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Abstract

We classify all pairs ( )CG,  of a 3-connected graph G and a hamiltonian

cycle C of G such that C contains precisely six contractible edges of G, C
has precisely three nondegenerate segments, and the three

nondegenerate segments are consecutive on C.

1. Introduction

In this paper, we consider only finite, simple, undirected graphs with
no loops and no multiple edges.

A graph G is called 3-connected if ( ) 4≥GV  and SG −  is connected

for any subset S of ( )GV  having cardinality 2. An edge e of a 3-connected

graph G is called contractible if the graph which we obtain from G by
contracting e (and replacing each of the resulting pairs of parallel edges
by a simple edge) is 3-connected; otherwise e is called noncontractible. In
[2], Dean et al. proved that every longest cycle in a 3-connected graph
other than 4K  or 32 KK ×  contains at least three contractible edges.

Further Aldred et al. [1], Ota [6], Fujita [4], and Fujita and Kotani [5]
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classify all pairs ( )CG,  of a 3-connected graph G and a longest cycle C of

G such that C contains at most five contractible edges of G. In these
classifications, it turns out that for all such pairs ( ),, CG  C is a

hamiltonian cycle of G. Thus it is desirable that one should obtain a
classification of those pairs ( )CG,  of a 3-connected graph G and a

hamiltonian cycle C such that C contains precisely six contractible edges
of G. Along this line of research, the following theorem was proved in [3]
(see the paragraph following Lemma 4.3 for the definition of the term
“nondegenerate”; also see [3, Section 1] for the definition of Type 1):

Theorem 1. Let G be a 3-connected graph and let C be a hamiltonian

cycle of G. Suppose that C contains precisely six contractible edges of G,

and C has four consecutive nondegenerate segments. Then the pair ( )CG,

is of Type 1.

In this paper, we consider the case where C has three consecutive

nondegenerate segments. More precisely, we prove the following theorem:

Theorem 2. Let G be a 3-connected graph and let C be a hamiltonian

cycle of G. Suppose that C contains precisely six contractible edges of G.
Suppose further that C has precisely three nondegenerate segments and

they are consecutive on C. Then the pair ( )CG,  belongs to one of the 7

types, Types 2 through 8, which are defined in Section 2.

The organization of this paper is as follows. In Section 2, we define

the type of a pair ( )CG,  satisfying the assumption of Theorem 2. Section

3 contains fundamental results concerning noncontractible edges lying on
a hamiltonian cycle of a 3-connected graph. In Section 4, we derive basic

properties of a pair ( )CG,  satisfying the assumption of Theorem 2, and

we complete the proof of Theorem 2 in Section 5.

Our notation and terminology are standard except possibly for the

following. Let G be a graph. For ( ),GVU ⊆  we let GUU =  denote the

graph induced by U in G. For ( ),, GVVU ⊆  we let ( )VUE ,  denote the

set of edges of G which join a vertex in U and a vertex in V; if

{ } ( )( ),GVuuU ∈=  then we write ( )VuE ,  for { }( )., VuE  A subset S of

( )GV  is called a cutset if SG −  is disconnected; thus G is 3-connected if
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and only if ( ) 4≥GV  and G has no cutset of cardinality 2. If G is

3-connected, then for ( ),GEuve ∈=  we let ( ) ( )vuKeK ,=  denote the

set of vertices x of G such that { }xvu ,,  is a cutset; thus e is contractible if

and only if ( ) .∅=eK  If e is noncontractible, then for each ( ),eKx ∈

{ }xvu ,,  is called a cutset associated with e.

2. Definition of the Type of a Pair ( )CG,

In this section, we define the type of a pair ( )CG,  of a 3-connected

graph G and a hamiltonian cycle C of G such that C contains precisely six

contractible edges of G. Throughout this section, we let ,0n  ,1n  ,2n  ,3n

4n  and 5n  be nonnegative integers, and let G denote a graph of order

6543210 ++++++ nnnnnn  with vertex set ( ) { }00 niaGV i ≤≤|=

{ } { }21 00 nicnib ii ≤≤|≤≤| ∪∪  ∪  { } { } ∪∪ 43 00 nienid ii ≤≤|≤≤|

{ }50 nifi ≤≤|  such that G contains 101010 10
ccbbbaaaC nn=

0101010 5432
afffeeedddc nnnn  as a hamiltonian cycle. In the

definition of each type, it is easy to verify that if G satisfies the required

conditions, then G is 3-connected, and ,00
ban  ,01

cbn  ,02
dcn  ,03

edn  ,04
fen

05
afn  are the only contractible edges of G that are on C. Further if we let

{ },...,,,
0100 naaaC =  { },...,,,

1101 nbbbC =  { },...,,,
2102 ncccC =  =3C

{ } { }
43

...,,,,...,,, 10410 nn eeeCddd =  and { },...,,,
5105 nfffC =  then ,3C

4C  and 5C  are nondegenerate and ,0C  1C  and 2C  are degenerate (see

the paragraph following Lemma 4.3 for the definition of the terms
“nondegenerate” and “degenerate”).

Type 2. Let 00 =n  or 2, ,01 =n  02 =n  or 2, ,13 ≥n  ,14 ≥n  and

.15 ≥n  Let

{ } { }2020 4232 −≤≤|−≤≤|= ++ nxeenjddX xxjj ∪

{ },20 52 −≤≤|+ nyff yy∪

{ } { } { },000 504030 nyfbnxebnjdbY yxj ≤≤|≤≤|≤≤|= ∪∪



KYO FUJITA54

{ } ( )
{ } ( )

( )
{ } ( )





=

=∅
=′







=

=
=

−

−

,2if,

0if

,2if,

0if

0101

0
1

01120

010
1

55

5

nfaba

n
F

nfaaa

nfa
F

nn

n

{ } ( )
{ } ( )

( )
{ } ( )



=

=∅
=′





=

=
=

,2if,

0if

,2if,

0if

20101

2
2

21120

210
2

ndcbc

n
F

ndccc

ndc
F

{ } { },,,,,, 011011311113 443343
fefeededFfeedF nnnnnn −−−− =′=

( )
{ } ( )

( )
{ } ( )




=

=
=





=

=
=

,2if

0if

,2if

0if

210

2
2

001

0
1

ncbY

nY
W

nbaY

nY
W

∪∪

{ } ( )
( )

{ } ( )
( )




=∅

=
=





=∅

=
=

.2if

0if

,2if

0if

0

00
2

2

200
1

5

n

nfb
Z

n

ndb
Z

n

Under this notation, G is said to be of Type 2 if G satisfies the following

four conditions:

• ( ) ( )CEGEFFFX −⊆321 ∪∪∪

 ,332211 FFFFFFYX ′′′⊆ ∪∪∪∪∪∪∪

• for each i with ( ) ( ) ,,21 ∅≠−≤≤ GEZWi ii ∩

• if 00 =n  and ,15 =n  then { } ( ) ,, 1000 4
∅≠− GEefbf n ∩

• if 02 =n  and ,13 =n  then { } ( ) ., 1101 ∅≠GEedbd ∩

Type 3. Let 00 =n  or 2, ,21 =n  02 =n  or 2, ,13 ≥n  14 ≥n  and

.15 ≥n  Let

{ } { }2020 4232 −≤≤|−≤≤|= ++ nxeenjddX xxjj ∪

{ } { },20 2052 bbnyff yy ∪∪ −≤≤|+
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Under this notation, G is said to be of Type 3 if G satisfies the following

three conditions:

• ( ) ( ) 114321 FFXCEGEFFFFX ′⊆−⊆ ∪∪∪∪∪∪

 ,443322 FFFFFF ′′′ ∪∪∪∪∪∪

• if ,20 =n  then ( ) ,4 ∅≠′ GEF ∩

• if 02 =n  and ,13 =n  then ( ).11 GEed ∈

Type 4. Let 00 =n  or 2, ,21 =n  02 =n  or 2, ,13 ≥n  ,14 ≥n  and

.25 ≥n  Let

{ } { }2020 4232 −≤≤|−≤≤|= ++ nxeenjddX xxjj ∪

{ } { },20 2052 bbnyff yy ∪∪ −≤≤|+
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Let p be an integer with ,11 5 −≤≤ np  and set
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Now G is said to be of Type 4 if there exists p with 11 5 −≤≤ np  such

that G satisfies the following three conditions:

• ( ) ( )CEGEFFFX −⊆321 ∪∪∪

 ,332211 FFFFFFYX ′′′⊆ ∪∪∪∪∪∪∪
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• ( ) ,∅≠GEW ∩

• if 02 =n  and ,13 =n  then ( ).11 GEed ∈

Type 5. Let 00 =n  or 2, ,21 =n  02 =n  or 2, ,13 ≥n  ,14 ≥n  and

.15 =n  Let
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Under this notation, G is said to be of Type 5 if G satisfies the following

three conditions:

• ( ) ( ) 114321 FFXCEGEFFFFX ′⊆−⊆ ∪∪∪∪∪∪
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• if ,20 =n  then ( ) ,4 ∅≠′ GEF ∩
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Type 6. Let 00 =n  or 2, ,21 =n  02 =n  or 2, ,13 ≥n  ,24 ≥n  and
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Let p be an integer with ,11 4 −≤≤ np  and set

{ }.111 +≤≤−|= pxpebY x
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Under this notation, G is said to be of Type 7 if G satisfies the following
four conditions:

• ( ) ( )CEGEFFFX −⊆321 ∪∪∪

 ,332211 YFFFFFFX ∪∪∪∪∪∪∪ ′′′⊆
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• ( ) ,∅≠GEY ∩

• if 00 =n  and ,15 =n  then ( ).014
GEfen ∈−

• if 02 =n  and ,13 =n  then ( ).11 GEed ∈

Type 8. Let 00 =n  or 2, ,21 =n  02 =n  or 2, ,13 ≥n  ,14 ≥n  and

.15 ≥n  Let
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Under this notation, G is said to be of Type 8 if G satisfies the following

four conditions:

• ( ) ( )CEGEFFFX −⊆321 ∪∪∪

 ,4332211 FFFFFFFX ′′′′⊆ ∪∪∪∪∪∪∪

• for each i with ( ) ,,61 ∅≠≤≤ GEWi i ∩

• if 00 =n  and ,15 =n  then { } ( ) ., 1010 4
∅≠− GEefbf n ∩

• if 02 =n  and ,13 =n  then ( ).11 GEed ∈
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3. Preliminaries

In this section, we prove fundamental results concerning

noncontractible edges lying on a hamiltonian cycle of a 3-connected

graph.

Throughout this section, we let G denote a 3-connected graph of order

( ),41 ≥+ nn  and let 010 vvvvC n=  denote a hamiltonian cycle of G.

Lemmas 3.1 through 3.8 are proved in Section 3 of [4] (and also in Ota

[6]) and Lemma 3.9 is proved in Section 2 of [3], so we omit their proofs

(in Lemmas 3.1 through 3.8, we assume that the edge 0vvn  is

noncontractible, and let { }an vvv ,, 0  be a cutset associated with it).

Lemma 3.1. (i) No edge of G joins a vertex in { }11 −≤≤| akvk  and a

vertex in { }.11 −≤≤+| nkavk

(ii) There exists k with 11 −≤≤ ak  such that ( ).GEvv kn ∈

Lemma 3.2. If ,2=a  then ( )( ) ( ) { }., 11 nvvCEGVvE =−

Lemma 3.3. Suppose that 10vv  is noncontractible and ( )., 10 vvKva ∈

Then ( ).1 GEvvn ∈

Lemma 3.4. Suppose that 1+aavv  is noncontractible, and let

{ }jaa vvv ,, 1+  be a cutest associated with it. Then nja ≤≤+ 3  (and

hence ).3−≤ na  Further, if ,nj =  then ( ).10 GEvv a ∈+

Lemma 3.5. Let .21 −≤≤ aj  Suppose that 1+jjvv  is noncontractible,

and let { }ljj vvv ,, 1+  be a cutset associated with it, and suppose that 1+a

.1−≤≤ nl  Then lavval ,1+=  is contractible and, unless ,1−= nl  we

have ( )., 0vvKv nl ∈

Lemma 3.6. Suppose that 10vv  is noncontractible, and let { }jvvv ,, 10

be a cutset associated with it, and suppose that .21 −≤≤+ nja  Then

( )., 0vvKv nj ∈
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Lemma 3.7. Suppose that ( ) { },, 20 vvvK n =  and that 10vv  is

noncontractible. Then ( ) { }., 110 −= nvvvK

Lemma 3.8. If ,2=a  then 21vv  is contractible; if ,3≥a  then there

exists j with 10 −≤≤ aj  such that 1+jjvv  is contractible; if 3≥a  and

there exists only one j with 10 −≤≤ aj  such that 1+jjvv  is contractible;

then 1+aavv  is contractible.

Lemma 3.9. Let l be an integer with .13 −≤≤ nl

(i) Suppose that for each j with ,1 njl ≤≤+  jj vv 1−  is noncontractible

and ( ) { } .21,1 ∅≠−≤≤|− livvvK ijj ∩  Then G has no edge 
21 jj vv  such

that .3 211 njjjl ≤≤+<≤

(ii) Suppose that ,3−≤ nl  let h be an integer with ,12 −≤≤+ nhl

and suppose that for each j with njl ≤≤+ 1  and ,hj ≠  jj vv 1−  is

noncontractible and ( ) { } .21,1 ∅≠−≤≤|− livvvK ijj ∩  Further let 
21 jj vv

( )GE∈  be an edge such that .3 211 njjjl ≤≤+<≤  Then 21 −= hj

and .12 += hj

Lemma 3.10. Let 11 i≤  and .12 321 −≤<≤+ niii  Suppose that

1+iivv  is noncontractible for all ,10 1 −≤≤ ii  ( ) { }321, ijivvvK jii ≤≤|+ ∩

∅≠  for all ,10 1 −≤≤ ii  and ( )., 103
vvKvi ∉  Then ( )1,

3 +∉ iii vvKv  for

each .10 1 −≤≤ ii

Proof. Take ( ) { }., 3210 ijivvvKv jk ≤≤|∈ ∩  We have 3ik ≠  by

assumption. Let ,11 1 −≤≤ ii  and suppose that ( )., 13 +∈ iii vvKv  Then

applying Lemma 3.5 or 3.6 to { }kvvv ,, 10  and { },,,
31 iii vvv +  we get

( ),, 103
vvKvi ∈  a contradiction.

4. Initial Reduction

Throughout the rest of this paper, we let G and C be as in Theorem 2,

and write 101010101010 43210
ffeeedddcccbbbaaaC nnnnn=
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,05
afn  where ,00

ban  ,01
cbn  ,02

dcn  ,03
edn  04

fen  and 05
afn  are the six

contractible edges contained in C. Note that C is a hamiltonian cycle,

thus ( ) .6543210 ++++++= nnnnnnGV  Let { } == 1100 ,...,,,
0

CaaaC n

{ } { },...,,,,...,,,
21 10210 nn cccCbbb =  { } { ,,,...,,, 104103 3

eeCdddC n ==

}
4

..., ne  and { }....,,,
5105 nfffC =

In this section, we derive some basic properties of ( )., CG  Lemmas

4.1 and 4.5 are proved in Section 4 of [4]; we can prove Lemmas 4.2
through 4.4, 4.6 and 4.7 by arguing exactly as in the corresponding
lemmas in Section 4 of [4], and Lemma 4.8 by arguing exactly as in
Lemma 3.8 of [3].

Lemma 4.1. Suppose that .21 =n  Then one of the following holds:

 (i) ( ) { }010 , cbbK =  and ( ) { };,
021 nabbK =  or

(ii) ( ) { }010 , cbbK ≠  and ( ) { }.,
021 nabbK ≠

Lemma 4.2. Suppose that .11 ≥n

 (i) If ,21 ≠n  then ( ) { }.,, 054310 2
acCCCbbK n∪∪∪⊆

(ii) If ,21 =n  then ( ) { }.,,, 0054310 2
accCCCbbK n∪∪∪⊆

Lemma 4.3. One of the following holds:

  (i) ;01 =n

 (ii) 21 =n  and ( ) { }010 , cbbK =  and ( ) { };,
021 nabbK =  or

(iii) 11 ≥n  and ( ) ( ) ∅≠+ 5431, CCCbbK ii ∪∪∩  for all .10 1 −≤≤ ni

With Lemma 4.3 in mind, we define the terms degenerate and

nondegenerate as follows: for each ,50 ≤≤ l  lC  is said to be

nondegenerate if 1≥ln  and ( ) ( ) ∅≠+++ 432, lll CCCvuK ∪∪∩  for all

( )ClCEuv ∈  (indices of the letter C are to be read modulo 6); otherwise

lC  is said to be degenerate. Thus, for example, 1C  is nondegenerate if

and only if (iii) of Lemma 4.3 holds, and it is degenerate if and only if (i)
or (ii) of Lemma 4.3 holds.
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Lemma 4.4. At most four of the ( )50 ≤≤ lCl  are nondegenerate.

Lemma 4.5. Suppose that 0C  is degenerate and .20 =n  Then the

following hold:

 (i) ( )( ) ( ) { },, 200 aaCEGVaE =−  and ( )( ) ( ) { }., 202 aaCEGVaE =−

(ii) { } ( )( ) ( ) { }.,, 2020 aaCEGVaaE =−

Lemma 4.6. Suppose that 0C  is degenerate, and that 5C  is

nondegenerate and ( ).,
55 10 nn ffKb −∈

 (I) If ,00 =n  then ( )( ) ( ) { }., 100 5 −=− nfaCEGVCE

(II) Suppose that .20 =n  Then the following hold:

 (i) { } ( )( ) ( )CEGVCEfaaa n −⊆− ,, 01120 5

 { }.,,,
55 1110120 nn fafabaaa −⊆

(ii) Suppose further that 1C  is degenerate, and that either ,21 =n

or 01 =n  and 12 ≥n  and ( )., 102 ccKa ∈  Then { } ⊆−1120 5
, nfaaa

( )( ) ( ) { }.,,,
55 111200 nn fafaaaCEGVCE −⊆−

Lemma 4.7. Suppose that 5C  is nondegenerate. Then ( )GEff ji ∉  for

any i, j with .3 ji ≤+

Lemma 4.8. Suppose that ,3C  4C  and 5C  are nondegenerate. Then

( ) ∅≠+ 11, CddK jj ∩  for all ,10 3 −≤≤ nj  ( ) ∅≠+ 11, CeeK xx ∩  for all

,10 4 −≤≤ nx  and ( ) ∅≠+ 11, CffK yy ∩  for all .10 5 −≤≤ ny

5. Proof of Theorem 2

We continue with the notation of the preceding section, and complete

the proof of Theorem 2. Theorem 2 follows from the following proposition:

Proposition 1. Suppose that ,3C  4C  and 5C  are nondegenerate, and

,0C  1C  and 2C  are degenerate. Then ( )CG,  is of Type 2, 3, 4, 5, 6, 7 or 8.
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Proof. By Lemma 4.8, we have

( ) ∅≠+ 11, CddK jj ∩  for all ,10 3 −≤≤ nj (5.1)

( ) ∅≠+ 11, CeeK xx ∩  for all 10 4 −≤≤ nx (5.2)

and

( ) ∅≠+ 11, CffK yy ∩  for all .10 4 −≤≤ ny (5.3)

Hence it follows from Lemma 3.9 that

( ) ( ) { }1110143 333
,,, edededCECCE nnn −−⊆− (5.4)

and

( ) ( ) { }.,,, 1110154 444
fefefeCECCE nnn −−⊆− (5.5)

Claim 5.1. ( ) ., 53 ∅=CCE

Proof. Suppose that ( ) ., 53 ∅≠CCE  Then there exist j and y with

10 3 −≤≤ nj  and 10 5 −≤≤ ny  such that ( ).GEfd yj ∈  But then,

since it follows from (5.2) that { }tbee ,, 10  is a cutset for some t with

,0 1nt ≤≤  we get a contradiction by Lemma 3.1(i).

If 01 =n  (so { }),01 bC =  then in view of (5.4), (5.5) and Claim 5.1,

combining the proof of Proposition 3 of [4] for the case ,01 =n  and the

argument used in the proof of (5-6) and Claim 5.11 in Proposition 2 of [4],

we see that ( )CG,  is of Type 2. Thus we henceforth assume that 21 =n

(so { })., 201 bbC =  Applying Lemma 4.5(ii) to ,1C  we get

{ } ( )( ) ( ) { }.,, 2020 bbCEGVbbE =− (5.6)

Hence it follows from Lemma 3.1(i) that ( )11 , +∉ jj ddKb  for all j≤0

,13 −≤ n  ( )11 , +∉ xx eeKb  for all ,10 4 −≤≤ nx  and ( )11 , +∉ yy ddKb

for all .10 5 −≤≤ ny  Thus by (5.1) through (5.3), we obtain

( ) { } ∅≠+ 201 ,, bbddK jj ∩  for all ,10 3 −≤≤ nj (5.7)

( ) { } ∅≠+ 201 ,, bbeeK xx ∩  for all 10 4 −≤≤ nx (5.8)
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and

( ) { } ∅≠+ 201 ,, bbffK yy ∩  for all .10 5 −≤≤ ny (5.9)

Claim 5.2. One of the following holds:

(i) ( ) { } { }2201 ,, bbbffK yy =+ ∩  for all ,10 5 −≤≤ ny  and ( )1, +xx eeK

{ } { }220 , bbb =∩  for all ,10 4 −≤≤ nx  and ( ) { } { }2201 ,, bbbddK jj =+ ∩

for all ;10 3 −≤≤ nj

(ii) ,25 ≥n  and there exists p with 11 5 −≤≤ np  such that ∈0b

( )1, +yy ffK  for all 15 −≤≤ nyp  and ( )12 , +∈ yy ffKb  for all y≤0

1−≤ p  and ( ) { } { }2201 ,, bbbeeK xx =+ ∩  for all 10 4 −≤≤ nx  and

( ) { } { }2201 ,, bbbddK jj =+ ∩  for all ;10 3 −≤≤ nj

(iii) 15 =n  and ( ),,, 1020 ffKbb ∈  and ( ) { } { }2201 ,, bbbeeK xx =+ ∩

for all ,10 4 −≤≤ nx  and ( ) { } { }2201 ,, bbbddK jj =+ ∩  for all ≤≤ j0

;13 −n

(iv) ( ) { } { }0201 ,, bbbffK yy =+ ∩  for all ,10 5 −≤≤ ny  and ( )1, +xx eeK

{ } { }220 , bbb =∩  for all ,10 4 −≤≤ nx  and ( ) { } { }2201 ,, bbbddK jj =+ ∩

for all ;10 3 −≤≤ nj

(v) ( ) { } { }0201 ,, bbbffK yy =+ ∩  for all ,10 5 −≤≤ ny  and ,24 ≥n  and

there exists p with 11 4 −≤≤ np  such that ( )10 , +∈ xx eeKb  for all ≤p

14 −≤ nx  and ( )12 , +∈ xx eeKb  for all 10 −≤≤ px  and ( )1, +jj ddK

{ } { }220 , bbb =∩  for all ;10 3 −≤≤ nj

(vi) ( ) { } { }0201 ,, bbbffK yy =+ ∩  for all ,10 5 −≤≤ ny  and 14 =n

and ( ),,, 1020 eeKbb ∈  and ( ) { } { }2201 ,, bbbddK jj =+ ∩  for all ≤≤ j0

;13 −n

(vii) ( ) { } { }0201 ,, bbbffK yy =+ ∩  for all ,10 5 −≤≤ ny  and ( )1, +xx eeK

{ } { }020 , bbb =∩  for all ,10 4 −≤≤ nx  and ( ) { } { }2201 ,, bbbddK jj =+ ∩

for all ;10 3 −≤≤ nj
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(viii) ( ) { } { }0201 ,, bbbffK yy =+ ∩  for all ,10 5 −≤≤ ny  and ( )1, +xx eeK

{ } { }020 , bbb =∩  for all ,10 4 −≤≤ nx  and ,23 ≥n  and there exists p

with 11 3 −≤≤ np  such that ( )10 , +∈ jj ddKb  for all 13 −≤≤ njp

and ( )12 , +∈ jj ddKb  for all ;10 −≤≤ pj

(ix) ( ) { } { }0201 ,, bbbffK yy =+ ∩  for all ,10 5 −≤≤ ny  and ( )1, +xx eeK

{ } { }020, bbb =∩  for all ,10 4 −≤≤ nx  and 13 =n  and ( );,, 1020 ddKbb ∈

or

(x) ( ) { } { }0201 ,, bbbffK yy =+ ∩  for all ,10 5 −≤≤ ny  and ( )1, +xx eeK

{ } { }020 , bbb =∩  for all ,10 4 −≤≤ nx  and ( ) { } { }0201 ,, bbbddK jj =+ ∩

for all .10 3 −≤≤ nj

Proof. We first prove the following subclaim.

Subclaim 5.1. If ( ),, 102 ffKb ∈  then (i), (ii) or (iii) holds; if ∈0b

( ),,
33 1 nn ddK −  then (viii), (ix) or (x) holds.

Proof. Suppose that

( )., 102 ffKb ∈ (5.10)

Then by Lemma 3.5, it follows from (5.7) and (5.8) that

( ) { } { }2201 ,, bbbddK jj =+ ∩  for all 10 3 −≤≤ nj (5.11)

and

( ) { } { }2201 ,, bbbeeK xx =+ ∩  for all .10 4 −≤≤ nx (5.12)

If ( ) { } { },,, 2201 55
bbbffK nn =− ∩  then by Lemma 3.10 and (5.9), ( )1, +yy ffK

{ } { }220 , bbb =∩  for all ,10 5 −≤≤ ny  and hence it follows from (5.11)

and (5.12) that (i) holds. Thus by (5.9), we may assume

( ).,
55 10 nn ffKb −∈ (5.13)

Now if ,15 =n  then it follows from (5.13), (5.10), (5.11) and (5.12) that

(iii) holds; and if ,15 >n  then in view of (5.13), (5.10), (5.11) and (5.12),

arguing as in Claim 5.16 of [4], we see that (ii) holds. Thus it is proved
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that (i), (ii), or (iii) holds if ( )., 102 ffKb ∈  By symmetry, we see that

(viii), (ix) or (x) holds if ( ).,
33 10 nn ddKb −∈

We return to the proof of the claim. By Subclaim 5.1, we may assume

( ),, 102 ffKb ∉  and hence

( ) { } { }0201 ,, bbbffK yy =+ ∩  for all 10 5 −≤≤ ny (5.14)

by Lemma 3.10 and (5.9), and we may also assume ( ),,
33 10 nn ddKb −∉

and hence

( ) { } { }2201 ,, bbbddK jj =+ ∩  for all 10 3 −≤≤ nj (5.15)

by Lemma 3.10 and (5.7). Now, assume that

( )., 102 eeKb ∈ (5.16)

If ( ) { } { },,, 2201 44
bbbeeK nn =− ∩  then by Lemma 3.10 and (5.8),

( ) { } { }2201 ,, bbbeeK xx =+ ∩  for all ,10 4 −≤≤ nx  and hence it follows

from (5.15) and (5.14) that (iv) holds. Thus by (5.8), we may assume

( ).,
44 10 nn eeKb −∈ (5.17)

Now if ,14 =n  then it follows from (5.17), (5.16), (5.15) and (5.14) that

(vi) holds; and if ,14 >n  then in view of (5.17), (5.16), (5.15) and (5.14),

arguing as in Claim 5.16 of [4], we see that (v) holds. Thus we may

assume ( ),, 102 eeKb ∉  and hence by Lemma 3.10 and (5.8), ( )1, +xx eeK

{ } { }020 , bbb =∩  for all ,10 4 −≤≤ nx  and this together with (5.15) and

(5.14) implies that (vii) holds. Consequently the claim is proved.

Returning to the proof of the proposition, if (i), (ii), (iii), (v) or (vi) of

Claim 5.2 holds, then in view of (5.4) through (5.6) and Claim 5.1,

combining the proof of Proposition 3 of [4] (in the case where Claim

5.2(iii) holds, we apply the argument in the proof of Claim 5.17 of [4] with

{ };, 1101 fbfbY =  in the case where Claim 5.2(vi) holds, we apply the

argument in the proof of Claim 5.17 of [4] with { }), 1101 ebebY =  and the

proof of (5-6) and Claim 5.11 of [4], we see that ( )CG,  is of Type 3, 4, 5, 6
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or 7. Thus by symmetry, we may assume Claim 5.2(iv) holds. Applying

Lemmas 3.3 and 4.7 to ,3C  4C  and ,5C  we have the following claim:

Claim 5.3. ( ) ( ) { } ( ) ( ) =−−≤≤|=− + CECEnjddCECE jj 4323 ,20

{ },20 42 −≤≤|+ nxee xx  and ( ) ( ) { }.20 525 −≤≤|=− + nyffCECE yy

Applying (I) and (II)(ii) of Lemma 4.6 to 0C  and ,2C  we get the

following two claims:

Claim 5.4. (i) If ,00 =n  then ( )( ) ( ) { }., 100 5 −=− nfaCEGVCE

(ii) If ,20 =n  then

{ } ( )( ) ( ) { }.,,,
555 1112001120 nnn fafaaaCEGVCEfaaa −− ⊆−⊆

Claim 5.5. (i) If ,02 =n  then ( )( ) ( ) { }., 102 dcCEGVCE =−

(ii) If ,22 =n  then

{ } ( )( ) ( ) { }.,,,, 01112021120 dcdcccCEGVCEdccc ⊆−⊆

Further applying Lemma 3.1(i) to { }21 ,,
44

bee nn −  and { },,, 010 bff  we get

( )( ) ( ) { }.,,,, 11011111 44
fbfbebebCEGVbE nn −⊆− (5.18)

Claim 5.6. { } ( ) ∅≠− GEebeb nn ∩
44 111 ,  and { } ( ) ., 0111 ∅≠GEfbfb ∩

Proof. By the assumption that Claim 5.2(iv) holds, { }210 ,, bff  is not

a cutset, and hence { }( ) { }( )( ) .,, 432105210 ∅≠−− CCCffCbCCE ∪∪∪∪

Since { }( ) { }( )( ) ∅=−− 2105210 ,, CffCbCCE ∪∪  by Claim 5.5, and since

{ } { }( )( ) ∅=− 4310500 ,, CCffCbCE ∪∪∪  by Claim 5.4, (5.6), Claim 5.1

and (5.5), this means ( ) ., 431 ∅≠CCbE ∪  Hence it follows from (5.18)

that { } ( ) ∅≠− GEebeb nn ∩
44 111 ,  and, in a similar way, we can verify

{ } ( ) ., 0111 ∅≠GEfbfb ∩

Claim 5.7. { } ( ) ∅≠−− GEfefe nn ∩0111 44
,  and { } ( )GEefef nn ∩

44 111 ,−

.∅≠

Proof. Since 1C  is degenerate by the assumption of Proposition
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3, { }
4

,, 21 nebb  is not a cutset, and hence ( { } ∪∪∪∪ 32500 , CCCbCE

( { })) .
44 ∅≠− neC  Since ( { } ( { })) ∅=−

443200 , neCCCbCE ∪∪∪  by Claim

5.4 and (5.6), and since ( ) ∅=325, CCCE ∪  by Claims 5.5 and 5.1,

this means ( { }) .,
445 ∅≠− neCCE  Hence it follows from (5.5) that

{ } ( ) ∅≠−− GEfefe nn ∩0111 44
,  and, in a similar way, we can verify

{ } ( ) .,
44 111 ∅≠− GEefef nn ∩

Claim 5.8. { } ( ) ∅≠−− GEbefe nn ∩1111 44
,  and { } ( )GEbfef n ∩1111 ,

4 −

.∅≠

Proof. Since 04
fen  is contractible, { }20 ,,

4
bfen  is not a cutset, and

hence ( { }( ) { }( ) ( { }) .,
443205210 ∅≠−−− neCCCfCbCCE ∪∪∪∪  In view

of Claim 5.5, (5.6) and Claim 5.4, we have ( { }( ) { }( ),05210 fCbCCE −− ∪∪

) ( ( { })) ,,,
44302 ∅=−∅= neCCbEC ∪  and ( ( { })) .,

4430 ∅=− neCCCE ∪

Consequently ({ } { }( ) ( { }) .,
443051 ∅≠−− neCCfCbE ∪∪  Hence it follows

from (5.18), Claim 5.1 and (5.5) that { } ( ) ∅≠−− GEbefe nn ∩1111 44
,  and, in

a similar way, we can verify { } ( ) ., 1111 4
∅≠− GEbfef n ∩

Now arguing as in the proof of (5-6) and Claim 5.11 of [4], we see from

(5.4), (5.5), (5.6), (5.18) and Claims 5.3 through 5.8 that ( )CG,  is of Type

8.
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