F " Advances and Applications in Discrete Mathematics
Volume 1, Number 1, 2008, Pages 51-69
q'p Published Online: January 8, 2008

-lLLUL'tB.’tb II"iDI.'\ Th1s paper is available online at http://www.pphmj.com
© 2008 Pushpa Publishing House

HAMILTONIAN CYCLES WITH SIX 3-CONTRACTIBLE
EDGES WHICH HAVE THREE CONSECUTIVE
NONDEGENERATE SEGMENTS

KYO FUJITA

Department of Life Sciences, Toyo University
1-1-1 Izumino, Itakura-machi, Oura-gun
Gunma 374-0193, Japan

Abstract

We classify all pairs (G, C) of a 3-connected graph G and a hamiltonian

cycle C of G such that C contains precisely six contractible edges of G, C
has precisely three nondegenerate segments, and the three

nondegenerate segments are consecutive on C.
1. Introduction

In this paper, we consider only finite, simple, undirected graphs with

no loops and no multiple edges.

A graph G is called 3-connected if | V(G)| = 4 and G — S is connected
for any subset S of V(G) having cardinality 2. An edge e of a 3-connected

graph G is called contractible if the graph which we obtain from G by
contracting e (and replacing each of the resulting pairs of parallel edges
by a simple edge) is 3-connected; otherwise e is called noncontractible. In
[2], Dean et al. proved that every longest cycle in a 3-connected graph
other than K, or K9 x K5 contains at least three contractible edges.

Further Aldred et al. [1], Ota [6], Fujita [4], and Fujita and Kotani [5]
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classify all pairs (G, C) of a 3-connected graph G and a longest cycle C of
G such that C contains at most five contractible edges of G. In these
classifications, it turns out that for all such pairs (G, C), C is a
hamiltonian cycle of G. Thus it is desirable that one should obtain a

classification of those pairs (G, C) of a 3-connected graph G and a

hamiltonian cycle C such that C contains precisely six contractible edges
of G. Along this line of research, the following theorem was proved in [3]
(see the paragraph following Lemma 4.3 for the definition of the term
“nondegenerate”; also see [3, Section 1] for the definition of Type 1):

Theorem 1. Let G be a 3-connected graph and let C be a hamiltonian
cycle of G. Suppose that C contains precisely six contractible edges of G,

and C has four consecutive nondegenerate segments. Then the pair (G, C)
is of Type 1.

In this paper, we consider the case where C has three consecutive

nondegenerate segments. More precisely, we prove the following theorem:

Theorem 2. Let G be a 3-connected graph and let C be a hamiltonian
cycle of G. Suppose that C contains precisely six contractible edges of G.
Suppose further that C has precisely three nondegenerate segments and
they are consecutive on C. Then the pair (G, C) belongs to one of the 7

types, Types 2 through 8, which are defined in Section 2.
The organization of this paper is as follows. In Section 2, we define
the type of a pair (G, C) satisfying the assumption of Theorem 2. Section

3 contains fundamental results concerning noncontractible edges lying on
a hamiltonian cycle of a 3-connected graph. In Section 4, we derive basic

properties of a pair (G, C) satisfying the assumption of Theorem 2, and

we complete the proof of Theorem 2 in Section 5.

Our notation and terminology are standard except possibly for the
following. Let G be a graph. For U < V(G), we let (U) = (U),, denote the

graph induced by U in G. For U, V < V(G), we let E(U, V) denote the

set of edges of G which join a vertex in U and a vertex in V; if
U = {u}(u € V(G)), then we write E(u, V) for E({u}, V). A subset S of

V(G) is called a cutset if G — S is disconnected; thus G is 3-connected if
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and only if |V(G)| >4 and G has no cutset of cardinality 2. If G is
3-connected, then for e = uv € E(G), we let K(e) = K(u, v) denote the
set of vertices x of G such that {u, v, x} is a cutset; thus e is contractible if
and only if K(e) = @. If e is noncontractible, then for each x € K(e),

{u, v, x} is called a cutset associated with e.
2. Definition of the Type of a Pair (G, C)

In this section, we define the type of a pair (G, C) of a 3-connected

graph G and a hamiltonian cycle C of G such that C contains precisely six

contractible edges of G. Throughout this section, we let ngy, ny, ng, ns,
ny and ns be nonnegative integers, and let G denote a graph of order
ng +ny +ng +ns +ny +ns +6 with vertex set V(G) = {a; |0 <i < ny}
U 10<i<miU{l0<i<ng} U {d;|0<i<ngtU{e;|0<i<ny}U
{f;10 <i < ng} such that G contains C = ayay “+ Qpyboby <+ by coey -
Cnydody - dpgepey ey, fofy - fusa@0 as a hamiltonian cycle. In the
definition of each type, it is easy to verify that if G satisfies the required
conditions, then G is 3-connected, and ay by, by, co, Cn,do, dnyeo, €n,fos
fn5 ag are the only contractible edges of GG that are on C. Further if we let
Coy = {ag, a1, - ano}, C; = {by, by, ..., bnl}, Cy = {cg, ¢15 -ry cng}, Cy =
{do, di, .., dpy}, Cy = Heg, 1, s e, } and C5 = {fo, fi, -, fp |, then Cj,
C, and Cy are nondegenerate and Cjy, C; and Cy are degenerate (see
the paragraph following Lemma 4.3 for the definition of the terms
“nondegenerate” and “degenerate”).

Type 2. Let np =0 or 2, ny =0, ng =0 or 2, ng 21, ny, 21, and

ng > 1. Let

X =1{d;dj210 < j<ng-2fU{ece, 910

IA

x <ny -2}
U{fyfy+2|0ﬁy3n5—2},

Y = {bod; [0 < j < ngjUiboe, |0 < x < ngfU{bofy |0 <y < ngl,
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o {{GOfn5—1} (if no = 0) _ {@ (if no = 0)

lagasg, arfu, 1} Gf ng =2). ' by, arfy ) G np = 2),

R {{Codl} (lf ng = 0) F' {@ (lf ng = 0)
9 = . = .
{coca, c1dy ) (if ng = 2), {eiby, crdp}  (f ng = 2),

F3 = {dn3—1617 en4—1f1}7 Fé = {dn3€1, dn3—leOa en4f17 en4—1f0}7

B {Y (if ny = 0) B {Y (if ngy = 0)
YUY Ulmbe) (g =2, 2 [YUlbe) (f ng = 2),

7. {{bodo} (if ny =0) 7. - {{bof%} (if no = 0)
e (fng=2), 2 |@ (if ng = 2).

Under this notation, G is said to be of Type 2 if G satisfies the following
four conditions:

e XUFR UF, UF; c E(G)-E(C)
cXUYURUF UF,UF,UF;UF;,
e foreachiwith1<i <2 (W, -Z;)N EG) = &,
o if ng = 0 and ns = 1, then {foby, foe,, 1} N E(G) = T,
e if ny =0 and ng =1, then {d;by, die;} N E(G) = @.

Type 3. Let ng =0 or 2, ny =2, ng =0 or 2, ng 21, ny 21 and
ng > 1. Let

X =1{djdj,2|0 < j<ng-2}U{ee, 9|0 <x <ny -2}

U {fyfy+2 |0<y< ns — 2}U {b0b2}7

{{aobl’ aofns-1} (if np =0) {@ (if no = 0)
F = : 1= :

{(10(12, ab;, alfn5—1} (1f ng = 2)7 {alfn5} (1f ng = 2)7

F _ {{Codl} (lf n2 = 0) ;o {@ (lf nz = 0)
2 lleoc, iy} (if ng = 2), lad} G ny = 2),
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FS = {dnS—lela en4—1fl}’ F?; = {dn3617 dn3—leOa en4f1> en4—1f0}’

4=

7o {{blfn5l}’ (if no = 0) I {{b1fn5} (if ny = 0)
e (if np = 2), B1fus 10 bifns} (G 7g = 2).

Under this notation, G is said to be of Type 3 if G satisfies the following

three conditions:

e XURMUF, UF;UF, c E(G)-E(C)c XUF UF

UF, UF,UF3UF3UF,UFy,

e if ng = 2, then F; N E(G) = &,

e if ng = 0 and ng =1, then dije; € E(G).

Type 4. Let np =0 or 2, ny =2, ng =0 or 2, ng 21, ny 21, and
ng = 2. Let

X =1{djdj,2|0 < j<ng-2}Ulece,,9]0<x<ny -2

U {fyfy+2 |O Sy <sn; _Z}U{b0b2}’

_ {{aofn51} (if no =0) [ {@ (if no = 0)

lagag, a1fn, 1} (f ng = 2), ! laif,t (i ng = 2),
o {{codl} (if ng = 0) [ {@ (if ny = 0)
{eocg, adi}  (f ng = 2), {lado}  (f ng = 2),
Fy = {dp, 161, ep,1h}, F3 = {dpser, dng1€0, e, fis en,-1f0}-
Let p be an integer with 1 < p < ny — 1, and set

Y —i{bifns}  (f ng =0)

Y =1{b -1<y<p+1}and W =
ufy | p y<p+1j {Y (i ny = 2).

Now G is said to be of Type 4 if there exists p with 1 < p < ng —1 such

that G satisfies the following three conditions:
e XUF, UF,UF; c E(G)-E(C)
cXUYUFR UFUF,UFsUF3UF;,
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e WNEQG)= D,
e if ng =0 and n3 =1, then dje; € E(G).

Type 5. Let np =0 or 2, ny =2, ng =0 or 2, ng 21, ngy 21, and

ns =1. Let

X ={djdj210 < j<ng-2}U{ece, 210 <x < ny — 24U {bpby},

{{aof%_l} (fno=0) {@ (if ny = 0)
{agag, arfy, 1} (f ng =2, = llafyy) (f ng = 2),

F, - {{Codl} (?f ng = 0) 7 {@ (?f ng =0)
{coce, crdy}  (if ng = 2), lady}  (f ng = 2),

Fy = {dp, 61, ey, 1h}, F3 = {dpger, dng_1€0, e, fis eny-1fo}s

o {{blfo}, (f mo =0) {{blfl} (f ng = 0)
e Gf np = 2), buf, ufi} (Gf g = 2).

Under this notation, G is said to be of Type 5 if G satisfies the following

three conditions:
e XURUF,UF;UF, c EG)-EC)c XUFR UK
UF,UFUFUF3UFyUFy,
e if ny =2, then F; N E(G) = &,
e if ny =0 and n3 =1, then dje; € E(G).

Type 6. Let np =0 or 2, ny =2, ng =0 or2, ng 21, ngy 22, and

ng > 1. Let
X =1djdj 9|0 <j<ng—2tU{ege, 9|0 <x <ng -2}
Uifyfys210 <y < ng — 24U {bobs

o {{aof%—l} (if np =0) _ {@ (if ny =0)
lagag, a1fn,1}  (f ng = 2), ! laifst (f ng = 2),
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o {{codl} (if ng = 0) [ {@ (if ng =0)
{eocg, erdy}  (if ng = 2), {endo}  (f ng = 2),
F3 ={dn, 101, ep, 1N}, F3 = {dp,er, dyy 10, en, fis eny-1f0}-
Let p be an integer with 1 < p < ny — 1, and set
Y ={be,p-1<x<p+1}

Now G 1is said to be of Type 6 if there exists p with 1 < p < n4 —1 such

that G satisfies the following four conditions:

e XUFR UF, UF; c E(G)-E(C)

cXUYURUF UF,UF;UFsUFs,

e YNEG) = &,

o if ng =0 and n5 =1, then e,, _;fy € E(G).

e if ng =0 and n3 =1, then dje; € E(G).

Type 7. Let np =0 or 2, ny =2, ng =0 or 2, ng 21, ny =1, and
ns > 1. Let

X =1{djdji910 < j <ng—2tU{f,fy1210 <y < ns -2} U {bpbs},

o {{aof%l} (if ng =0) _ {@ (if no = 0)
{apag, a1fy 1} (f ng = 2), ! laif} (f ng = 2),

{{Codl} (lf ng = 0) {@ (lf ng = 0)

Fy = . F; = .

{cocg, crdi}  (if ng = 2), lado}  (f ng = 2),
F3 = {dn3—lel’ en4—1f1}’ F3 = {dn3el’ dn37190a en4f1’ en4—1f0}’
Y = {bieg, biey ).

Under this notation, G is said to be of Type 7 if G satisfies the following

four conditions:
e XUF, UF,UF; c E(G)-E(C)
cXURURURUFUFUFUY,
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« YNEG) * 2,
o if ng =0 and n5 =1, then e,, _1fy € E(G).
e if ng =0 and ng =1, then dje; € E(G).

Type 8. Let np =0 or 2, ny =2, ng =0 or 2, ng 21, ny 21, and

ns > 1. Let
X =1{djdj,9|0 < j<ng-2tU{ee, 9|0 <x <ny—2}
U{fyfy+2|0 Sy=sng _Z}U{bObZ}’

F - {{Gofnf)—l} (if no = 0) _ {@ (if no = 0)

lagag, arfps 1} (f ng = 2), ! larfuyt (i gy = 2),

_ {{Codl} (1f n2 = O) F’ _ {@ (lf n2 = 0)
{coce, crdy}  (if ng = 2), {eidp}  (Gf ng = 2),

F3 ={dy,e1}, F3 = {dp,er, dpy_1€0s en,fis eny-1f0s €ny-1h}s

Fy = {bie,, 1, biey,, bifo, bifil,

Wi = {bie,, 1, biey, ), Wo = {bifi, bifo}, Ws = len, 1fs en,—1fols
Wy = {f1€n4—1, hen, f, Ws = {en4—1f17 en4—1b1}7 We = {flen4—17 hiby ).

Under this notation, G is said to be of Type 8 if G satisfies the following

four conditions:
e XUFR UF, UF; c E(G)-E(C)
cXURUKUF UFUF;UF;UFy,
e foreachiwith 1 <i <6, W, N EG) = I,
o if ng = 0 and n5 =1, then {fob;, foe,, -1} N E(G) = @.

e if ng = 0 and ng =1, then dije; € E(G).
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3. Preliminaries

In this section, we prove fundamental results concerning
noncontractible edges lying on a hamiltonian cycle of a 3-connected

graph.
Throughout this section, we let G denote a 3-connected graph of order
n+1(n=4), and let C = vyv; ---v,vy denote a hamiltonian cycle of G.

Lemmas 3.1 through 3.8 are proved in Section 3 of [4] (and also in Ota
[6]) and Lemma 3.9 is proved in Section 2 of [3], so we omit their proofs

(in Lemmas 3.1 through 3.8, we assume that the edge wv,vy 1is

noncontractible, and let {v,, vy, v,} be a cutset associated with it).

Lemma 3.1. (i) No edge of G joins a vertexin {vy |1 < k < a-1}and a

vertexin {v, |la+1 <k <n-1}.
(i1) There exists k with 1 < k < a -1 such that v, € E(G).
Lemma 3.2. If a = 2, then E(v;, V(G)) - E(C) = {vv,}.

Lemma 3.3. Suppose that vyv, is noncontractible and v, € K(vy, v;).

Then v,v; € E(G).

Lemma 3.4. Suppose that v,v,,1 is noncontractible, and let
{gs Vgs1, Uj} be a cutest associated with it. Then a+3 < j<n (and

hence a < n — 3). Further,if j = n, then vyv,,, € E(G).

Lemma 3.5. Let 1 < j < a — 2. Suppose that vV}, 1S noncontractible,
and let {vj, vj,q, v} be a cutset associated with it, and suppose that a +1
<l<n-1. Then |l = a+1, v,y; is contractible and, unless | = n -1, we

have v; € K(v,, vg).

Lemma 3.6. Suppose that vyv; is noncontractible, and let {vy, vy, v;}

be a cutset associated with it, and suppose that a +1 < j < n—2. Then

v; € K(vy,, vy).
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Lemma 3.7. Suppose that K(v,, vy) = {va}, and that vov; is

noncontractible. Then K(vg, v1) = {v,_1}-

Lemma 3.8. If a = 2, then vjvy is contractible; if a > 3, then there
exists j with 0 < j < a -1 such that vjvj,, is contractible; if a 2 3 and
there exists only one j with 0 < j < a -1 such that vjv;,; is contractible;

then v, v, is contractible.

Lemma 3.9. Let [ be an integer with 3 <1 < n—1.

(1) Suppose that for each j with I +1 < j < n, v;_jv; is noncontractible

and K(@vj_y, vj)N{v; |1 <i <1-2}# J. Then G has no edge v such

Vi
that I < j1 < j1; +3 < jg <.

(1) Suppose that | < n — 3, let h be an integer with | +2 < h <n -1,
and suppose that for each j with I+1< j<n and j = h, vj_qU;j 18
noncontractible and K(v;_y, v;) N{v; |1 < i <1 -2} # &. Further let vj v,
€ E(G) be an edge such that 1 < j; < j; +3< jo <n. Then j, =h-2
and jo = h + 1.

Lemma 3.10. Let 1 <i; and i1 +2 < iy <i3 < n—1. Suppose that
V;vj 4 is noncontractible for all 0 < i < i -1, K(v;, vj41) N {vjlig < j < ig}
# @ forall 0 <i<i -1, and vy, ¢ K(vg, v1). Then vy, ¢ K(v;, vjyq) for
each 0 <i<i —1.

Proof. Take v; € K(vg, v1)N1{vjlig < j <iz}. We have k = i3 by
assumption. Let 1 <i < i -1, and suppose that v;, € K(v;, v;,1). Then
applying Lemma 3.5 or 3.6 to {vg, vy, v} and {v;, vy, v}, We get
e K(vg, vy), a contradiction.

Ui3

4. Initial Reduction

Throughout the rest of this paper, we let G and C be as in Theorem 2,
and write C = agay @, boby -+ by, coey -+ Cpydody -+ dpzegey - ey, fofi -
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fng@0, Where a, by, by co, cp,do, dpseq, en,fo and fy ag are the six

contractible edges contained in C. Note that C is a hamiltonian cycle,

thus |V(G)|=ng +ny +ng +ng +ny +n5 +6. Let Cy ={ag, a1, ..., ap, }, Cy =
{bo, bl? ceey bnl }, C2 = {Co, Cly eoey an}, C3 = {do, dl’ ceey dnS}’ C4 = {60, €1,
) en4} and C5 = {fO’ fl: 0 fn5 }

In this section, we derive some basic properties of (G, C). Lemmas

4.1 and 4.5 are proved in Section 4 of [4]; we can prove Lemmas 4.2
through 4.4, 4.6 and 4.7 by arguing exactly as in the corresponding
lemmas in Section 4 of [4], and Lemma 4.8 by arguing exactly as in
Lemma 3.8 of [3].

Lemma 4.1. Suppose that ny = 2. Then one of the following holds:
(@) K(bo, by) = {co} and K(by, by) = {any }; or
(i) K(by, by) # {co} and K(by, by) # {an, }-
Lemma 4.2. Suppose that n; > 1.
() If n # 2, then K(by, b)) < C3 U Cq UC5 U {cy,, ap}-
(i) If ny = 2, then K(by, by) = C3 UCy U C5 U e, cpy» ao}-
Lemma 4.3. One of the following holds:
@) ny = 0;
() m =2 and K(bo, b)) = {eo} and K(by. by) = {ap,}: or
@(ii) n; 2 1and K(b;, b;,1)N(C3UC4 UC5) = D forall 0<i<n; —1.

With Lemma 4.3 in mind, we define the terms degenerate and
nondegenerate as follows: for each 0<1[7<5 (C; is said to be
nondegenerate if n; >1 and K(u, v) N (Cpuo UC3 UCp ) # D for all
uv € E((C;)) (indices of the letter C are to be read modulo 6); otherwise
C; is said to be degenerate. Thus, for example, C; is nondegenerate if

and only if (ii1) of Lemma 4.3 holds, and it is degenerate if and only if (i)
or (11) of Lemma 4.3 holds.
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Lemma 4.4. At most four of the C; (0 < [ < 5) are nondegenerate.

Lemma 4.5. Suppose that C, is degenerate and ng = 2. Then the
following hold:

() E(ag, V(G)) - E(C) = {agas}, and E(ay, V(G)) - E(C) = {agag}.
(i) E(lag, as}, V(G)) - E(C) = {apay}.

Lemma 4.6. Suppose that Cy is degenerate, and that Cg is
nondegenerate and by € K(fp _1, fn;)-

(@) If ng = 0, then E(Cy, V(G)) - E(C) = {agfy,1}-
(IT) Suppose that ng = 2. Then the following hold:
() {apas, aifp, 1} < E(Cy, V(G)) - E(C)

c {apag, arby, alfn571’ a1fn5}-
(11) Suppose further that C; is degenerate, and that either n; = 2,

or n =0 and ng 21 and ay € K(c, ¢;). Then {apag, aifn, 1} <
E(Cy, V(G)) - E(C) < {agas, alfn5—1: alfn5}-

Lemma 4.7. Suppose that Cj is nondegenerate. Then fif; ¢ E(G) for
any i, j with i + 3 < J.

Lemma 4.8. Suppose that C3, C, and Cs are nondegenerate. Then
K(dj, djs1)NCy # D forall 0 < j<ng -1, K(ey, ex41)N Cy # D forall
0<x<ny -1, and K(fy, fy;1)NCy # D forall 0 <y < nz —1.

5. Proof of Theorem 2
We continue with the notation of the preceding section, and complete
the proof of Theorem 2. Theorem 2 follows from the following proposition:

Proposition 1. Suppose that C3, C, and Cj5 are nondegenerate, and

Cy, C; and Cy are degenerate. Then (G, C) is of Type 2, 8, 4, 5, 6, 7 or 8.
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Proof. By Lemma 4.8, we have

K(dj, dj,1)NCy # @ forall 0 < j < ng -1, (5.1)

K(ey, e, 1)NCy =D forall 0 <x <ny -1 (5.2)
and

K(fy, fy1)NCy # & forall 0 <y <ny —1. (5.3)
Hence it follows from Lemma 3.9 that

E(Cs, Cy) - E(C)  {dp, 1605 dpy-161, dpger (5.4)
and

E(Cy, C5) - E(C) c fen, 1fos €ny-1h5 en i} (5.5)

Claim 5.1. E(C3, C5) = .

Proof. Suppose that E(Cs, C5) # &. Then there exist j and y with
0<j<ng-1 and 0<y<ns-1 such that d;f, € E(G). But then,
since it follows from (5.2) that {ey, e;, b;} is a cutset for some ¢ with

0 <t < ny, we get a contradiction by Lemma 3.1().

If n; =0 (so C; = {by}), then in view of (5.4), (5.5) and Claim 5.1,
combining the proof of Proposition 3 of [4] for the case n; = 0, and the

argument used in the proof of (5-6) and Claim 5.11 in Proposition 2 of [4],
we see that (G, C) is of Type 2. Thus we henceforth assume that n; = 2

(so C; = {bgy, by}). Applying Lemma 4.5@1i) to C;, we get

E({bo, b}, V(G)) - E(C) = {bobs . (5.6)
Hence it follows from Lemma 3.1(i) that b ¢ K(dj, dj,;) for all 0 < j
<ng -1, b & K(ey, ex,1) forall 0 <x <ny -1, and b, ¢ K(dy, dy,1)
for all 0 < y < ng —1. Thus by (5.1) through (5.3), we obtain

IA

K(d;j, dj;1) N {by, by} # @ forall 0 < j < ng -1, (5.7

K(e,, ex1)N{by, by} = @ forall 0 < x

IA

ng — 1 (58)
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and

K(fy, fys1) N by, by} # & forall 0 < y < ns —1. (5.9

Claim 5.2. One of the following holds:
(@) K(fy, fys1) N by, by} = {by} for all 0 < y < nsy —1, and K(e, eyx,1)
n {bo, bz} = {bz} forall 0 < x < ny —1, and K(dj, d]+1)ﬂ {bo, b2} = {bQ}

forall 0 < j < ng -1,

(1) ng = 2, and there exists p with 1 < p < n5 —1 such that b, €
K(fy, fys1) for all p <y <ns;-1 and by € K(fy, fy;1) for all 0 <y
<p-1 and K(e,, ex,1)N{by, by} = {by} for all 0 <x <ny -1 and
K(dj, dj1)N{by, by} = {by} forall 0 < j < ng -1

(iii) n; =1 and by, by € K(fy, f1), and K(e,, ex1) N {bg, by} = (b}
for all 0 <x <ny -1, and K(d;, dj,1)N{by, by} = {by} for all 0 < j <

ns —1;

(iv) K(fy, fy+1) N{bg, ba} = {by} for all 0 < y < ns —1, and K(e, e,.1)
n {bo, bz} = {bz} forall 0 < x < ny -1, and K(dj, d]+1)ﬂ {bo, b2} = {bQ}

forall 0 < j < ng -1,

) K(fy, fyx1) N b, ba} = by} for all 0 < y < nz —1, and ny > 2, and
there exists p with 1 < p < ny — 1 such that by € K(e,, e,,1) forall p <
x <ny -1 and by € K(ey, ey4q) for all 0 <x < p-1 and K(dj, dj;;)
N {by, by} = {by} forall 0 < j < ng —1;

(Vi)K(fy, fy+1)ﬂ {bo, b2} = {bo} for all 0 < y < ns —1, and nyg = 1
and by, by € Kleg, ¢;), and K(d;, dj.1) N {by, bg} = {bg} for all 0 < j <
ng —1;

(vii) K(fy, fy1) N {bg, by} = {bo} for all 0 <y <nz -1, and K(ey, ex41)
N {by, bg} = {by} forall 0 < x < ny —1, and K(dj, dj,1) N {bg, b} = b2}

forall 0 < j < ng -1,
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(viii) K(fy, fy+1) N {bg, by} = {by} for all 0 < y < ng -1, and K(e,, ex.1)

N{bg, bg} = {by} for all 0 < x <ny —1, and ng > 2, and there exists p

with 1 < p <ng -1 such that by € K(dj, dj,;) for all p<j<ng-1
and by € K(dj, dj,;) forall 0 < j < p-1;

(ix) K(fy, fy+1) N by, bg} = {b} for all 0 < y < ny —1, and K(e,, ey41)

N {bg, ba} = {bg} for all 0 < x <ny —1, and n3 =1 and by, by € K(dy, d;);

or

) K(fy, fy+1) N 1{bo, ba} = {b} for all 0 < y < n5 —1, and K(ey, €,,1)
N {bg, by} = by} forall 0 < x < ny —1, and K(dj, dj,1)N{bg, ba} = by}
forall 0 < j < ng -1.

Proof. We first prove the following subclaim.

Subclaim 5.1. If by € K(fy, f;), then (i), (ii) or (iii) holds; if b, €
K (dn3 15 dng ), then (viii), (ix) or (x) holds.

Proof. Suppose that
b2 S K(fo, fl) (510)

Then by Lemma 3.5, it follows from (5.7) and (5.8) that

IA

K(d;, dj1) N {bg, by} = b} forall 0 < j < ng -1 (5.11)

and

K(e,, e;.1) N {bgy, by} = {by} for all 0 < x

IA

ny - 1. (5.12)

If K(fn 15 fns )N {00, bo} = {ba}, then by Lemma 3.10 and (5.9), K(f,, fy.1)
N {bg, bg} = {by} for all 0 < y < n5 —1, and hence it follows from (5.11)
and (5.12) that (1) holds. Thus by (5.9), we may assume

bo € K(fo. 1, frs): (5.13)

Now if ng =1, then it follows from (5.13), (5.10), (5.11) and (5.12) that
(iii) holds; and if ng > 1, then in view of (5.13), (5.10), (5.11) and (5.12),
arguing as in Claim 5.16 of [4], we see that (i1) holds. Thus it is proved
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that (1), (i), or (iii) holds if by € K(fy, f;). By symmetry, we see that
(viii), (%) or (%) holds if by € K(dp,_1, dp, ).

We return to the proof of the claim. By Subclaim 5.1, we may assume
by ¢ K(fy, /i), and hence

K(fy, fy+1) N by, bg} = {by} forall 0 < y < nz -1 (5.14)

by Lemma 3.10 and (5.9), and we may also assume by ¢ K(d,,_1, dy,)s

and hence

K(dj, dj,1) N {bo, by} = {by} forall 0 < j < ng —1 (5.15)

by Lemma 3.10 and (5.7). Now, assume that
b2 € K(eo, el). (516)

If K(ep,—1,en,)N1iby, bo} = {bo}, then by Lemma 3.10 and (5.8),
K(ey, ex,1)N{bg, ba} = {by} for all 0 < x < ny —1, and hence it follows
from (5.15) and (5.14) that (iv) holds. Thus by (5.8), we may assume

bO € K(€n4_1, €n4 ) (517)

Now if ny =1, then it follows from (5.17), (5.16), (5.15) and (5.14) that
(vi) holds; and if ny > 1, then in view of (5.17), (5.16), (5.15) and (5.14),

arguing as in Claim 5.16 of [4], we see that (v) holds. Thus we may
assume by ¢ K(eg, e;), and hence by Lemma 3.10 and (5.8), K(e,, ,.1)

N{bg, by} = {by} for all 0 < x < ny —1, and this together with (5.15) and
(5.14) implies that (vii) holds. Consequently the claim is proved.
Returning to the proof of the proposition, if (i), (i1), (iii), (v) or (vi) of
Claim 5.2 holds, then in view of (5.4) through (5.6) and Claim 5.1,
combining the proof of Proposition 3 of [4] (in the case where Claim

5.2(111) holds, we apply the argument in the proof of Claim 5.17 of [4] with
Y = {1fy, b1fi}; in the case where Claim 5.2(vi) holds, we apply the

argument in the proof of Claim 5.17 of [4] with Y = {b;eq, bje;}) and the
proof of (5-6) and Claim 5.11 of [4], we see that (G, C) is of Type 3, 4, 5, 6
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or 7. Thus by symmetry, we may assume Claim 5.2(iv) holds. Applying
Lemmas 3.3 and 4.7 to C3, C, and Cj, we have the following claim:

Claim 5.3. E(C3))— E(C) = {djd;,5]0 < j < ng — 2}, B(Cy))— E(C) =
{exexi210 < x < ny -2}, and E((C5)) - E(C) = {f,f,,210 <y < n5 - 2}.

Applying (I) and (II)(i1) of Lemma 4.6 to C; and Cy, we get the

following two claims:
Claim 5.4. () If ng = 0, then E(Co, V(@) - E(C) = {agfn,1}-
(1) If ng = 2, then
{apag, arfns 1} < E(Cy, V(G)) - E(C) c {apag, aifn, 101fns }-
Claim 5.5. (i) If ny = 0, then E(Cy, V(G)) - E(C) = {cod; }.
i) If ng = 2, then
{coca, erdr} < E(Cq, V(G)) - E(C) < {coc, c1dy, erdyp}-
Further applying Lemma 3.1(3) to {en4 15 ey by} and {fy, fi, by}, we get
E(by, V(G)) - E(C) c {bie,, 1, bie,, bifo, bifi} (5.18)
Claim 5.6. {bje,, i, bie,, | N E(G) = & and {bf, bifo} N EG) = O

Proof. By the assumption that Claim 5.2(iv) holds, {fy, f;, by} 1s not
a cutset, and hence E(Cy U (C; - {bs}) U (C5 - {fo, 1i}), Co UC3 U Cy) = 2.
Since E(Cy U (C; — {bo}) U (C5 - {fy, f1}), Cq) = & by Claim 5.5, and since
E(Cy U{botU(Cs —{fy, fi}) C3 U Cy) = D by Claim 5.4, (5.6), Claim 5.1
and (5.5), this means E(b;, C3 U Cy) # &. Hence it follows from (5.18)
that {bje,, 1, bie,, } N E(G) # & and, in a similar way, we can verify

{oifi, bifo} N EG) = .

Claim 5.7. {e,, 1fi, en, 1fo} N E(G) # & and {fie,, 1, fie,, } N E(G)
* .

Proof. Since C; is degenerate by the assumption of Proposition



68 KYO FUJITA

3, {b1, by, e,,} is not a cutset, and hence E(Cy U {by}U C5, C5 U C3 U
(Cy —{epn, })) # @. Since E(Cy U {by}, Co U C3 U(Cy ~{e,, }) = D by Claim
5.4 and (5.6), and since E(Cs, Co UC3) =@ by Claims 5.5 and 5.1,
this means E(Cs, C4 —{e,,}) # &. Hence it follows from (5.5) that
len, 1 eny,1fo} NE(G) # @ and, in a similar way, we can verify

{fien,—1> fien, } N EG) = @.

Claim 5.8. {e,, 11, ey, 101} NE(G) # @ and {fie,, 1, (b1} N E(G)
= .

Proof. Since e, fy is contractible, {e,,, fo, by} is not a cutset, and
hence E(Cy U (C; — {bo}) U (C5 — {fo}), Co U C3 U(Cy — ey, }) # . In view
of Claim 5.5, (5.6) and Claim 5.4, we have E(Cy U (C; —{b2})U (C5 - {fo}),
Cy) = @, E(by, C3 U(Cy ~{e,, 1) = &, and E(Cy, C3 U(Cy ~ {ey, })) = @.
Consequently E({b;} U (C5 — {fo}), C3 U(C4 — {ep, }) # @. Hence it follows
from (5.18), Claim 5.1 and (5.5) that {e,, _1fi, e,,-161} N E(G) # & and, in

a similar way, we can verify {fie,, 1, ibi} N E(G) # &.

Now arguing as in the proof of (5-6) and Claim 5.11 of [4], we see from
(5.4), (5.5), (5.6), (5.18) and Claims 5.3 through 5.8 that (G, C) is of Type

8.
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