n_{1}} c_{0} c_{1} \cdots$ $c_{n_{2}} d_{0} d_{1} \cdots d_{n_{3}} e_{0} e_{1} \cdots e_{n_{4}} f_{0} f_{1} \cdots f_{n_{5}} a_{0}$ as a hamiltonian cycle. In the definition of each type, it is easy to verify that if G satisfies the required conditions, then G is 3 -connected, and $a_{n_{0}} b_{0}, b_{n_{1}} c_{0}, c_{n_{2}} d_{0}, d_{n_{3}} e_{0}, e_{n_{4}} f_{0}$, $f_{n_{5}} a_{0}$ are the only contractible edges of G that are on C. Further if we let $C_{0}=\left\{a_{0}, a_{1}, \ldots, a_{n_{0}}\right\}, C_{1}=\left\{b_{0}, b_{1}, \ldots, b_{n_{1}}\right\}, C_{2}=\left\{c_{0}, c_{1}, \ldots, c_{n_{2}}\right\}, C_{3}=$ $\left\{d_{0}, d_{1}, \ldots, d_{n_{3}}\right\}, C_{4}=\left\{e_{0}, e_{1}, \ldots, e_{n_{4}}\right\}$ and $C_{5}=\left\{f_{0}, f_{1}, \ldots, f_{n_{5}}\right\}$, then C_{3}, C_{4} and C_{5} are nondegenerate and C_{0}, C_{1} and C_{2} are degenerate (see the paragraph following Lemma 4.3 for the definition of the terms "nondegenerate" and "degenerate").

Type 2. Let $n_{0}=0$ or $2, n_{1}=0, n_{2}=0$ or $2, n_{3} \geq 1, n_{4} \geq 1$, and $n_{5} \geq 1$. Let

$$
\begin{aligned}
X= & \left\{d_{j} d_{j+2} \mid 0 \leq j \leq n_{3}-2\right\} \cup\left\{e_{x} e_{x+2} \mid 0 \leq x \leq n_{4}-2\right\} \\
& \cup\left\{f_{y} f_{y+2} \mid 0 \leq y \leq n_{5}-2\right\}, \\
Y= & \left\{b_{0} d_{j} \mid 0 \leq j \leq n_{3}\right\} \cup\left\{b_{0} e_{x} \mid 0 \leq x \leq n_{4}\right\} \cup\left\{b_{0} f_{y} \mid 0 \leq y \leq n_{5}\right\},
\end{aligned}
$$

$$
\left.\begin{array}{l}
F_{1}=\left\{\begin{array}{ll}
\left\{a_{0} f_{n_{5}-1}\right\} & \left(\text { if } n_{0}=0\right) \\
\left\{a_{0} a_{2}, a_{1} f_{n_{5}-1}\right\} & \text { (if } \left.n_{0}=2\right),
\end{array} \quad F_{1}^{\prime}= \begin{cases}\varnothing & \text { (if } \left.n_{0}=0\right) \\
\left\{a_{1} b_{0}, a_{1} f_{n_{5}}\right\} & \text { (if } \left.n_{0}=2\right),\end{cases} \right. \\
F_{2}=\left\{\begin{array}{ll}
\left\{c_{0} d_{1}\right\} & \text { (if } \left.n_{2}=0\right) \\
\left\{c_{0} c_{2}, c_{1} d_{1}\right\} & \text { (if } \left.n_{2}=2\right),
\end{array}, F_{2}^{\prime}= \begin{cases}\varnothing & \text { (if } \left.n_{2}=0\right) \\
\left\{c_{1} b_{0}, c_{1} d_{0}\right\} & \text { (if } \left.n_{2}=2\right),\end{cases} \right. \\
F_{3}=\left\{d_{n_{3}-1} e_{1}, e_{n_{4}-1} f_{1}\right\}, \quad F_{3}^{\prime}=\left\{d_{n_{3}} e_{1}, d_{n_{3}-1} e_{0}, e_{n_{4}} f_{1}, e_{n_{4}-1} f_{0}\right\},
\end{array}\right\} \begin{array}{ll}
W_{1}=\left\{\begin{array}{ll}
Y & \text { if } \left.n_{0}=0\right) \\
Y \cup\left\{a_{1} b_{0}\right\} & \left(\text { if } n_{0}=2\right),
\end{array} W_{2}= \begin{cases}Y & \text { (if } \left.n_{2}=0\right) \\
Y \cup\left\{b_{0} c_{1}\right\} & \text { (if } \left.n_{2}=2\right),\end{cases} \right. \\
Z_{1}=\left\{\begin{array}{ll}
\left\{b_{0} d_{0}\right\} & \text { (if } \left.n_{2}=0\right) \\
\varnothing & \text { (if } \left.n_{2}=2\right),
\end{array} \quad Z_{2}= \begin{cases}\left\{b_{0} f_{n_{5}}\right\} & \left(\text { if } n_{0}=0\right) \\
\varnothing & \left(\text { if } n_{0}=2\right) .\end{cases} \right.
\end{array}
$$

Under this notation, G is said to be of Type 2 if G satisfies the following four conditions:

- $X \cup F_{1} \cup F_{2} \cup F_{3} \subseteq E(G)-E(C)$

$$
\subseteq X \cup Y \cup F_{1} \cup F_{1}^{\prime} \cup F_{2} \cup F_{2}^{\prime} \cup F_{3} \cup F_{3}^{\prime}
$$

- for each i with $1 \leq i \leq 2,\left(W_{i}-Z_{i}\right) \cap E(G) \neq \varnothing$,
- if $n_{0}=0$ and $n_{5}=1$, then $\left\{f_{0} b_{0}, f_{0} e_{n_{4}-1}\right\} \cap E(G) \neq \varnothing$,
- if $n_{2}=0$ and $n_{3}=1$, then $\left\{d_{1} b_{0}, d_{1} e_{1}\right\} \cap E(G) \neq \varnothing$.

Type 3. Let $n_{0}=0$ or $2, n_{1}=2, n_{2}=0$ or $2, n_{3} \geq 1, n_{4} \geq 1$ and $n_{5} \geq 1$. Let

$$
\begin{aligned}
X= & \left\{d_{j} d_{j+2} \mid 0 \leq j \leq n_{3}-2\right\} \cup\left\{e_{x} e_{x+2} \mid 0 \leq x \leq n_{4}-2\right\} \\
& \cup\left\{f_{y} f_{y+2} \mid 0 \leq y \leq n_{5}-2\right\} \cup\left\{b_{0} b_{2}\right\}, \\
F_{1}= & \left\{\begin{array}{ll}
\left\{a_{0} b_{1}, a_{0} f_{n_{5}-1}\right\} & \text { (if } \left.n_{0}=0\right) \\
\left\{a_{0} a_{2}, a_{1} b_{1}, a_{1} f_{n_{5}-1}\right\} & \text { (if } \left.n_{0}=2\right),
\end{array} \quad F_{1}^{\prime}= \begin{cases}\varnothing & \text { (if } \left.n_{0}=0\right) \\
\left\{a_{1} f_{n_{5}}\right\} & \text { (if } \left.n_{0}=2\right),\end{cases} \right. \\
F_{2}= & \left\{\begin{array}{ll}
\left\{c_{0} d_{1}\right\} & \left(\text { if } n_{2}=0\right) \\
\left\{c_{0} c_{2}, c_{1} d_{1}\right\} & \text { (if } \left.n_{2}=2\right),
\end{array} \quad F_{2}^{\prime}= \begin{cases}\varnothing & \left(\text { if } n_{2}=0\right) \\
\left\{c_{1} d_{0}\right\} & \text { (if } \left.n_{2}=2\right),\end{cases} \right.
\end{aligned}
$$

$$
\begin{aligned}
& F_{3}=\left\{\begin{array}{ll}
\left.d_{n_{3}-1} e_{1}, e_{n_{4}-1} f_{1}\right\}, \quad F_{3}^{\prime}=\left\{d_{n_{3}} e_{1}, d_{n_{3}-1} e_{0}, e_{n_{4}} f_{1}, e_{n_{4}-1} f_{0}\right\}, \\
F_{4}=\left\{\begin{array}{ll}
\left\{b_{1} f_{n_{5}-1}\right\}, & \text { (if } \left.n_{0}=0\right) \\
\varnothing & \text { (if } \left.n_{0}=2\right),
\end{array}, F_{4}^{\prime}= \begin{cases}\left\{b_{1} f_{n_{5}}\right\} & \left(\text { if } n_{0}=0\right) \\
\left\{b_{1} f_{n_{5}-1}, b_{1} f_{n_{5}}\right\} & \text { (if } \left.n_{0}=2\right) .\end{cases} \right.
\end{array} . \begin{array}{l}
\text { and }
\end{array}\right)
\end{aligned}
$$

Under this notation, G is said to be of Type 3 if G satisfies the following three conditions:

- $X \cup F_{1} \cup F_{2} \cup F_{3} \cup F_{4} \subseteq E(G)-E(C) \subseteq X \cup F_{1} \cup F_{1}^{\prime}$

$$
\cup F_{2} \cup F_{2}^{\prime} \cup F_{3} \cup F_{3}^{\prime} \cup F_{4} \cup F_{4}^{\prime},
$$

- if $n_{0}=2$, then $F_{4}^{\prime} \cap E(G) \neq \varnothing$,
- if $n_{2}=0$ and $n_{3}=1$, then $d_{1} e_{1} \in E(G)$.

Type 4. Let $n_{0}=0$ or $2, n_{1}=2, n_{2}=0$ or $2, n_{3} \geq 1, n_{4} \geq 1$, and $n_{5} \geq 2$. Let

$$
\begin{aligned}
& X=\left\{d_{j} d_{j+2} \mid 0 \leq j \leq n_{3}-2\right\} \cup\left\{e_{x} e_{x+2} \mid 0 \leq x \leq n_{4}-2\right\} \\
& \cup\left\{f_{y} f_{y+2} \mid 0 \leq y \leq n_{5}-2\right\} \cup\left\{b_{0} b_{2}\right\}, \\
& F_{1}=\left\{\begin{array}{ll}
\left\{a_{0} f_{n_{5}-1}\right\} & \\
\left\{a_{0} a_{2}, a_{1} f_{n_{5}-1}\right\} & \text { (if } \left.n_{0}=0\right) \\
\left.n_{0}=2\right),
\end{array}, F_{1}^{\prime}= \begin{cases}\varnothing & \text { (if } \left.n_{0}=0\right) \\
\left\{a_{1} f_{n_{5}}\right\} & \text { (if } \left.n_{0}=2\right),\end{cases} \right. \\
& F_{2}=\left\{\begin{array}{ll}
\left\{c_{0} d_{1}\right\} & \text { (if } \left.n_{2}=0\right) \\
\left\{c_{0} c_{2}, c_{1} d_{1}\right\} & \text { (if } \left.n_{2}=2\right),
\end{array} \quad F_{2}^{\prime}= \begin{cases}\varnothing & \left(\text { if } n_{2}=0\right) \\
\left\{c_{1} d_{0}\right\} & \text { (if } \left.n_{2}=2\right),\end{cases} \right. \\
& F_{3}=\left\{d_{n_{3}-1} e_{1}, e_{n_{4}-1} f_{1}\right\}, F_{3}^{\prime}=\left\{d_{n_{3}} e_{1}, d_{n_{3}-1} e_{0}, e_{n_{4}} f_{1}, e_{n_{4}-1} f_{0}\right\} .
\end{aligned}
$$

Let p be an integer with $1 \leq p \leq n_{5}-1$, and set

$$
Y=\left\{b_{1} f_{y} \mid p-1 \leq y \leq p+1\right\} \text { and } W= \begin{cases}Y-\left\{b_{1} f_{n_{5}}\right\} & \left(\text { if } n_{0}=0\right) \\ Y & \text { (if } \left.n_{0}=2\right) .\end{cases}
$$

Now G is said to be of Type 4 if there exists p with $1 \leq p \leq n_{5}-1$ such that G satisfies the following three conditions:

- $X \cup F_{1} \cup F_{2} \cup F_{3} \subseteq E(G)-E(C)$

$$
\subseteq X \cup Y \cup F_{1} \cup F_{1}^{\prime} \cup F_{2} \cup F_{2}^{\prime} \cup F_{3} \cup F_{3}^{\prime}
$$

- $W \cap E(G) \neq \varnothing$,
- if $n_{2}=0$ and $n_{3}=1$, then $d_{1} e_{1} \in E(G)$.

Type 5. Let $n_{0}=0$ or $2, n_{1}=2, n_{2}=0$ or $2, n_{3} \geq 1, n_{4} \geq 1$, and $n_{5}=1$. Let

$$
\begin{aligned}
& X=\left\{d_{j} d_{j+2} \mid 0 \leq j \leq n_{3}-2\right\} \cup\left\{e_{x} e_{x+2} \mid 0 \leq x \leq n_{4}-2\right\} \cup\left\{b_{0} b_{2}\right\}, \\
& F_{1}=\left\{\begin{array}{ll}
\left\{a_{0} f_{n_{5}-1}\right\} & \left(\text { if } n_{0}=0\right) \\
\left\{a_{0} a_{2}, a_{1} f_{n_{5}-1}\right\} & \text { (if } \left.n_{0}=2\right),
\end{array} \quad F_{1}^{\prime}= \begin{cases}\varnothing & \text { if } \left.n_{0}=0\right) \\
\left\{a_{1} f_{n_{5}}\right\} & \left(\text { if } n_{0}=2\right),\end{cases} \right. \\
& F_{2}=\left\{\begin{array}{ll}
\left\{c_{0} d_{1}\right\} & \left(\text { if } n_{2}=0\right) \\
\left\{c_{0} c_{2}, c_{1} d_{1}\right\} & \left(\text { if } n_{2}=2\right),
\end{array} \quad F_{2}^{\prime}= \begin{cases}\varnothing & \text { (if } \left.n_{2}=0\right) \\
\left\{c_{1} d_{0}\right\} & \left(\text { if } n_{2}=2\right),\end{cases} \right. \\
& F_{3}=\left\{d_{n_{3}-1} e_{1}, e_{n_{4}-1} f_{1}\right\}, \quad F_{3}^{\prime}=\left\{d_{n_{3}} e_{1}, d_{n_{3}-1} e_{0}, e_{n_{4}} f_{1}, e_{n_{4}-1} f_{0}\right\}, \\
& F_{4}=\left\{\begin{array}{lll}
\left\{b_{1} f_{0}\right\}, & \left(\text { if } n_{0}=0\right) \\
\varnothing & \left(\text { if } n_{0}=2\right),
\end{array} \quad F_{4}^{\prime}= \begin{cases}\left\{b_{1} f_{1}\right\} & \left(\text { if } n_{0}=0\right) \\
\left\{b_{1} f_{0}, b_{1} f_{1}\right\} & \left(\text { if } n_{0}=2\right)\end{cases} \right.
\end{aligned}
$$

Under this notation, G is said to be of Type 5 if G satisfies the following three conditions:

- $X \cup F_{1} \cup F_{2} \cup F_{3} \cup F_{4} \subseteq E(G)-E(C) \subseteq X \cup F_{1} \cup F_{1}^{\prime}$
$\cup F_{2} \cup F_{2}^{\prime} \cup F_{3} \cup F_{3}^{\prime} \cup F_{4} \cup F_{4}^{\prime}$,
- if $n_{0}=2$, then $F_{4}^{\prime} \cap E(G) \neq \varnothing$,
- if $n_{2}=0$ and $n_{3}=1$, then $d_{1} e_{1} \in E(G)$.

Type 6. Let $n_{0}=0$ or $2, n_{1}=2, n_{2}=0$ or $2, n_{3} \geq 1, n_{4} \geq 2$, and $n_{5} \geq 1$. Let

$$
\begin{aligned}
& X=\left\{d_{j} d_{j+2} \mid 0 \leq j \leq n_{3}-2\right\} \cup\left\{e_{x} e_{x+2} \mid 0 \leq x \leq n_{4}-2\right\} \\
& \cup\left\{f_{y} f_{y+2} \mid 0 \leq y \leq n_{5}-2\right\} \cup\left\{b_{0} b_{2}\right\}, \\
& F_{1}=\left\{\begin{array}{ll}
\left\{a_{0} f_{n_{5}-1}\right\} & \left(\text { if } n_{0}=0\right) \\
\left\{a_{0} a_{2}, a_{1} f_{n_{5}-1}\right\} & \left(\text { if } n_{0}=2\right),
\end{array} \quad F_{1}^{\prime}= \begin{cases}\varnothing & \text { (if } \left.n_{0}=0\right) \\
\left\{a_{1} f_{n_{5}}\right\} & \left(\text { if } n_{0}=2\right),\end{cases} \right.
\end{aligned}
$$

$$
\begin{aligned}
& F_{2}=\left\{\begin{array}{ll}
\left\{c_{0} d_{1}\right\} & \left(\text { if } n_{2}=0\right) \\
\left\{c_{0} c_{2}, c_{1} d_{1}\right\} & \text { (if } \left.n_{2}=2\right),
\end{array} \quad F_{2}^{\prime}= \begin{cases}\varnothing & \left(\text { if } n_{2}=0\right) \\
\left\{c_{1} d_{0}\right\} & \text { (if } \left.n_{2}=2\right),\end{cases} \right. \\
& F_{3}=\left\{d_{n_{3}-1} e_{1}, e_{n_{4}-1} f_{1}\right\}, \quad F_{3}^{\prime}=\left\{d_{n_{3}} e_{1}, d_{n_{3}-1} e_{0}, e_{n_{4}} f_{1}, e_{n_{4}-1} f_{0}\right\} .
\end{aligned}
$$

Let p be an integer with $1 \leq p \leq n_{4}-1$, and set

$$
Y=\left\{b_{1} e_{x} \mid p-1 \leq x \leq p+1\right\} .
$$

Now G is said to be of Type 6 if there exists p with $1 \leq p \leq n_{4}-1$ such that G satisfies the following four conditions:

- $X \cup F_{1} \cup F_{2} \cup F_{3} \subseteq E(G)-E(C)$

$$
\subseteq X \cup Y \cup F_{1} \cup F_{1}^{\prime} \cup F_{2} \cup F_{2}^{\prime} \cup F_{3} \cup F_{3}^{\prime},
$$

- $Y \cap E(G) \neq \varnothing$,
- if $n_{0}=0$ and $n_{5}=1$, then $e_{n_{4}-1} f_{0} \in E(G)$.
- if $n_{2}=0$ and $n_{3}=1$, then $d_{1} e_{1} \in E(G)$.

Type 7. Let $n_{0}=0$ or $2, n_{1}=2, n_{2}=0$ or $2, n_{3} \geq 1, n_{4}=1$, and $n_{5} \geq 1$. Let

$$
\begin{aligned}
& X= \begin{cases}\left.d_{j} d_{j+2} \mid 0 \leq j \leq n_{3}-2\right\} \cup\left\{f_{y} f_{y+2} \mid 0 \leq y \leq n_{5}-2\right\} \cup\left\{b_{0} b_{2}\right\}, \\
F_{1}=\left\{\begin{array}{ll}
\left\{a_{0} f_{n_{5}-1}\right\} & \text { (if } n_{0}=0 \\
\left\{a_{0} a_{2}, a_{1} f_{n_{5}-1}\right\} & \left(\text { if } n_{0}=2\right),
\end{array} \quad F_{1}^{\prime}= \begin{cases}\varnothing & \text { (if } \left.n_{0}=0\right) \\
\left\{a_{1} f_{n_{5}}\right\} & \text { (if } \left.n_{0}=2\right),\end{cases} \right. \\
F_{2}=\left\{\begin{array}{ll}
\left\{c_{0} d_{1}\right\} & \left(\text { if } n_{2}=0\right) \\
\left\{c_{0} c_{2}, c_{1} d_{1}\right\} & \left(\text { if } n_{2}=2\right),
\end{array} \quad F_{2}^{\prime}= \begin{cases}\varnothing & \left(\text { if } n_{2}=0\right) \\
\left\{c_{1} d_{0}\right\} & \left(\text { if } n_{2}=2\right),\end{cases} \right. \\
F_{3}=\left\{d_{n_{3}-1} e_{1}, e_{n_{4}-1} f_{1}\right\}, & F_{3}^{\prime}=\left\{d_{n_{3}} e_{1}, d_{n_{3}-1} e_{0}, e_{n_{4}} f_{1}, e_{n_{4}-1} f_{0}\right\},\end{cases} \\
& Y=\left\{b_{1} e_{0}, b_{1} e_{1}\right\} .
\end{aligned}
$$

Under this notation, G is said to be of Type 7 if G satisfies the following four conditions:

- $X \cup F_{1} \cup F_{2} \cup F_{3} \subseteq E(G)-E(C)$

$$
\subseteq X \cup F_{1} \cup F_{1}^{\prime} \cup F_{2} \cup F_{2}^{\prime} \cup F_{3} \cup F_{3}^{\prime} \cup Y,
$$

- $Y \cap E(G) \neq \varnothing$,
- if $n_{0}=0$ and $n_{5}=1$, then $e_{n_{4}-1} f_{0} \in E(G)$.
- if $n_{2}=0$ and $n_{3}=1$, then $d_{1} e_{1} \in E(G)$.

Type 8. Let $n_{0}=0$ or $2, n_{1}=2, n_{2}=0$ or $2, n_{3} \geq 1, n_{4} \geq 1$, and $n_{5} \geq 1$. Let

$$
\begin{aligned}
& X=\left\{d_{j} d_{j+2} \mid 0 \leq j \leq n_{3}-2\right\} \cup\left\{e_{x} e_{x+2} \mid 0 \leq x \leq n_{4}-2\right\} \\
& \cup\left\{f_{y} f_{y+2} \mid 0 \leq y \leq n_{5}-2\right\} \cup\left\{b_{0} b_{2}\right\}, \\
& F_{1}=\left\{\begin{array}{ll}
\left\{a_{0} f_{n_{5}-1}\right\} & \left(\text { if } n_{0}=0\right) \\
\left\{a_{0} a_{2}, a_{1} f_{n_{5}-1}\right\} & \text { (if } \left.n_{0}=2\right),
\end{array}, F_{1}^{\prime}= \begin{cases}\varnothing & \left(\text { if } n_{0}=0\right) \\
\left\{a_{1} f_{n_{5}}\right\} & \text { (if } \left.n_{0}=2\right),\end{cases} \right. \\
& F_{2}=\left\{\begin{array}{ll}
\left\{c_{0} d_{1}\right\} & \left(\text { if } n_{2}=0\right) \\
\left\{c_{0} c_{2}, c_{1} d_{1}\right\} & \text { (if } \left.n_{2}=2\right),
\end{array} \quad F_{2}^{\prime}= \begin{cases}\varnothing & \text { (if } \left.n_{2}=0\right) \\
\left\{c_{1} d_{0}\right\} & \text { (if } \left.n_{2}=2\right),\end{cases} \right. \\
& F_{3}=\left\{d_{n_{3}-1} e_{1}\right\}, \quad F_{3}^{\prime}=\left\{d_{n_{3}} e_{1}, d_{n_{3}-1} e_{0}, e_{n_{4}} f_{1}, e_{n_{4}-1} f_{0}, e_{n_{4}-1} f_{1}\right\}, \\
& F_{4}^{\prime}=\left\{b_{1} e_{n_{4}-1}, b_{1} e_{n_{4}}, b_{1} f_{0}, b_{1} f_{1}\right\}, \\
& W_{1}=\left\{b_{1} e_{n_{4}-1}, b_{1} e_{n_{4}}\right\}, \quad W_{2}=\left\{b_{1} f_{1}, b_{1} f_{0}\right\}, \quad W_{3}=\left\{e_{n_{4}-1} f_{1}, e_{n_{4}-1} f_{0}\right\}, \\
& W_{4}=\left\{f_{1} e_{n_{4}-1}, f_{1} e_{n_{4}}\right\}, \quad W_{5}=\left\{e_{n_{4}-1} f_{1}, e_{n_{4}-1} b_{1}\right\}, \quad W_{6}=\left\{f_{1} e_{n_{4}-1}, f_{1} b_{1}\right\} .
\end{aligned}
$$

Under this notation, G is said to be of Type 8 if G satisfies the following four conditions:

- $X \cup F_{1} \cup F_{2} \cup F_{3} \subseteq E(G)-E(C)$

$$
\subseteq X \cup F_{1} \cup F_{1}^{\prime} \cup F_{2} \cup F_{2}^{\prime} \cup F_{3} \cup F_{3}^{\prime} \cup F_{4}^{\prime},
$$

- for each i with $1 \leq i \leq 6, W_{i} \cap E(G) \neq \varnothing$,
- if $n_{0}=0$ and $n_{5}=1$, then $\left\{f_{0} b_{1}, f_{0} e_{n_{4}-1}\right\} \cap E(G) \neq \varnothing$.
- if $n_{2}=0$ and $n_{3}=1$, then $d_{1} e_{1} \in E(G)$.

3. Preliminaries

In this section, we prove fundamental results concerning noncontractible edges lying on a hamiltonian cycle of a 3-connected graph.

Throughout this section, we let G denote a 3-connected graph of order $n+1(n \geq 4)$, and let $C=v_{0} v_{1} \cdots v_{n} v_{0}$ denote a hamiltonian cycle of G. Lemmas 3.1 through 3.8 are proved in Section 3 of [4] (and also in Ota [6]) and Lemma 3.9 is proved in Section 2 of [3], so we omit their proofs (in Lemmas 3.1 through 3.8, we assume that the edge $v_{n} v_{0}$ is noncontractible, and let $\left\{v_{n}, v_{0}, v_{a}\right\}$ be a cutset associated with it).

Lemma 3.1. (i) No edge of G joins a vertex in $\left\{v_{k} \mid 1 \leq k \leq a-1\right\}$ and a vertex in $\left\{v_{k} \mid a+1 \leq k \leq n-1\right\}$.
(ii) There exists k with $1 \leq k \leq a-1$ such that $v_{n} v_{k} \in E(G)$.

Lemma 3.2. If $a=2$, then $E\left(v_{1}, V(G)\right)-E(C)=\left\{v_{1} v_{n}\right\}$.
Lemma 3.3. Suppose that $v_{0} v_{1}$ is noncontractible and $v_{a} \in K\left(v_{0}, v_{1}\right)$. Then $v_{n} v_{1} \in E(G)$.

Lemma 3.4. Suppose that $v_{a} v_{a+1}$ is noncontractible, and let $\left\{v_{a}, v_{a+1}, v_{j}\right\}$ be a cutest associated with it. Then $a+3 \leq j \leq n \quad$ (and hence $a \leq n-3)$. Further, if $j=n$, then $v_{0} v_{a+1} \in E(G)$.

Lemma 3.5. Let $1 \leq j \leq a-2$. Suppose that $v_{j} v_{j+1}$ is noncontractible, and let $\left\{v_{j}, v_{j+1}, v_{l}\right\}$ be a cutset associated with it, and suppose that $a+1$ $\leq l \leq n-1$. Then $l=a+1, v_{a} v_{l}$ is contractible and, unless $l=n-1$, we have $v_{l} \in K\left(v_{n}, v_{0}\right)$.

Lemma 3.6. Suppose that $v_{0} v_{1}$ is noncontractible, and let $\left\{v_{0}, v_{1}, v_{j}\right\}$ be a cutset associated with it, and suppose that $a+1 \leq j \leq n-2$. Then $v_{j} \in K\left(v_{n}, v_{0}\right)$.

Lemma 3.7. Suppose that $K\left(v_{n}, v_{0}\right)=\left\{v_{2}\right\}$, and that $v_{0} v_{1}$ is noncontractible. Then $K\left(v_{0}, v_{1}\right)=\left\{v_{n-1}\right\}$.

Lemma 3.8. If $a=2$, then $v_{1} v_{2}$ is contractible; if $a \geq 3$, then there exists j with $0 \leq j \leq a-1$ such that $v_{j} v_{j+1}$ is contractible; if $a \geq 3$ and there exists only one j with $0 \leq j \leq a-1$ such that $v_{j} v_{j+1}$ is contractible; then $v_{\alpha} v_{a+1}$ is contractible.

Lemma 3.9. Let l be an integer with $3 \leq l \leq n-1$.
(i) Suppose that for each j with $l+1 \leq j \leq n, v_{j-1} v_{j}$ is noncontractible and $K\left(v_{j-1}, v_{j}\right) \bigcap\left\{v_{i} \mid 1 \leq i \leq l-2\right\} \neq \varnothing$. Then G has no edge $v_{j_{1}} v_{j_{2}}$ such that $l \leq j_{1}<j_{1}+3 \leq j_{2} \leq n$.
(ii) Suppose that $l \leq n-3$, let h be an integer with $l+2 \leq h \leq n-1$, and suppose that for each j with $l+1 \leq j \leq n$ and $j \neq h, v_{j-1} v_{j}$ is noncontractible and $K\left(v_{j-1}, v_{j}\right) \cap\left\{v_{i} \mid 1 \leq i \leq l-2\right\} \neq \varnothing$. Further let $v_{j_{1}} v_{j_{2}}$ $\in E(G)$ be an edge such that $l \leq j_{1}<j_{1}+3 \leq j_{2} \leq n$. Then $j_{1}=h-2$ and $j_{2}=h+1$.

Lemma 3.10. Let $1 \leq i_{1}$ and $i_{1}+2 \leq i_{2}<i_{3} \leq n-1$. Suppose that $v_{i} v_{i+1}$ is noncontractible for all $0 \leq i \leq i_{1}-1, K\left(v_{i}, v_{i+1}\right) \cap\left\{v_{j} \mid i_{2} \leq j \leq i_{3}\right\}$ $\neq \varnothing$ for all $0 \leq i \leq i_{1}-1$, and $v_{i_{3}} \notin K\left(v_{0}, v_{1}\right)$. Then $v_{i_{3}} \notin K\left(v_{i}, v_{i+1}\right)$ for each $0 \leq i \leq i_{1}-1$.

Proof. Take $v_{k} \in K\left(v_{0}, v_{1}\right) \cap\left\{v_{j} \mid i_{2} \leq j \leq i_{3}\right\}$. We have $k \neq i_{3}$ by assumption. Let $1 \leq i \leq i_{1}-1$, and suppose that $v_{i_{3}} \in K\left(v_{i}, v_{i+1}\right)$. Then applying Lemma 3.5 or 3.6 to $\left\{v_{0}, v_{1}, v_{k}\right\}$ and $\left\{v_{i}, v_{i+1}, v_{i_{3}}\right\}$, we get $v_{i_{3}} \in K\left(v_{0}, v_{1}\right)$, a contradiction.

4. Initial Reduction

Throughout the rest of this paper, we let G and C be as in Theorem 2, and write $C=a_{0} a_{1} \cdots a_{n_{0}} b_{0} b_{1} \cdots b_{n_{1}} c_{0} c_{1} \cdots c_{n_{2}} d_{0} d_{1} \cdots d_{n_{3}} e_{0} e_{1} \cdots e_{n_{4}} f_{0} f_{1} \cdots$
$f_{n_{5}} a_{0}$, where $a_{n_{0}} b_{0}, b_{n_{1}} c_{0}, c_{n_{2}} d_{0}, d_{n_{3}} e_{0}, e_{n_{4}} f_{0}$ and $f_{n_{5}} a_{0}$ are the six contractible edges contained in C. Note that C is a hamiltonian cycle, thus $|V(G)|=n_{0}+n_{1}+n_{2}+n_{3}+n_{4}+n_{5}+6$. Let $C_{0}=\left\{a_{0}, a_{1}, \ldots, a_{n_{0}}\right\}, C_{1}=$ $\left\{b_{0}, b_{1}, \ldots, b_{n_{1}}\right\}, C_{2}=\left\{c_{0}, c_{1}, \ldots, c_{n_{2}}\right\}, C_{3}=\left\{d_{0}, d_{1}, \ldots, d_{n_{3}}\right\}, C_{4}=\left\{e_{0}, e_{1}\right.$, $\left.\ldots, e_{n_{4}}\right\}$ and $C_{5}=\left\{f_{0}, f_{1}, \ldots, f_{n_{5}}\right\}$.

In this section, we derive some basic properties of (G, C). Lemmas 4.1 and 4.5 are proved in Section 4 of [4]; we can prove Lemmas 4.2 through $4.4,4.6$ and 4.7 by arguing exactly as in the corresponding lemmas in Section 4 of [4], and Lemma 4.8 by arguing exactly as in Lemma 3.8 of [3].

Lemma 4.1. Suppose that $n_{1}=2$. Then one of the following holds:
(i) $K\left(b_{0}, b_{1}\right)=\left\{c_{0}\right\}$ and $K\left(b_{1}, b_{2}\right)=\left\{a_{n_{0}}\right\}$; or
(ii) $K\left(b_{0}, b_{1}\right) \neq\left\{c_{0}\right\}$ and $K\left(b_{1}, b_{2}\right) \neq\left\{a_{n_{0}}\right\}$.

Lemma 4.2. Suppose that $n_{1} \geq 1$.
(i) If $n_{1} \neq 2$, then $K\left(b_{0}, b_{1}\right) \subseteq C_{3} \cup C_{4} \cup C_{5} \cup\left\{c_{n_{2}}, a_{0}\right\}$.
(ii) If $n_{1}=2$, then $K\left(b_{0}, b_{1}\right) \subseteq C_{3} \cup C_{4} \cup C_{5} \cup\left\{c_{0}, c_{n_{2}}, a_{0}\right\}$.

Lemma 4.3. One of the following holds:
(i) $n_{1}=0$;
(ii) $n_{1}=2$ and $K\left(b_{0}, b_{1}\right)=\left\{c_{0}\right\}$ and $K\left(b_{1}, b_{2}\right)=\left\{a_{n_{0}}\right\}$; or
(iii) $n_{1} \geq 1$ and $K\left(b_{i}, b_{i+1}\right) \cap\left(C_{3} \cup C_{4} \cup C_{5}\right) \neq \varnothing$ for all $0 \leq i \leq n_{1}-1$.

With Lemma 4.3 in mind, we define the terms degenerate and nondegenerate as follows: for each $0 \leq l \leq 5, \quad C_{l}$ is said to be nondegenerate if $n_{l} \geq 1$ and $K(u, v) \cap\left(C_{l+2} \cup C_{l+3} \cup C_{l+4}\right) \neq \varnothing$ for all $u v \in E\left(\left\langle C_{l}\right\rangle_{C}\right)$ (indices of the letter C are to be read modulo 6); otherwise C_{l} is said to be degenerate. Thus, for example, C_{1} is nondegenerate if and only if (iii) of Lemma 4.3 holds, and it is degenerate if and only if (i) or (ii) of Lemma 4.3 holds.

Lemma 4.4. At most four of the $C_{l}(0 \leq l \leq 5)$ are nondegenerate.
Lemma 4.5. Suppose that C_{0} is degenerate and $n_{0}=2$. Then the following hold:
(i) $E\left(a_{0}, V(G)\right)-E(C)=\left\{a_{0} a_{2}\right\}$, and $E\left(a_{2}, V(G)\right)-E(C)=\left\{a_{0} a_{2}\right\}$.
(ii) $E\left(\left\{a_{0}, a_{2}\right\}, V(G)\right)-E(C)=\left\{a_{0} a_{2}\right\}$.

Lemma 4.6. Suppose that C_{0} is degenerate, and that C_{5} is nondegenerate and $b_{0} \in K\left(f_{n_{5}-1}, f_{n_{5}}\right)$.
(I) If $n_{0}=0$, then $E\left(C_{0}, V(G)\right)-E(C)=\left\{a_{0} f_{n_{5}-1}\right\}$.
(II) Suppose that $n_{0}=2$. Then the following hold:
(i) $\left\{a_{0} a_{2}, a_{1} f_{n_{5}-1}\right\} \subseteq E\left(C_{0}, V(G)\right)-E(C)$

$$
\subseteq\left\{a_{0} a_{2}, a_{1} b_{0}, a_{1} f_{n_{5}-1}, a_{1} f_{n_{5}}\right\} .
$$

(ii) Suppose further that C_{1} is degenerate, and that either $n_{1}=2$, or $n_{1}=0$ and $n_{2} \geq 1$ and $a_{2} \in K\left(c_{0}, c_{1}\right)$. Then $\left\{a_{0} a_{2}, a_{1} f_{n_{5}-1}\right\} \subseteq$ $E\left(C_{0}, V(G)\right)-E(C) \subseteq\left\{a_{0} a_{2}, a_{1} f_{n_{5}-1}, a_{1} f_{n_{5}}\right\}$.

Lemma 4.7. Suppose that C_{5} is nondegenerate. Then $f_{i} f_{j} \notin E(G)$ for any i, j with $i+3 \leq j$.

Lemma 4.8. Suppose that C_{3}, C_{4} and C_{5} are nondegenerate. Then $K\left(d_{j}, d_{j+1}\right) \cap C_{1} \neq \varnothing$ for all $0 \leq j \leq n_{3}-1, K\left(e_{x}, e_{x+1}\right) \cap C_{1} \neq \varnothing$ for all $0 \leq x \leq n_{4}-1$, and $K\left(f_{y}, f_{y+1}\right) \cap C_{1} \neq \varnothing$ for all $0 \leq y \leq n_{5}-1$.

5. Proof of Theorem 2

We continue with the notation of the preceding section, and complete the proof of Theorem 2. Theorem 2 follows from the following proposition:

Proposition 1. Suppose that C_{3}, C_{4} and C_{5} are nondegenerate, and C_{0}, C_{1} and C_{2} are degenerate. Then (G, C) is of Type $2,3,4,5,6,7$ or 8.

Proof. By Lemma 4.8, we have

$$
\begin{align*}
& K\left(d_{j}, d_{j+1}\right) \cap C_{1} \neq \varnothing \text { for all } 0 \leq j \leq n_{3}-1, \tag{5.1}\\
& K\left(e_{x}, e_{x+1}\right) \cap C_{1} \neq \varnothing \text { for all } 0 \leq x \leq n_{4}-1 \tag{5.2}
\end{align*}
$$

and

$$
\begin{equation*}
K\left(f_{y}, f_{y+1}\right) \cap C_{1} \neq \varnothing \text { for all } 0 \leq y \leq n_{4}-1 . \tag{5.3}
\end{equation*}
$$

Hence it follows from Lemma 3.9 that

$$
\begin{equation*}
E\left(C_{3}, C_{4}\right)-E(C) \subseteq\left\{d_{n_{3}-1} e_{0}, d_{n_{3}-1} e_{1}, d_{n_{3}} e_{1}\right\} \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(C_{4}, C_{5}\right)-E(C) \subseteq\left\{e_{n_{4}-1} f_{0}, e_{n_{4}-1} f_{1}, e_{n_{4}} f_{1}\right\} \tag{5.5}
\end{equation*}
$$

Claim 5.1. $E\left(C_{3}, C_{5}\right)=\varnothing$.
Proof. Suppose that $E\left(C_{3}, C_{5}\right) \neq \varnothing$. Then there exist j and y with $0 \leq j \leq n_{3}-1$ and $0 \leq y \leq n_{5}-1$ such that $d_{j} f_{y} \in E(G)$. But then, since it follows from (5.2) that $\left\{e_{0}, e_{1}, b_{t}\right\}$ is a cutset for some t with $0 \leq t \leq n_{1}$, we get a contradiction by Lemma 3.1(i).

If $n_{1}=0$ (so $C_{1}=\left\{b_{0}\right\}$), then in view of (5.4), (5.5) and Claim 5.1, combining the proof of Proposition 3 of [4] for the case $n_{1}=0$, and the argument used in the proof of (5-6) and Claim 5.11 in Proposition 2 of [4], we see that (G, C) is of Type 2. Thus we henceforth assume that $n_{1}=2$ (so $C_{1}=\left\{b_{0}, b_{2}\right\}$). Applying Lemma 4.5(ii) to C_{1}, we get

$$
\begin{equation*}
E\left(\left\{b_{0}, b_{2}\right\}, V(G)\right)-E(C)=\left\{b_{0} b_{2}\right\} . \tag{5.6}
\end{equation*}
$$

Hence it follows from Lemma 3.1(i) that $b_{1} \notin K\left(d_{j}, d_{j+1}\right)$ for all $0 \leq j$ $\leq n_{3}-1, \quad b_{1} \notin K\left(e_{x}, e_{x+1}\right)$ for all $0 \leq x \leq n_{4}-1$, and $b_{1} \notin K\left(d_{y}, d_{y+1}\right)$ for all $0 \leq y \leq n_{5}-1$. Thus by (5.1) through (5.3), we obtain

$$
\begin{align*}
& K\left(d_{j}, d_{j+1}\right) \cap\left\{b_{0}, b_{2}\right\} \neq \varnothing \text { for all } 0 \leq j \leq n_{3}-1, \tag{5.7}\\
& K\left(e_{x}, e_{x+1}\right) \cap\left\{b_{0}, b_{2}\right\} \neq \varnothing \text { for all } 0 \leq x \leq n_{4}-1 \tag{5.8}
\end{align*}
$$

and

$$
\begin{equation*}
K\left(f_{y}, f_{y+1}\right) \cap\left\{b_{0}, b_{2}\right\} \neq \varnothing \text { for all } 0 \leq y \leq n_{5}-1 . \tag{5.9}
\end{equation*}
$$

Claim 5.2. One of the following holds:
(i) $K\left(f_{y}, f_{y+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{2}\right\}$ for all $0 \leq y \leq n_{5}-1$, and $K\left(e_{x}, e_{x+1}\right)$ $\cap\left\{b_{0}, b_{2}\right\}=\left\{b_{2}\right\}$ for all $0 \leq x \leq n_{4}-1$, and $K\left(d_{j}, d_{j+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{2}\right\}$ for all $0 \leq j \leq n_{3}-1$;
(ii) $n_{5} \geq 2$, and there exists p with $1 \leq p \leq n_{5}-1$ such that $b_{0} \in$ $K\left(f_{y}, f_{y+1}\right)$ for all $p \leq y \leq n_{5}-1$ and $b_{2} \in K\left(f_{y}, f_{y+1}\right)$ for all $0 \leq y$ $\leq p-1$ and $K\left(e_{x}, e_{x+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{2}\right\}$ for all $0 \leq x \leq n_{4}-1$ and $K\left(d_{j}, d_{j+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{2}\right\}$ for all $0 \leq j \leq n_{3}-1 ;$
(iii) $n_{5}=1$ and $b_{0}, b_{2} \in K\left(f_{0}, f_{1}\right)$, and $K\left(e_{x}, e_{x+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{2}\right\}$ for all $0 \leq x \leq n_{4}-1$, and $K\left(d_{j}, d_{j+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{2}\right\}$ for all $0 \leq j \leq$ $n_{3}-1 ;$
(iv) $K\left(f_{y}, f_{y+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{0}\right\}$ for all $0 \leq y \leq n_{5}-1$, and $K\left(e_{x}, e_{x+1}\right)$ $\cap\left\{b_{0}, b_{2}\right\}=\left\{b_{2}\right\}$ for all $0 \leq x \leq n_{4}-1$, and $K\left(d_{j}, d_{j+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{2}\right\}$ for all $0 \leq j \leq n_{3}-1$;
(v) $K\left(f_{y}, f_{y+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{0}\right\}$ for all $0 \leq y \leq n_{5}-1$, and $n_{4} \geq 2$, and there exists p with $1 \leq p \leq n_{4}-1$ such that $b_{0} \in K\left(e_{x}, e_{x+1}\right)$ for all $p \leq$ $x \leq n_{4}-1$ and $b_{2} \in K\left(e_{x}, e_{x+1}\right)$ for all $0 \leq x \leq p-1$ and $K\left(d_{j}, d_{j+1}\right)$ $\cap\left\{b_{0}, b_{2}\right\}=\left\{b_{2}\right\}$ for all $0 \leq j \leq n_{3}-1$;
(vi) $K\left(f_{y}, f_{y+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{0}\right\}$ for all $0 \leq y \leq n_{5}-1$, and $n_{4}=1$ and $b_{0}, b_{2} \in K\left(e_{0}, e_{1}\right)$, and $K\left(d_{j}, d_{j+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{2}\right\}$ for all $0 \leq j \leq$ $n_{3}-1$;
(vii) $K\left(f_{y}, f_{y+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{0}\right\}$ for all $0 \leq y \leq n_{5}-1$, and $K\left(e_{x}, e_{x+1}\right)$ $\cap\left\{b_{0}, b_{2}\right\}=\left\{b_{0}\right\}$ for all $0 \leq x \leq n_{4}-1$, and $K\left(d_{j}, d_{j+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{2}\right\}$ for all $0 \leq j \leq n_{3}-1$;
(viii) $K\left(f_{y}, f_{y+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{0}\right\}$ for all $0 \leq y \leq n_{5}-1$, and $K\left(e_{x}, e_{x+1}\right)$ $\cap\left\{b_{0}, b_{2}\right\}=\left\{b_{0}\right\}$ for all $0 \leq x \leq n_{4}-1$, and $n_{3} \geq 2$, and there exists p with $1 \leq p \leq n_{3}-1$ such that $b_{0} \in K\left(d_{j}, d_{j+1}\right)$ for all $p \leq j \leq n_{3}-1$ and $b_{2} \in K\left(d_{j}, d_{j+1}\right)$ for all $0 \leq j \leq p-1$;
(ix) $K\left(f_{y}, f_{y+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{0}\right\}$ for all $0 \leq y \leq n_{5}-1$, and $K\left(e_{x}, e_{x+1}\right)$ $\cap\left\{b_{0}, b_{2}\right\}=\left\{b_{0}\right\}$ for all $0 \leq x \leq n_{4}-1$, and $n_{3}=1$ and $b_{0}, b_{2} \in K\left(d_{0}, d_{1}\right)$; or
(x) $K\left(f_{y}, f_{y+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{0}\right\}$ for all $0 \leq y \leq n_{5}-1$, and $K\left(e_{x}, e_{x+1}\right)$ $\cap\left\{b_{0}, b_{2}\right\}=\left\{b_{0}\right\}$ for all $0 \leq x \leq n_{4}-1$, and $K\left(d_{j}, d_{j+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{0}\right\}$ for all $0 \leq j \leq n_{3}-1$.

Proof. We first prove the following subclaim.
Subclaim 5.1. If $b_{2} \in K\left(f_{0}, f_{1}\right)$, then (i), (ii) or (iii) holds; if $b_{0} \in$ $K\left(d_{n_{3}-1}, d_{n_{3}}\right)$, then (viii), (ix) or (x) holds.

Proof. Suppose that

$$
\begin{equation*}
b_{2} \in K\left(f_{0}, f_{1}\right) . \tag{5.10}
\end{equation*}
$$

Then by Lemma 3.5, it follows from (5.7) and (5.8) that

$$
\begin{equation*}
K\left(d_{j}, d_{j+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{2}\right\} \text { for all } 0 \leq j \leq n_{3}-1 \tag{5.11}
\end{equation*}
$$

and

$$
\begin{equation*}
K\left(e_{x}, e_{x+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{2}\right\} \text { for all } 0 \leq x \leq n_{4}-1 . \tag{5.12}
\end{equation*}
$$

If $K\left(f_{n_{5}-1}, f_{n_{5}}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{2}\right\}$, then by Lemma 3.10 and (5.9), $K\left(f_{y}, f_{y+1}\right)$ $\cap\left\{b_{0}, b_{2}\right\}=\left\{b_{2}\right\}$ for all $0 \leq y \leq n_{5}-1$, and hence it follows from (5.11) and (5.12) that (i) holds. Thus by (5.9), we may assume

$$
\begin{equation*}
b_{0} \in K\left(f_{n_{5}-1}, f_{n_{5}}\right) . \tag{5.13}
\end{equation*}
$$

Now if $n_{5}=1$, then it follows from (5.13), (5.10), (5.11) and (5.12) that (iii) holds; and if $n_{5}>1$, then in view of (5.13), (5.10), (5.11) and (5.12), arguing as in Claim 5.16 of [4], we see that (ii) holds. Thus it is proved
that (i), (ii), or (iii) holds if $b_{2} \in K\left(f_{0}, f_{1}\right)$. By symmetry, we see that (viii), (ix) or (x) holds if $b_{0} \in K\left(d_{n_{3}-1}, d_{n_{3}}\right)$.

We return to the proof of the claim. By Subclaim 5.1, we may assume $b_{2} \notin K\left(f_{0}, f_{1}\right)$, and hence

$$
\begin{equation*}
K\left(f_{y}, f_{y+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{0}\right\} \text { for all } 0 \leq y \leq n_{5}-1 \tag{5.14}
\end{equation*}
$$

by Lemma 3.10 and (5.9), and we may also assume $b_{0} \notin K\left(d_{n_{3}-1}, d_{n_{3}}\right)$, and hence

$$
\begin{equation*}
K\left(d_{j}, d_{j+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{2}\right\} \text { for all } 0 \leq j \leq n_{3}-1 \tag{5.15}
\end{equation*}
$$

by Lemma 3.10 and (5.7). Now, assume that

$$
\begin{equation*}
b_{2} \in K\left(e_{0}, e_{1}\right) . \tag{5.16}
\end{equation*}
$$

If $K\left(e_{n_{4}-1}, e_{n_{4}}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{2}\right\}$, then by Lemma 3.10 and (5.8), $K\left(e_{x}, e_{x+1}\right) \cap\left\{b_{0}, b_{2}\right\}=\left\{b_{2}\right\}$ for all $0 \leq x \leq n_{4}-1$, and hence it follows from (5.15) and (5.14) that (iv) holds. Thus by (5.8), we may assume

$$
\begin{equation*}
b_{0} \in K\left(e_{n_{4}-1}, e_{n_{4}}\right) . \tag{5.17}
\end{equation*}
$$

Now if $n_{4}=1$, then it follows from (5.17), (5.16), (5.15) and (5.14) that (vi) holds; and if $n_{4}>1$, then in view of (5.17), (5.16), (5.15) and (5.14), arguing as in Claim 5.16 of [4], we see that (v) holds. Thus we may assume $b_{2} \notin K\left(e_{0}, e_{1}\right)$, and hence by Lemma 3.10 and (5.8), $K\left(e_{x}, e_{x+1}\right)$ $\cap\left\{b_{0}, b_{2}\right\}=\left\{b_{0}\right\}$ for all $0 \leq x \leq n_{4}-1$, and this together with (5.15) and (5.14) implies that (vii) holds. Consequently the claim is proved.

Returning to the proof of the proposition, if (i), (ii), (iii), (v) or (vi) of Claim 5.2 holds, then in view of (5.4) through (5.6) and Claim 5.1, combining the proof of Proposition 3 of [4] (in the case where Claim 5.2 (iii) holds, we apply the argument in the proof of Claim 5.17 of [4] with $Y=\left\{b_{1} f_{0}, b_{1} f_{1}\right\}$; in the case where Claim $5.2(\mathrm{vi})$ holds, we apply the argument in the proof of Claim 5.17 of [4] with $Y=\left\{b_{1} e_{0}, b_{1} e_{1}\right\}$) and the proof of (5-6) and Claim 5.11 of [4], we see that (G, C) is of Type 3, 4, 5, 6
or 7. Thus by symmetry, we may assume Claim 5.2(iv) holds. Applying Lemmas 3.3 and 4.7 to C_{3}, C_{4} and C_{5}, we have the following claim:

Claim 5.3. $E\left(\left\langle C_{3}\right\rangle\right)-E(C)=\left\{d_{j} d_{j+2} \mid 0 \leq j \leq n_{3}-2\right\}, E\left(\left\langle C_{4}\right\rangle\right)-E(C)=$ $\left\{e_{x} e_{x+2} \mid 0 \leq x \leq n_{4}-2\right\}$, and $E\left(\left\langle C_{5}\right\rangle\right)-E(C)=\left\{f_{y} f_{y+2} \mid 0 \leq y \leq n_{5}-2\right\}$.

Applying (I) and (II)(ii) of Lemma 4.6 to C_{0} and C_{2}, we get the following two claims:

Claim 5.4. (i) If $n_{0}=0$, then $E\left(C_{0}, V(G)\right)-E(C)=\left\{a_{0} f_{n_{5}-1}\right\}$.
(ii) If $n_{0}=2$, then

$$
\left\{a_{0} a_{2}, a_{1} f_{n_{5}-1}\right\} \subseteq E\left(C_{0}, V(G)\right)-E(C) \subseteq\left\{a_{0} a_{2}, a_{1} f_{n_{5}-1} a_{1} f_{n_{5}}\right\} .
$$

Claim 5.5. (i) If $n_{2}=0$, then $E\left(C_{2}, V(G)\right)-E(C)=\left\{c_{0} d_{1}\right\}$.
(ii) If $n_{2}=2$, then

$$
\left\{c_{0} c_{2}, c_{1} d_{1}\right\} \subseteq E\left(C_{2}, V(G)\right)-E(C) \subseteq\left\{c_{0} c_{2}, c_{1} d_{1}, c_{1} d_{0}\right\} .
$$

Further applying Lemma 3.1(i) to $\left\{e_{n_{4}-1}, e_{n_{4}}, b_{2}\right\}$ and $\left\{f_{0}, f_{1}, b_{0}\right\}$, we get

$$
\begin{equation*}
E\left(b_{1}, V(G)\right)-E(C) \subseteq\left\{b_{1} e_{n_{4}-1}, b_{1} e_{n_{4}}, b_{1} f_{0}, b_{1} f_{1}\right\} . \tag{5.18}
\end{equation*}
$$

Claim 5.6. $\left\{b_{1} e_{n_{4}-1}, b_{1} e_{n_{4}}\right\} \cap E(G) \neq \varnothing$ and $\left\{b_{1} f_{1}, b_{1} f_{0}\right\} \cap E(G) \neq \varnothing$.
Proof. By the assumption that Claim 5.2(iv) holds, $\left\{f_{0}, f_{1}, b_{2}\right\}$ is not a cutset, and hence $E\left(C_{0} \cup\left(C_{1}-\left\{b_{2}\right\}\right) \cup\left(C_{5}-\left\{f_{0}, f_{1}\right\}\right), C_{2} \cup C_{3} \cup C_{4}\right) \neq \varnothing$. Since $E\left(C_{0} \cup\left(C_{1}-\left\{b_{2}\right\}\right) \cup\left(C_{5}-\left\{f_{0}, f_{1}\right\}\right), C_{2}\right)=\varnothing$ by Claim 5.5, and since $E\left(C_{0} \cup\left\{b_{0}\right\} \cup\left(C_{5}-\left\{f_{0}, f_{1}\right\}\right), C_{3} \cup C_{4}\right)=\varnothing$ by Claim 5.4, (5.6), Claim 5.1 and (5.5), this means $E\left(b_{1}, C_{3} \cup C_{4}\right) \neq \varnothing$. Hence it follows from (5.18) that $\left\{b_{1} e_{n_{4}-1}, b_{1} e_{n_{4}}\right\} \cap E(G) \neq \varnothing$ and, in a similar way, we can verify $\left\{b_{1} f_{1}, b_{1} f_{0}\right\} \cap E(G) \neq \varnothing$.

Claim 5.7. $\left\{e_{n_{4}-1} f_{1}, e_{n_{4}-1} f_{0}\right\} \cap E(G) \neq \varnothing$ and $\left\{f_{1} e_{n_{4}-1}, f_{1} e_{n_{4}}\right\} \cap E(G)$ $\neq \varnothing$.

Proof. Since C_{1} is degenerate by the assumption of Proposition

3, $\left\{b_{1}, b_{2}, e_{n_{4}}\right\}$ is not a cutset, and hence $E\left(C_{0} \cup\left\{b_{0}\right\} \cup C_{5}, C_{2} \cup C_{3} \cup\right.$ $\left.\left(C_{4}-\left\{e_{n_{4}}\right\}\right)\right) \neq \varnothing$. Since $E\left(C_{0} \cup\left\{b_{0}\right\}, C_{2} \cup C_{3} \cup\left(C_{4}-\left\{e_{n_{4}}\right\}\right)\right)=\varnothing$ by Claim 5.4 and (5.6), and since $E\left(C_{5}, C_{2} \cup C_{3}\right)=\varnothing$ by Claims 5.5 and 5.1, this means $E\left(C_{5}, C_{4}-\left\{e_{n_{4}}\right\}\right) \neq \varnothing$. Hence it follows from (5.5) that $\left\{e_{n_{4}-1} f_{1}, e_{n_{4}-1} f_{0}\right\} \cap E(G) \neq \varnothing$ and, in a similar way, we can verify $\left\{f_{1} e_{n_{4}-1}, f_{1} e_{n_{4}}\right\} \cap E(G) \neq \varnothing$.

Claim 5.8. $\left\{e_{n_{4}-1} f_{1}, e_{n_{4}-1} b_{1}\right\} \cap E(G) \neq \varnothing$ and $\left\{f_{1} e_{n_{4}-1}, f_{1} b_{1}\right\} \cap E(G)$ $\neq \varnothing$.

Proof. Since $e_{n_{4}} f_{0}$ is contractible, $\left\{e_{n_{4}}, f_{0}, b_{2}\right\}$ is not a cutset, and hence $E\left(C_{0} \cup\left(C_{1}-\left\{b_{2}\right\}\right) \cup\left(C_{5}-\left\{f_{0}\right\}\right), C_{2} \cup C_{3} \cup\left(C_{4}-\left\{e_{n_{4}}\right\}\right) \neq \varnothing\right.$. In view of Claim 5.5, (5.6) and Claim 5.4, we have $E\left(C_{0} \cup\left(C_{1}-\left\{b_{2}\right\}\right) \cup\left(C_{5}-\left\{f_{0}\right\}\right)\right.$, $\left.C_{2}\right)=\varnothing, E\left(b_{0}, C_{3} \cup\left(C_{4}-\left\{e_{n_{4}}\right\}\right)\right)=\varnothing$, and $E\left(C_{0}, C_{3} \cup\left(C_{4}-\left\{e_{n_{4}}\right\}\right)\right)=\varnothing$. Consequently $E\left(\left\{b_{1}\right\} \cup\left(C_{5}-\left\{f_{0}\right\}\right), C_{3} \cup\left(C_{4}-\left\{e_{n_{4}}\right\}\right) \neq \varnothing\right.$. Hence it follows from (5.18), Claim 5.1 and (5.5) that $\left\{e_{n_{4}-1} f_{1}, e_{n_{4}-1} b_{1}\right\} \cap E(G) \neq \varnothing$ and, in a similar way, we can verify $\left\{f_{1} e_{n_{4}-1}, f_{1} b_{1}\right\} \cap E(G) \neq \varnothing$.

Now arguing as in the proof of (5-6) and Claim 5.11 of [4], we see from (5.4), (5.5), (5.6), (5.18) and Claims 5.3 through 5.8 that (G, C) is of Type 8.

Acknowledgement

I would like to thank Professor Yoshimi Egawa for the help he gave to me during the preparation of this paper.

References

[1] R. E. L. Aldred, R. L. Hemminger and K. Ota, The 3-connected graphs having a longest cycle containing only three contractible edges, J. Graph Theory 17 (1993), 361-371.
[2] N. Dean, R. L. Hemminger and K. Ota, Longest cycles in 3-connected graphs contain three contractible edges, J. Graph Theory 12 (1989), 17-21.
[3] K. Fujita, Hamiltonian cycles with six 3-contractible edges which have four consecutive nondegenerate segments, Adv. Appl. Discrete Math. 1(1) (2008), 41-50.
[4] K. Fujita, Longest cycles C in a 3-connected graph G such that C contains precisely four contractible edges of G, Math. Japon. 43 (1996), 99-116.
[5] K. Fujita and K. Kotani, Classification of hamiltonian cycles of a 3-connected graph which contain five contractible edges, SUT J. Math. 36 (2000), 287-350.
[6] K. Ota, Non-critical subgraphs in k-connected graphs, Ph.D. Dissertation, University of Tokyo, 1989.

