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Abstract

Let R be a (commutative unital) ring. If S and 7 are distinct minimal
ring extensions of R, their composite ST may not exist; i.e., there may
not exist a (commutative unital) R-algebra U containing both S and 7" as
R-subalgebras. We assume henceforth that such U exists. It seems
natural to ask (*): is ST necessarily a minimal ring extension of both S
and T'? If R is a field and S, T (as above) are splitting field extensions of
R, the answer to (*) is “yes”; without this “splitting field” assumption
on the fields S and T, the answer is, in general, “no”. If R is a field and
either S or 7T is not a field, the answer to (*) is, in general, “no”. Let M
and N be the so-called crucial maximal ideals of R relative to S and T,
respectively. If M = N, the answer to (*) is “yes”. Assume henceforth

that R is a ring with von Neumann regular total quotient ring and that
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S and T are overrings of R. If R is integrally closed in both S and 7, the
answer to (*) is “yes”. If M = N, it cannot be the case that 7' is integral
over R while R is integrally closed in S. If M = N with S (and hence T')
integral over R, then the answer to (*) can be “no” and we give best-

possible finite upper bounds for the cardinalities of chains of rings
between S and ST and chains of rings between 7 and S7T.

1. Introduction

All rings and algebras considered below are commutative with
identity; all subrings/subalgebras and ring/algebra homomorphisms are
unital. Recall that a ring extension A < B is called a minimal ring
extension if the inclusion map A <> B is a minimal homomorphism in
the sense of [9], i.e., if there is no ring D such that A ¢ D < B. (As
usual, < denotes proper inclusion.) If A c B is a minimal ring
extension, then it was shown in [9, Théoréme 2.2(i1), (ii1)] that either B is
integral over A or A = B 1is a flat epimorphism (in the category of
commutative rings). Suppose that R « S and R < T are minimal ring
extensions such that the composite ST exists, i.e., such that there exists a
(commutative unital) R-algebra U containing S and T as R-subalgebras.
(See Example 2.1 for cases where S and T are minimal ring extensions of
R for which no such Uexists.) If R = S and R <> T are also each flat
epimorphisms, then ST = S ®p T and both S = ST and T < ST

are flat epimorphisms. By analogy, we are led to ask the following basic
question of this paper. If R < S and R < T are arbitrary minimal ring
extensions such that the composite ST exists, must S < ST and T < ST
be minimal ring extensions? In the next four paragraphs, we summarize

the answers that are given in the following sections.

Section 2 begins with some simple contexts in which our basic
question has a positive answer. For instance, it is shown in Proposition
2.2(b) that if K ¢ F and K < L are distinct minimal field extensions
inside some algebraic closure of K such that F and L are each splitting
fields over K, then F < FL and L c FL are each minimal field
extensions. However, Example 2.3 shows that the basic question has a

negative answer (with base field R = K, a field) if F, L are replaced
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with any of the other kinds of minimal ring extensions S, T' of a field

that are catalogued in [9, Lemme 1.2].

Working over more general base rings requires the following concept
from [9]. If A < B i1s a minimal ring extension, then there is a unique
maximal ideal M of A, called the crucial maximal ideal of A < B (or of
A relative to B or, simply, of B) such that if P is any prime ideal of A,
then the canonical injective A-algebra homomorphism Ap — Bp is an
isomorphism if P # M and a minimal homomorphism if P = M. (As
usual, if £ is an A-module and P is a prime ideal of A, then Ep := E4\p.)
Perhaps our most useful positive answer for the basic question is given
in Theorem 2.5:if R € S and R ¢ T are minimal ring extensions, with
distinct crucial maximal ideals M and N, respectively, and if the
composite ST exists in some ring extension of R, then both S < ST and

T < ST are minimal ring extensions.

The most striking applications of Theorem 2.5 arise when S and T are
overrings of R. (As usual, if A is a ring, then tq(A) denotes a/the
total quotient ring of A; and, by an overring of A, we mean an
A-subalgebra of tq(A), i.e., a ring B such that A < B < tq(A).) Perhaps
the most important kinds of minimal ring extensions are overrings.
Indeed, recall from [19, p. 1738] that if R is a (commutative integral)
domain which is not a field and B is a domain such that R « B is a
minimal ring extension, then B is (R-algebra isomorphic to) an overring of
R. (See [18, Proposition 3.9] and [4, Theorem 2.2] for some recent
generalizations of this result to contexts involving nontrivial zero-
divisors.) As an application of Theorem 2.5, it is shown in Corollary 2.7
that if R is a ring such that K := tq(R) is a von Neumann regular ring

(for instance, R a domain) and S, T < K are distinct minimal overrings

of R such that R is integrally closed in both S and T, then both S < ST
and T < ST are minimal ring extensions. Thus, Corollary 2.7 gives an
affirmative answer to our basic question if S, T are flat epimorphic

overrings of a ring with von Neumann regular total quotient ring. It is

noteworthy that the proof of Corollary 2.7 makes use of the classification
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in [7] of the minimal ring extensions of rings R having von Neumann

regular tq(R) and no minimax prime ideal, and hence, makes use of the

generalized Kaplansky transform that was introduced in [20]. This same

background is used in proving Theorem 2.8, which shows that if tq(R) is

von Neumann regular, then R cannot have composable minimal overrings

S and T such that R is integrally closed in S, T' is integral over R, and

the minimal ring extensions R < S and R < T have the same crucial

maximal ideal.

In view of Example 2.3, Corollary 2.7, Theorem 2.8, and the
classification of minimal ring extensions in [7, Corollary 2.5], the study of
our basic question is reduced to considering composable integral minimal

overrings S, T of a ring R with the same crucial maximal ideal M.

Section 3 gives an extensive study of this context, showing that in most
cases, the basic question has a negative answer. The relevant cases arise
since S/M and T/M are minimal ring extensions of the field R/M and,

hence, are each isomorphic to one of the three archetypes noted in
[9, Lemme 1.2]. These three possibilities for integral minimal overrings
were characterized by generator-and-relations in [7, Proposition 2.12],
which is restated for convenience as Lemma 3.1 below. In general, any
chain of rings contained between S and ST or between T and ST must be
finite. An upper bound for the cardinalities of such chains is given in
Proposition 3.3. Example 3.9 shows this upper bound to be best possible,
even when R is a Noetherian domain. In particular, S < ST need not be
a minimal ring extension in general (cf. Examples 3.6, 3.8 and 3.9).
Proposition 3.4(a) identifies cases for which S <« ST is, in general, a

minimal ring extension.

In addition to the notation and terminology introduced above, it is
convenient to use the following conventions. If A is a ring, then Spec(A)
denotes the set of all prime ideals of A; Max(A) the set of all maximal
ideals of A; and Min(A) the set of all minimal prime ideals of A. If I is an
ideal of A, then Rad([) := Rad 4(I) denotes the radical of I in A. If E is

an A-module, then A(+)E denotes the idealization built from A and E;



COMPOSITES OF MINIMAL RING EXTENSIONS 245

a convenient reference for basic facts about the idealization construction
is [12]. Also, X and Y denote commuting algebraically independent
indeterminates over the ambient coefficient ring(s). As usual, char(K)

denotes the characteristic of a field K; dim g (E) denotes the vector space
dimension of a K-vector space E over a field K; | S| denotes the cardinal

number of a set S; and N denotes the set of positive integers. Unexplained

material is standard, as in [10] and [15].
2. Generalities and the Relatively Integrally Closed Case

We begin by showing that minimal ring extensions R< S and Rc T

need not have a composite.

Example 2.1. There exist minimal ring extensions Rc S and Rc T
for which there does not exist a (commutative unital) R-algebra U

containing both S and T as R-subalgebras.

Proof. Suppose that a domain R has a minimal overring S such that
the crucial maximal ideal for the minimal ring extension R < S is N and
there exists a nonzero element n € N such that n™! € S. (We recall
below one way to construct such a Bézout domain R having Krull
dimension 1 and such an overring S.) Next, let 7' be another minimal ring
extension of R having crucial maximal ideal N such that T is not
R-algebra isomorphic to S. (For instance, by [3, Corollary 2.5] and
[6, Theorem 2.7], take T to be either the idealization R(+)R/N or the
direct product R x R/N.) Then one cannot form the composite ST in any
sensible universe.

To see this, suppose, on the contrary, that it makes sense to consider
the composite ST inside some universe U. Then n is a unit of U (since the

ring extension S < U 1is unital). However, n is also a nontrivial zero-

divisor of U, since

70,1+ N) = (n, 0)(0,1+ N) = (n, n+ N)(0,1+ N) = (0,0) = 0

in both R(+)R/N and R x R/N. The presence of this unit which is a

non-trivial zero-divisor contradicts the fact that U is a nonzero ring.
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We next indicate one way to construct R and S as above and offer an
alternate explanation for the assertion. By taking R to be the intersection
of two incomparable valuation domains of (Krull) dimension 1 having the
same quotient field, we obtain R as a one-dimensional Bézout domain
with exactly two maximal ideals, say M and N (cf. [15, Theorem 107]).
As Spec(R) ={0, M, N} and R is a Priifer domain, it follows from
[10, Theorem 26.1(2)] that S := Rj; is a minimal ring extension of R. It is

clear that the crucial maximal ideal for R < S is N. Moreover, any

element n € N\ M satisfies n™! € S. Taking T as above, we could argue

as above to get the assertion. The following is a more ornate way to reach

the same conclusion.

Suppose, on the contrary, that it makes sense to consider the
composite ST inside some universe U. Then ST = Ry;T is canonically
identified with Tp\ s Indeed, since Rj; is R-flat, the canonical
R-algebra homomorphism Tr\pr ST ®g Ryy > U ®p Ry = Up\ s is
an injection whose image clearly is TRy; = Ry T = ST. Therefore, we
can view ST = Tpg\ s, which is canonically identified with Ry, = S
since the crucial maximal ideal of T is not M. Thus, S = ST o T o R,

contradicting the minimality of the ring extension R — S. This proves

that no such U exists.

Chastened by the above example, we retreat to the context of a base
field, beginning there with the case of minimal field extensions. Recall
from [13, Definition 3, pp. 83-84] that if F and L are field extensions of a
field K, there is a classical concept of composite which uses the fact that
some K-algebra E does contain K-algebra isomorphic copies of both F' and
L. (For instance, take the field E:=(FggL)/N, where N € Max(FggL).)
However, our concept of a composite of minimal ring extensions R < S
and R c T is more prosaic, requiring that the given S and 7T (not just
copies of them) lie in some universe R-algebra U, and our composite is
then just the subring of U generated by S U T. For the case of minimal
field extensions K < F and K < L, we wish to use classical field theory

and so we will take U to be an algebraic closure of K.
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The simplest case where our basic question has an affirmative answer
concerns quadratic field extensions. Indeed, if F and L are distinct field
extensions of a field K inside some algebraic closure of K such that
[F:K]=2=[L:K], then FL is minimal over F (and, similarly, minimal

over L) since 1 < [FL : F]<[L : K] = 2 and the conclusion follows since
[FL : F] =2, a prime number. We collect some generalizations of this

example in Proposition 2.2. For motivation, note that if K < M is any
field extension such that [M : K| = 2, then M is a splitting field (i.e.,

normal) over K.

Consider any splitting field M over a field K. Let M, (resp., M;)

denote the set of elements of M that are separable (resp., purely

inseparable) over K. Then M, and M; are fields contained between K
and M whose composite M M; = M [14, Theorem 46, p. 56]. It follows

that if K < M 1is also a minimal field extension, then M coincides with

either M, or M;; i.e, M 1is either Galois or purely inseparable over K.
We claim that in either of these cases, [M : K] is a prime number. (The

referee has kindly pointed out that this assertion has appeared in
unpublished work of A. Philippe in 1969: see [18, Proposition 2.2].)
Indeed, if M is Galois over K, the assertion follows by combining the
Fundamental Theorem of Galois Theory with the existence of Sylow

subgroups and the solvability of p-groups. On the other hand, if M is
purely inseparable over K, then [M : K| = p", where 0 < p = char(K) is

a prime number and n € N, with M = K(u) and u?" e K. (Of course,

more generally, any minimal field extension M > K 1is of the form

M = K(u) for some u € M.) If n > 1, then K(upnil) is a field contained
strictly between K and M, a contradiction. Therefore, n =1, whence
[M : K] = p, completing the proof of the claim. These observations will
be used in the proof of Proposition 2.2(b).

Proposition 2.2. Let K ¢ F and K c L be distinct field extensions

that are contained in some algebraic closure of K. Then:
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(@) If [F : K] and [L : K] are distinct prime numbers, then K c F,

K c L, F c FL and L < FL are each minimal field extensions.

() If K «¢ F and K c L are minimal field extensions such that F
and L are each splitting fields over K, then F < FL and L < FL are
each minimal field extensions.

Proof. (a) By hypothesis, p := [F : K] and q := [L : K] are prime
numbers. Hence, K ¢ F and K < L are minimal field extensions. Since

p # q by hypothesis, it follows from [14, Theorem 3(c), p. 6] that
[FL : F]=[L : K] = q and similarly that [FL : L] = p, whence F c FL
and L ¢ FL are minimal field extensions.

(b) By the above comments, F and L are each either Galois or purely
inseparable over K and, furthermore, p := [F : K] and q = [L : K] are

(possibly equal) prime numbers. By (a), we may assume that p = q.

Suppose first that both F and L are Galois over K. We show that
F < FL is a minimal field extension (as the proof for L < FL is
similar). Since F and L are distinct and minimal over K, it follows that
FNL =K. Then by standard Galois theory (cf. [16, Theorem 1.12,

p. 266]), FL is a Galois field extension of ' and we have an isomorphism
of Galois groups Gal(FL/F) = Gal(L/K). Thus, by the Fundamental

Theorem of Galois Theory, [FL : K]=|Gal(FL/F)|=|Gal(L/K)| =
[L : K]=p is prime, and so F < FL is a minimal field extension, as
asserted.

Suppose next that both F and L are purely inseparable over K. By the
above comments, F =K(u) and L=K(v) with u?,v” € K. Then F c FL
is a minimal field extension since FL = F(v) is purely inseparable over F

with v” e F. Similarly, one shows that L ¢ FL is a minimal field

extension.

Since FL = LF, there is essentially only one remaining case: suppose
that F is Galois over K and L is purely inseparable over K. By the above
comments, L = K(v) with v” € K. Then F c FL is a minimal field
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extension since FL = F(v) is purely inseparable over F with vP e F. In

fact, [FL : F] = p. Consequently,

. [FL:K] [FL:F)[F:K] p-
WL L ="k = K] :ppp:p’

which 1s a prime number, and so L < FL is a minimal field extension, to

complete the proof.

Continuing with a base field K, we show next by example that if S
and T are composable minimal ring extensions of K such that not both S
and T are fields, then, in contrast to the conclusions in Proposition 2.2,

our basic question has a negative answer. Recall from the classification in
[9, Lemme 1.2] that S and 7 are each isomorphic to either K[X]/(X?),
K x K, or a minimal field extension of K. As ST =TS, these are

essentially five cases, and these are covered by the parts of Example 2.3.

Example 2.3. Let K be a field. Then:

(a) Let S = L be a minimal field extension of K. Let T = K[X]/(X?),
viewed as a (minimal) ring extension of K via K = T = K[x] = K ® Kx,
a > a, where x := X + (X2) e T satisfies x? = 0. Consider the K-algebra
U :=L[Y)/(Y?)= L ® Ly, where y =Y +(Y2) e U satisfies y* = 0. View
S =L cU asabove.View T' c U via a + bx — a + by forall a, b € K.
Then ST =U and S < ST is a minimal ring extension, while T" < ST

1s not a minimal ring extension.

(b) Let S = L be a minimal field extension of K. Let T = K x K,

viewed as a (minimal) ring extension of K via the diagonal map
Ag : K = T, a  (a, a). Consider the K-algebra U := L x L. View

S =L cU via the diagonal map A;. View 7 — U as usual. Then

ST =U and S < ST is a minimal ring extension, while 7" < ST 1is not

a minimal ring extension.

(© Let S:=K[X]/(X?)=K@®Kx and T = K[Y]/(Y?) = K ® Ky,

viewed as minimal ring extensions of K as above. Consider the K-algebra
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U:=K[X,Y]/(X? Y?)= K[v,w] = K ® Kv ® Kw ® Kow (where v = X
+(X2,Y?%), w =Y + (X2, Y?) satisfy v2 = 0 = w?). View Sc U via
a+bx— a+bv for a,b e K; andview T < U via a + by — a + bw for
a,b e K. Then ST = U and neither S < ST nor T < ST 1is a minimal
ring extension.

(d) Let S:= K[X]/(X% - X)= K[x]= K ® Kx, where x = X + (X2 - X)
satisfies x? = x and, similarly, T = K[Y]/(Y2 -Y) = K[y] = K ® Ky,
with y =Y +(Y?2) satisfying y2 = y. Consider the K-algebra U :=
K[X,Y)/(X%2-X,Y?-Y)=K[v,w]= K ® Kv® Kw ® Kvow, where v:=X
+(X2-X,Y2-Y) and w=Y+(X2-X,Y2-Y). View ScU via
a+bx— a+bv forall a,b e K. View T c U via a +by — a + bw for
all a,be K. Then S= KxK =T as K-algebras, S and T are each

minimal ring extensions of K, ST =U, and neither S < ST nor T < ST

is a minimal ring extension.

() Let S:=K[X]/(X?)=K®Kx and T = KxK, viewed as
minimal ring extensions of K as above. Consider the K-algebra
V=K[X,Y]/(X?,Y?)= K[v,w] = K ® Kv® Kw® Kvw, (where v := X +
(X2,Y2), w:=Y + (X2, Y?)satisfy v2 =0=w?). Put U := K[v]x K[w].
View S c U via a+bx — (a +bv, a +bw) forall a,be K. View T' c U
via (¢, d) > (¢, d) for all ¢, d € K. Then ST = U and neither S < ST

nor T < ST is a minimal ring extension.

Proof. (a) The specified identifications allow us to view x = y. It
follows that ST = U, for the typical element of U, namely, ¢ + dy with
ce L and d € L, is the sum of the element ¢ € L = S and the product
of the element d € S with the element y = x € T. Hence, L =S < ST
= U = L[Y]/(Y?) is one of the kinds of minimal ring extensions that were

noted in [9, Lemme 1.2]. However, T < ST 1is not a minimal ring
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extension, in view of the proper inclusions
T=KO0KxcK®LxcL®Lx=L®Ly=U=8T.
(b) To see that ST = U, note thatif ¢, d € L, then
(e, d)=(c, c)(1,0)+(d, d)(0,1) e Lx L,

with (¢,c)e L=S,(1,0)e KxK =T, (d,d) € S, and (0, 1) € T. Hence,
L=8c ST =U = L xL is one of the kinds of minimal ring extensions
that were noted in [9, Lemme 1.2]. However, T ¢ ST is not a minimal

ring extension, since the rings K x L and L x K are each properly
contained between T and ST.

(c) The specified inclusion maps allow us to view x = v and y = w. It
is then clear that ST = U. Note that neither S <« ST nor T' < ST is a

minimal ring extension because of the proper inclusions
S c Klx, xy] = K[v, vw] = ST and T < K[y, xy] = K[w, vw] c ST.

(d) Observe that S = K[X]/(X(X -1)) = K[X])/(X)x K[X]/(X -1) =
K x K by the Chinese Remainder Theorem. Similarly, 7 = K x K. Thus
(or directly by considering vector space dimensions), we can view K < S
and K < T as minimal ring extensions. The above proof of (c) can now be
repeated verbatim.

(e) The specified identifications allow us to view x = (v, w). Also, it is
clear that ST < U. To prove the reverse inclusion, it is enough to show
that both (v, 0) and (0, w) lie in ST. This, in turn, follows since (v, w) =
x € S ¢ ST and ST is closed under multiplication by (1, 0), (0,1) € 7.

Next, note that 7' < ST 1is not a minimal ring extension since the rings
K x K[w] and K[v]x K are each contained properly between K x K = T
and K[v]x K[w] = ST.

It remains only to show that S < ST is not a minimal ring extension.

Observe that (0, w) cannot be expressed as (a +bv,a +bw) with a,be K.
Consequently, (0, w) ¢ S and S c A :=9[(0, w)]= K[(v, w)][(0,w)]. Hence,
it suffices to find an element in K[v]x K[w] which is not in A. Note that
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(a +bv, a +bw)(0, w) = (0, aw) for all a, b € K. It follows easily that
A = K[(v, w)][(0, w)] = {(a + bv, a + bw)|a, b € K} + {0, cw)|c € K}.

The element (1, w) is not in the displayed set. The proof is complete.

Remark 2.4. (a) The behavior noted in Example 2.3 depended on the
fact that the base ring was a field. Indeed, the negative answers that we
found there can disappear when the base ring has more than one

maximal ideal. Consider, for instance, the following analogue of Example
2.3(c). (It is an analogue because K[X]/(X?)= K(+)K for any field K.)
Let M and N be distinct maximal ideals of a ring R. As noted in the proof
of [7, Corollary 2.5], S := R(+)R/M and T := R(+)R/N are each minimal
ring extensions of R (via the canonical inclusions). Then the ring
B = R(+)(R/M ® R/N) contains both S and T as subrings (viewing

R/M and R/N as subgroups of R/M @ R/N via the canonical injections),

the composite ST = B, and, in contrast to Example 2.3(c), one can show
that ST is a minimal ring extension of both S and 7. (The verification of
the final assertion is immediate from [3, Remark 2.9] and the fact that
R/N and R/M are simple R-modules.) Thus, the present context

supports a positive answer to our basic question. It turns out that the
behavior noted here is possible because the crucial maximal ideals of
the minimal ring extensions R S and R c T (namely, M and N,
respectively) are distinct. As we will prove in Theorem 2.5, this is a

general phenomenon.

(b) The point made in (a) applies as well to analogues of Example
2.3(d) in which the base ring R is not quasilocal and the given minimal
ring extensions have distinct crucial maximal ideals. To see this, consider
distinct fields K and L which are sub fields of a field F which is a minimal
field extension of both K and L. (For instance, take K and L each to be
algebraic of different prime degrees over some field k, working in an
algebraic closure of k, take F := KL, and apply Proposition 2.2(a).) Put
R = K x L, and consider the maximal ideals of R, namely, M = K x {0}

and N := {0} x L. As was noted in the proof of [7, Corollary 2.5], R x R/ M
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and R x R/N are each minimal ring extensions of R (via the canonical
inclusions). Observe that S := (K x L)x L = Rx R/M and T := (K x L)
x K = Rx R/N. Moreover, the composite ST exists inside, and in fact
coincides with, (K x L)x F. It is easy to see, in contrast to Example
2.3(d), that ST is a minimal ring extension of both S and 7' (the point
being, for instance, that any ring A such that S ¢ A < ST must be of
the form (K x L) x B, where Bis a ring such that L ¢ B ¢ F).

() The chains S c K[x, xy]c ST and T c K[y, xy] = ST that

were noted in Example 2.3(c) are saturated, in the sense that each of
S c Klx, xy], K[x, xy] « ST, T < K[y, xy] and K|y, xy]c ST 1is a
minimal ring extension. One can say in this example that S < ST and
T < ST each factored into two minimal ring extensions. This leads one
to wonder if, when one relaxes the condition that the base ring is a field,
one can find examples of minimal ring extensions R < S and Rc T
such that S « ST or T < ST is not a minimal ring extension but,
similarly, factors as a product of infinitely many minimal ring extensions.
This question has a negative answer when the base ring is an arbitrary
domain. This can be seen by combining the later results in this section
and Proposition 3.3 with the classification result in [6, Theorem 2.7].

We now present an important class of pairs of minimal ring
extensions for which our basic question has an affirmative answer, and
thereby present the promised generalization of parts (a) and (b) of
Remark 2.4.

Theorem 2.5. Let R = S and R c T be minimal ring extensions,
with crucial maximal ideals M and N, respectively. If M # N and if the
composite ST exists in some ring extension U of R, then both S < ST and

T < ST are minimal ring extensions.

Proof. All the calculations and identifications given below are to be
interpreted canonically inside the appropriate rings of fractions of U.
Note that S # T since M = N. Now, since M is the crucial maximal ideal

of the minimal ring extension R — S, we have that Ry; < Sp; :=Sp\ys 1s
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a minimal ring extension and Rp = Sp for all P e Spec(R)\{M}.
Similarly, Ry < Tx is a minimal ring extension and Rp = Tp for all
P e Spec(R)\{N}. We show next that S < ST is a minimal ring
extension, leaving the similar verification for 77 < ST to the reader.

Note that (ST)y; = SyTy = SyRy = Sy and, similarly, (ST)y
=Ty . In particular, if P € Spec(R)\{M, N}, then

(ST)p = SpTp = RpRp = Rp = Sp = Tp.

Now, consider any ring A such that S < A < ST. It suffices to show that

A is either S or ST, equivalently by globalization, that A agrees locally
with either S or ST. Of course, Sy; < Ay < (ST)y; = Sy, and so Sy =

Ay =(ST)ys. Similarly, if P e Spec(R)\{M, N}, then Sp =Ap =
(ST)p(= Rp).

On the other hand, since Ry =Sy c Ay < (ST)y =Ty and
Ry < Ty is a minimal ring extension, we have that Ay is either Sy or
Ty. If Ay = Sy (resp., Ay = Ty ), it follows that A agrees locally with
S (resp., with ST'), which completes the proof.

Corollary 2.6. Let R be a ring such that tq(R) is a von Neumann

regular ring (for instance, take R to be a domain). Let R <« S and R c T
be distinct minimal ring extensions such that R is integrally closed in both
S and T. If the composite ST exists in some ring extension U of R, then

both S < ST and T <= ST are minimal ring extensions.

Proof. Let M be the crucial maximal ideal of the minimal ring

extension R < S and let K; be a total quotient ring of R such that
Rc Sc K. By [7, Theorem 3.7], S =Qg (M), the generalized

Kaplansky transform of M inside K;, in the sense of [20]. In other words,
S =1q € Ky |Rad(R :, ¢) = M}UR.

Similarly, if N denotes the crucial maximal ideal of the minimal ring
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extension R ¢ T and K, is a total quotient ring of R such that Rc T
c K, then

T =1{q € Ky|Rad(R :g, q) = N}UR.

By Theorem 2.5, we are done if M # N. Thus, without loss of
generality, M = N. Now, let f denote the unique R-algebra isomorphism

K; — K. It is easy to see from the above description of the generalized
Kaplansky transform that f(Qg, (M)) = Qg, (M), and so f(S)=T. In
particular, S = T as R-algebras. If K; = K9, we have S = T, the desired

contradiction, as it was shown in the first paragraph of [6, Remark 2.8(a)]
that distinct overrings of a given ring A inside the same total quotient
ring of A cannot be isomorphic as A-algebras. To handle the general case,

we proceed to adapt the reasoning from [6].

Let & denote the multiplicatively closed set consisting of all the
non-zero-divisors of R. All the calculations and identifications given

below are to be interpreted canonically inside Ug. In particular, we view

(K1) = K1 = Sg < Ug and, similarly, (Ky)g = Ky = Tg < Us.

To obtain the desired contradiction, it is enough to show that S = 7.
We will show that S < T, leaving the similar proof of the reverse
inclusion for the reader. Consider an arbitrary element s € S. Since
f(s) € T, it is enough to prove that f(s) = s. As K; is a total quotient
ring of R, there exist 7 € R and z € & such that s = rz! K; (viewed
inside Ug). Hence, sz =r. Recall that f restricts to an R-algebra
isomorphism S — 7. This induces an R-algebra isomorphism 4 : Sg
— T, which can be viewed as the unique R-algebra isomorphism
f : K; — Kq. Given the above identifications, we thus have that f(s)z =
f(s)f(z) = f(sz) = f(r) = r, since z € R, and so f(s) = rz"* = s. The proof
1s complete.

Corollary 2.7. Let R be a ring such that K :=tq(R) is a von Neumann

regular ring (for instance, take R to be a domain). Let S and T be distinct
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minimal overrings of R, with S ¢ K and T < K, such that R is integrally
closed in both S and T. Then both S < ST and T < ST are minimal

ring extensions.
Proof. Apply Corollary 2.6, with U = K.

Recall from [7, Corollary 2.5] that if ¢q(R) is a von Neumann regular
ring such that Max(R) N Min(R) = &, then up to R-algebra isomorphism,
the minimal rings extensions of R take one of the forms R(+)R/M (with
M € Max(R)), Rx R/M (with M e Max(R)), and a (minimal) overring
of R. Given the above material, we therefore focus our study of the basic
question for the rest of this paper on the case in which S and T are
minimal overrings (inside the same total quotient ring) of R. In view of

Corollary 2.7 and our next result, Section 3 need only focus on S and T

being integral minimal overrings of R.

Theorem 2.8. Let R be a ring such that a total quotient ring of R is a
von Neumann regular ring (for instance, take R to be a domain). Then
there do not exist minimal overrings S and T of R (possibly inside
different total quotient rings of R) such that the composite ST exists in
some ring extension U of R with R being integrally closed in S, T being
integral over R, and the minimal ring extensions R < S and Rc T

having the same crucial maximal ideal.

Proof. Assume, on the contrary, that S and T exist with the stated
properties. As in the proof of Corollary 2.6, we may show, by working

with canonical identifications inside Ug, that we can assume that S and

T are contained in the same total quotient ring of R, say K. Since [9,
Théoréme 2.2(ii1)] ensures that S is a flat (epimorphic) extension of R, we

obtain the exact sequence

0>S® R—>S®,T > S®,T/R - 0,

or equivalently, 0 > S > S®r T - S® T/R - 0. We claim that
S ®p T/R = 0. It is enough to prove this locally, i.e., that (S ®p T/R)p
=0 for all P € Spec(R).
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Let M denote the common crucial maximal ideal of the minimal ring
extensions R ¢ S and R <« T. Now, if P # M, we have

(S®g T/R)p = S ®p (Tp/Rp) = S ®f (Rp/Rp) = S®R 0 =0,
since Rp = Tp canonically (as P is not the crucial maximal ideal relative

to T'). Thus, the above claim reduces to showing that (S ®z T/R);, = 0,

or equivalently, that Sy ®g,, Ty /Ry, = 0.

Since K is von Neumann regular, Sy, and T, are minimal overrings
of Ry, inside K5 =tq(Rys) (cf. [17, Lemme 2.5], [7, Lemma 3.5]). As
Ry, is integrally closed in Sj;, it follows from [7, Theorem 3.1] that
Sy = (Ry )PRM = Rp for some divided prime ideal PRy; of Ry; (in the
sense of [1]) such that Rj;/PRy is a (valuation) domain of Krull
dimension 1.

In particular, P « M. As Rp =Tp canonically since P is not

the crucial maximal ideal relative to 7, we therefore have that

Sy ®ry, Tm /Ry is isomorphic to

(RM)pRM ® Ry TM/RM = (TM)pRM /(RM)PRM = TP/RP = RP/RP =0.

This completes the proof of the above claim.

By the exactness of the displayed sequence, we can now conclude

that the canonical ring homomorphism S > S®p T, s> s®1, is an

isomorphism. However, since S is R-flat, we have that the multiplication
map S®rT - ST(Zsi ®t; > Zsiti fors; € S,t; € T) is an R-module
isomorphism. Hence, S = ST > T > R. The minimality of R < S entails

S =T, a contradiction since R cannot be integrally closed in a proper

integral extension. The proof is complete.
We next record an important special case of Theorem 2.8.

Corollary 2.9. Let R be a ring such that K :=tq(R) is a von

Neumann regular ring (for instance, take R to be a domain). Then there do
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not exist minimal overrings S and T of R, with S < K and T < K, such
that R is integrally closed in S, T is integral over R, and the minimal

ring extensions R < S and R c T have the same crucial maximal ideal.

We close the section with an example showing that one cannot delete
the hypothesis in Theorem 2.8 and Corollary 2.9 that R < S and R < T

have the same crucial maximal ideal.

Remark 2.10. There exist a ring R and minimal overrings S, 7" of R
inside K := tq(R) such that K is von Neumann regular, R is integrally
closed in S, and T is integral over R. (Also, necessarily by Corollary 2.9,
the minimal ring extensions R S and R < T do not have the same
crucial maximal ideal.) For instance, take a quasilocal domain
(A, M) (resp., B, N)) with a minimal overring C inside tq(A) (resp., D
inside tq(B)) such that A is integrally closed in C (resp., D is integral over
B). Put R := Ax B. Then tq(R) = tq(A) x tq(B) = K is von Neumann
regular. Moreover, C x B is a minimal overring of R with crucial maximal
ideal M x B such that R is integrally closed in C x B; and A x D is an

integral minimal overring of R with crucial maximal ideal A x N.
3. The Case of Integral Overrings

As noted prior to the statement of Theorem 2.8, this section is devoted
to the case of our basic question in which S and T are integral minimal
overrings of a ring R, with S and T both contained in K := tq(R). As in
Section 2, the role of the crucial maximal ideals is central in studying this
context. Proposition 3.3(a) establishes that in general (for S, T' as above),
there 1s a finite upper bound on the cardinality of any chain of rings

between S and ST. Moreover, we show that in some instances (with S, T

as above), ST is actually a minimal ring extension of S. However, the
main emphasis of this section is a comprehensive presentation of
examples in which S and 7T are integral minimal overrings of a
Noetherian domain R, with S and T each inside K := tq(R) and ST not a

minimal ring extension of S.
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To organize that study, we begin by stating [7, Proposition 2.12],
which was built in part on results from [9].
Lemma 3.1. Let R be a ring with total quotient ring K. Let B < K be

an integral overring of R. Then B is a minimal ring extension of R if and
only if there exists M e Max(R) such that one of the following three

conditions holds:

(1) M is a maximal ideal of B and B/M is a minimal field extension

of RIM ;

(2) there exists q € B\R such that B = R[q],q?> -q e M, and
Mq c R;

(3) there exists q € B\R such that B = R[q], ¢> € R, ¢° € R, and
Mq < R.

If any of the above three conditions holds, then M is uniquely
determined as (R : B), the crucial maximal ideal of the extension R — B.

Furthermore, conditions (1), (2), (3) are mutually exclusive. Indeed, if B is
an integral minimal ring extension of R, then (2) (resp., (3)) is equivalent
to B/M being isomorphic as an R/M -algebra to R/M x R/M (resp.,

(R/M)[X]/(X?)).

It will be convenient to say that an integral minimal overring B of R
(inside K = tq(R)) is of type 1, type 2, or type 3 according as to whether

B satisfies condition (1), (2), or (3) of Lemma 3.1. Given two distinct

integral minimal overrings S, T < K of R, we will say that S, T are a
type (a, b) example if S is of type a and T is of type b, while R c S and

R < T have the same crucial maximal ideal M. Occasionally, we will

relax this terminology by not requiring the ring extensions S, T to be

overrings of R.

We next collect some examples of type (1,1). Without seeking

maximum generality, Remark 3.2 indicates how the study of this type
of example i1s often equivalent to the corresponding field-theoretic
considerations.
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Remark 3.2. (a) We assume familiarity with the lore of the ideals
and overrings of the classical D + M construction, as summarized in
[2, Theorems 2.1 and 3.1]. Let F and L be distinct proper field extensions

of a field k£ which are contained in the same algebraic closure k of k. Let

V =k + M be any valuation domain with maximal ideal M = 0 such
that V contains a copy of its residue field. Put R =k + M, S = F + M,

and T =L+ M. Then S,T are integral overrings of R that are
contained in V (which is actually the integral closure of R); and S, T are

each quasilocal, with common maximal ideal M. Moreover, S and T are
minimal overrings of R if and only if F and L are minimal field extensions
of £ (the point being that, cf. [18, Corollary 1.4], the rings E between R
and S are in one-to-one correspondence with the fields D between K and F'
via D+ E =D+ M). If these equivalent conditions hold, then S, T

give an example of type (1, 1). Observe that the composite ST = FL + M
(viewed inside V). By reasoning as above, we see that S < ST (resp.,
T = ST) is a minimal ring extension if and only if F < FL (resp., L = FL)

is a minimal field extension.

(b) We next slightly generalize the considerations in (a). Let S, T' be

distinct integral proper overrings of a domain R inside some quotient field
K of R. Let M e Max(R) also be an ideal of both S and 7. Consider the

field & := R/M and the rings F :=S/M, L .= T/M, together with the
composite ST (viewed inside V := (M :g M)). Then FL = (S/M)(T/M)
= (ST)/M < V/M . By a standard homomorphism theorem, S and T are

minimal overrings of R if and only if F and L are minimal ring extensions
of k. If these equivalent conditions hold with R < S and R < T having the
same crucial maximal ideal M which is a maximal ideal of both S and T,
then S, T give an example of type (1, 1). Suppose next that M e Spec(V).
(For instance, take R to be a pseudo-valuation domain, in the sense of
[11]; note that the R in (a) is a pseudo-valuation domain and that the Vin
(a) is both (M : M) and the canonically associated valuation overring of
R.) Then F, L, and the composite FL are fields, and S c ST (resp., T = ST')
is a minimal ring extension if and only if F < FL (resp., L c FL) is a

minimal field extension.
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The considerations involving (M : M)/M in the preceding remark

are relevant more generally, as we illustrate in the proof of part (c) of the
next result. Proposition 3.3(a) provides the final step to a finiteness result
that was promised in Remark 2.4(c) in Section 2. Example 3.9 shows that

the inequalities in Proposition 3.3(d) are best possible.

Proposition 3.3. Let R be a ring. Let R ¢ S and R < T be distinct
integral minimal ring extensions with the same crucial maximal ideal M.
Suppose also that S and T are each R-algebra isomorphic to overrings of R
(possibly inside different total quotient rings of R) and that S and T are
not isomorphic as R-algebras. Suppose that the composite ST exists in
some ring extension of R. Let k denote the field R/M . Put d:=dim(S/M)

and n = dimy(T/M). Let C be any chain of rings contained between S
and ST, and let D be any chain of rings contained between T and ST.
Then:

(@) |C| and |D| are each finite. In fact, |C|<(n-1)d+1 and
|D|<(d-1)n+1.

(b) Suppose also that S/M (resp., T/M) is a field. Then |C|<n
(resp., | D| < d).

(c) Suppose also that S/M and T/M are each fields and that S, T
are each contained in K = tq(R). Then |C| < n and | D| < d. Moreover,
if M e Spec(M :x M), then | C| < logy(n) and | D| < logy(d).

(d) If neither S/M nor T/M is a field, then |C| < 3 and |D| < 3.

Proof. By reasoning as in the proof of Corollary 2.6, we may suppose
that S, T' are each contained in K = tq(R); and then, since S and T are
not isomorphic as R-algebras, that S = T.

(a) Since ST = TS, it suffices to prove the assertion concerning C.
Let aq, ..., @, € T be such that their cosets modulo M form a k-vector

space basis of T/M . In other words, {a;} is a minimal generating set of

T as an R-module. In the same way, there are elements b, ..., by € S
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forming a mimimal generating set for the R-module S (i.e., whose cosets

modulo M form a k-basis of S/M). Now, since ST:S(Z?ZIRaiJ:

Z:;Sai, we have that (ST)/M can be written as

n n d
D (S/M)(a; + M) = Z{Z k(b; + M)} (a; + M) = (Z k(a;b; + M).
i=1

=1 \j=1 i,J)
So, dimj((ST/M)) < nd. Note that the given chain C induces a chain
of the same cardinality of k-vector spaces from S/M to (ST)/M
(via A — A/M). The cardinality of any such chain of subspaces from
(the d-dimensional k-vector space) S/M to (the at most (nd)-dimensional
k-vector space) (ST)/M is at most nd — (d -1) = (n —1)d + 1.

(b) It is enough to prove that if T/M is a field, then the given chain
D has cardinality at most d. (By (a), we know that D is finite, of
cardinality at most (d — 1)n + 1, but this general bound exceeds d because
n > 1.) For a proof, recall that dimj((ST)/M) < nd. Consider k < T/M
c (ST)/M. Since T/M is a field, we have (cf. [13, page 66]) that
dim,, (ST)/M) = dim(T/M) - dimy 3 (ST)/M) = n - dimgys (ST)/M).
Thus, n-dimg)y((ST)/M) < nd. Cancelling the factor n, we find that
dimpyp ((ST)/M) < d. To finish the proof of (b), consider dimyyy, for the

members of the chain {E/M |E € Dj}.

(c) Since ST = TS, it suffices to prove the assertions concerning C.
The first assertion is immediate from (b). Consider the fields k := R/M,
F:=S/M, and L :=T/M. We have FL = (ST)/M = (S/M)(T/M) c
(M :g M)/M. By a standard homomorphism theorem, there is an order
isomorphism between the poset of rings E such that S ¢ E < ST and
the poset of rings D such that F < D c FL, given by E +— D = E/M.

The first assertion concerning C (which we have already established) is

therefore equivalent to the statement that if K is any chain of rings
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(necessarily fields) contained between F and FL, then | K| < n. The final

assertion follows from the multiplicativity of field degrees in towers of

fields, as in the comment following the proof of [5, Proposition 2.1].

(d) It follows from [9, Lemme 1.2] that S/M and T/M are each
k-algebra isomorphic to either the ring of dual numbers over % or the
direct product of two copies of k. Thus, n = d = 2, and so the conclusion

follows from (a).

Some useful upper bounds that are weaker than those given in
Proposition 3.3(c) can be found as follows. Assume the notation and
hypotheses of Proposition 3.3(c). Let A (resp., n) be the minimal degree
of a monic polynomial f € R[X](resp., g € R[X]) such that f(¢{) =0 for
some element ¢ € T satisfying R[t] = T (resp., such that g(s) = 0 for
some element s € S satisfying R[s]=S). Then L >n and p>d, so
that Proposition 3.3(c) (or its proof) gives, for instance, that | C | < A and
|D| <

Despite Proposition 3.3, we will show in Corollary 3.7 that for all nine
types (a, b) of examples S, T' of integral minimal overrings of a ring R
(with the same crucial maximal ideal), our basic question (whether both
S « ST and T < ST must be minimal ring extensions) has, in general,
a negative answer, even if R is a Noetherian ring. First, we present in
Proposition 3.4(a) the two situations where ST, if it exists, must be a
minimal ring extension of S. Proposition 3.4(c) gives the first of the
Noetherian examples.

Proposition 3.4. Let R be any ring. Suppose that (S, T) are a type
(1, b) example of integral minimal ring extensions of R, each with crucial

maximal ideal M. Suppose also that the composite ST exists. Then:

(a) Suppose that b € {2, 8}. Then ST is a minimal ring extension of S
of type b.

(b) Suppose that b =1 and, in addition, that S and T are overrings of
R that are each contained in K = tq(R). Then ST is a minimal ring
extension of S if and only if S/M < (S/M)(T/M) is a minimal extension
of fields.
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(c) For b =1 it is possible to choose R, S and T as above so that R is

a Noetherian domain, S and T are integral minimal overrings of R each of
type 1 and with the same crucial maximal ideal, and S < ST is not a

minimal ring extension.

Proof. (a) Proposition 3.3 can be used to show that ST is a minimal
ring extension of S. Indeed, with k& := R/M, we have that b € {2, 3} gives
T/M isomorphic, as a k-algebra, to either kxk or E[X]/(X?). In
particular, n = dim,(7/M) = 2. Hence, the minimality of S < ST

follows from Proposition 3.3(b). It is possible to extend the reasoning in
Example 2.3 to show that this extension is of type b, but instead, we next

show how to use Lemma 3.1 to obtain all the assertions at once.
Since T is of type b, with b € {2, 3}, there exists ¢ € T\R such that

T = R[q], Mg = R, and either ¢2-qe M (if b=2) or ¢2 ¢® R
(if b = 3). Note that M € Max(S) since S is of type 1. Moreover, ST =

SR[q] = S[q], ¢ € ST\S (since S = T), and Mq c S; and either ¢% — ¢

e M (if b=2) or ¢2,¢% €S (if b = 3). All the assertions now follow
from Lemma 3.1.

(b) We rework some of the ideas and notation in Remark 3.2(b). Since
S, T are a type (1, 1) example, we can consider the fields k := R/M ,
F:=8/M and L :=T/M, together with the composite ST (viewed inside
V =(M :x M)). By a standard homomorphism theorem, S and 7 are

minimal overrings of R since (in fact, if and only if) F' and L are minimal
field extensions of k. Note that FL = (S/M)(T/M)=ST/M < V/M.

Another application of the homomorphism theorem yields the assertion.

(c) Let K be a field with algebraic closure K, and let F, L be distinct
minimal field extensions of K inside K. Let V = FL + M be a DVR with
nonzero maximal ideal M (for instance, V = FL[[X]]). By [10, Exercise

8(3), pp. 270-271], the domain R := K + M 1s Noetherian, as are its
integral overrings S :=F + M and T := L+ M. Note that S, T (as
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overring extensions of R) give an example of type (1, 1). It follows from

each of Remark 3.2(b) and part (b) of this proposition that S <« ST =V
1s a minimal ring extension if and only if F < FL is a minimal field

extension. Accordingly, it suffices to find K, F', L as above such that

F < FL is not a minimal field extension. The following example of such
data may be known but is included here for the sake of completeness.

Let p > 5 be a prime number, ® a primitive pth root of unity (in the
complex numbers) and o the real pth root of 2. Consider the fields
K:=Q F :=Q) and L := Q(wa). Of course, [F: K|]=p=[L: K],
since X? —2 is irreducible over @ (by, for instance, Eisenstein’s
Criterion). Also, the standard theory of cyclotomic field extensions tells us
that [Q(®) : Q] = ¢(p) = p —1 (where ¢ denotes the Euler phi-function).
Since p and p —1 are relatively prime, [14, Theorem 3(c), p. 6] ensures

that the degree of Q(w)F = Q(a, ®) over F'is p —1. Note that Q(a, ®) is
the splitting field of X” — 2 over Q, and so is a Galois field extension of
Q. By standard Galois Theory, it follows that FL = Q(a, ®) is Galois
over F. Therefore, by the comments preceding Proposition 2.2, F' < FL is

a minimal field extension if and only if p —1 is a prime number. But
p —1 is not a prime number because it is even and greater than 2. This
completes the proof.

Remark 3.5. Despite Proposition 3.4(c), it is possible for integral
minimal overrings S, T giving an example of type (1, 1) (and having the
same crucial maximal ideal) to be such that S < ST is a minimal ring
extension. For instance, let us work inside the valuation domain V :=
Q[V2, ¥/3][[X]], with maximal ideal M = XV. As in the proof of
Proposition 3.4(c), the domain R := Q + M 1is Noetherian, as are its

integral overrings S := Q[V2]+ M and T := Q[V3]+ M. Since Q[2] and

Q[3] are each minimal field extensions of Q, it follows from any of

Remark 3.2(a), Remark 3.2(b) or Proposition 3.4(b) that S < ST =V and

T < ST are each minimal ring extensions of type 1.
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We next show how to use Example 2.3 to produce negative answers to

our basic question for the six types (a, b) that were not addressed in

Proposition 3.4, namely, those types where a = 1.

Example 3.6. Let (a, b)e {2, 3}x{1,2,3}. Then there exist a
Noetherian ring R and distinct integral minimal overrings S, T' of R that

are inside the same total quotient ring of R, have the same crucial

maximal ideal, and give an example of type (a, b) such that S < ST is
not a minimal ring extension.

Proof. As in Example 2.3, let K be a field. For the various parts of
Example 2.3, let the symbols S, T and U have the meanings given to

them earlier in Example 2.3. Let W be an indeterminate that 1is

algebraically independent from the variables X, Y that appeared in
Example 2.3. By the Hilbert Basis Theorem, the ring U is a Noetherian

ring (for all parts of Example 2.3) and, hence, so is the polynomial ring
U[W]. Consider its subring R := K + WU[W]. As we can see from the

description of U in the various parts of Example 2.3 that U is a finite-
dimensional vector space over K, it follows that U[W] = U + WU[W] is a

finitely generated module over K + WU[W] = R. Therefore, by Eakin’s

Theorem [8], the ring R is Noetherian. Moreover, since S and T are
integral ring extensions of K, we have that S; =S + WU[W] and T} =

T + WU[W] are each integral ring extensions of R. In fact, S; and 7} are
actually overrings of R, the point being that if A € U, then A = % in the

total quotient ring of R since W is a non-zero-divisor of R. Also, since S
and T are distinct integral minimal ring extensions of K (necessarily

having the same crucial maximal ideal, {0}), it follows easily by analyzing
the cases in Lemma 3.1 that S; and 7] are distinct integral minimal
overring extensions of R with the same crucial maximal ideal, WU[W]. As
ST = U, we have that the composite S;7} = U + WU[W] = U[W]. We
proceed to determine the possible minimality of the extensions S; < S;T;

and 77 < $;T; for the various parts of Example 2.3.
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In part (a) of Example 2.3, we saw that T <« K ® Lx < ST, and so
Ty c (K @ Lx) + WU[W] < ST + WU[W] = S;T;. In particular, T}, S; give

a type (3, 1) example of integral minimal overrings of the Noetherian ring
R (which have the same crucial maximal ideal WU[W] and) for which

77 < T1S; is not a minimal ring extension.

In part (b) of Example 2.3, we saw that T« K x L < ST, and so
Ty c (K x L)+ WU[W] c ST + WU[W] = S;T;. In particular, T}, S; give
a type (2, 1) example of integral minimal overrings of the Noetherian ring
R (which have the same crucial maximal ideal WU[W] and) for which

77 < T1S; is not a minimal ring extension.

By reasoning as above, we see similarly that Example 2.3(c) leads to
S;, T} giving a type (3, 3) example for which neither S; < S;7} nor
71 < T1S; 1s a minimal ring extension; Example 2.3(d) leads to S;, T}
giving a type (2, 2) example for which neither S; < S;7} nor T} < T}S;
is a minimal ring extension; and Example 2.3(e) leads to S;, 77 giving a
type (3, 2) example (and 77, S; giving a type (2, 3) example) for which

neither S; < S;77 nor T} < T1S; is a minimal ring extension.

In summary, part (a) of Example 2.3 leads to an example of type

(3, 1) with the asserted properties; part (b), type (2, 1), part (c), type
(3, 3); part (d), type (2, 2); and part (e), types (3, 2) and (2, 3).
The referee has kindly noted that our reasoning in the second, third

and fourth paragraphs of the proof of Example 3.6 leads to the following
enhancement of [18, Corollary 1.4]: if A < B are rings with a common

ideal I # 0, then A ¢ B is a minimal ring extension if and only if
A/I c B/I is a minimal ring extension; and if these conditions hold with
B (resp., B/I) integral over A (resp., A/I), then the integral minimal
ring extensions A ¢ B and A/I < B/I are of the same type.

Corollary 3.7. Let (a, b) e {l, 2, 3} x{l, 2, 3}. Then there exist a

Noetherian ring R and distinct integral minimal overrings S, T of R that
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are inside the same total quotient ring of R, have the same crucial

maximal ideal, and give an example of type (a, b) such that either S — ST

is not a minimal ring extension or T < ST is not a minimal ring extension
(or both).

Proof. Example 3.6 takes care of eight of the nine cases, namely,
the cases where (a, b) # (1, 1). Finally, for the case (a, b) = (1, 1), apply
Proposition 3.4(c).

Much of the literature on minimal overrings concerns the case of base
rings that are domains. For that reason, we next present an alternate set
of examples providing a negative answer to our basic question in which
the base ring is not only Noetherian but also a domain.

Example 3.8. Let a € {1, 2, 3}. Then there exist a Noetherian domain
R and distinct integral minimal overrings S, T of R that are inside the

same quotient field of R, have the same crucial maximal ideal, and give
an example of type (a,1) such that S < ST is not a minimal ring

extension.

Proof. The case a =1 was handled in Proposition 3.4(c). We proceed
to provide examples of types (2, 1) and (3, 1) with the asserted properties.
Let X, Y be algebraically independent indeterminates over Q. All rings
considered henceforth will be subrings of the polynomial ring Q[X, Y]. It
will be easy to see that Q[X, Y] is module-finite, and hence integral, over

each of these subrings. Hence, as in the proof of Example 3.6, each of
these subrings is Noetherian. Moreover, it will also be clear that all the

rings under consideration have quotient field Q(X, Y).
Type (2, 1). Let R be the subring of Q[X, Y] defined by
R = QUX™"(X%2 - X)Y™, X5(Y2 -2)Y! | m, n, s, ¢ > 0}].
It is easy to see that the quotient field of R is Q(X, Y); and that
Q[X, Y] is a module-finite R-algebra. Note that X ¢ R. (Indeed, if X
were a polynomial over Q in {X"(X2% - X)Y™, X%(Y? - 2)Y'}, then the

substitution Y > v2 would show that X is a polynomial over R in
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{X"(X? - X)}. However, X cannot be the sum of a real number and a real

polynomial of degree at least 2.) Similarly, one sees by considering the
substitution X +— 0 that Y ¢ R. Thus, the rings

S = R[X] = Q[{X, (X% - X)Y™, (Y2 -2)Y!| m, ¢t > 0]

and T = R[Y] = Q{X™(X? - X),Y, X5(Y? - 2)| n, s > 0] are proper
integral overrings of R. Moreover, we claim that S # T. The easiest way
to see this is to observe that XY ¢ S, and this can be shown by reasoning
as above. (In detail, if XY e S, apply the substitution X + 1 and infer

the contradiction that Y is the sum of a rational number and a rational
polynomial of degree at least 2.) On the other hand, by using the

substitution X > 0, we see similarly that Y ¢ S[XY]. One consequence
is that S < S[XY] < Q[X, Y] = ST. It remains only to show that S, T'
are minimal ring extensions of R having the same crucial maximal ideal

such that S is of type 2 and T is of type 1.

Let M be the ideal of R defined by
M = (IX"(X% - X)Y™, X*(Y2 - 2)Y! | m, n, s, ¢ 2 O}).

It is clear that R/M = Q, and so M € Max(R). Observe that the
product of X with each member of the given generating set of M is again
in M, andso XM ¢ M c R. As X? - X ¢ M, Lemma 3.1 yields that S'is
an integral minimal overring of R of type 2 with crucial maximal ideal M.

Finally, observe (by checking the product of Y with each member of
the given generating set of M) that YM <« M <« R c T, and so M is a
proper ideal of T. Furthermore, there is a canonical surjective ring-
homomorphism Q[Y]/(Y? - 2) - T/M , and this must be an isomorphism
since Q[Y]/(Y2-2)= Q(W2) is a field. It is of degree 2 and, hence,
minimal over Q = R/M . Therefore, Lemma 3.1 yields that 7 is an

integral minimal overring of R of type 1 with crucial maximal ideal M.

Thus, S, T give an example with the asserted properties.
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Type (3, 1). Let R be the subring of Q[X, Y] defined by
R = QXY™ X3Y!, (Y2 - 2)Y", X(Y2 - 2)Y" |m, n, t > 0}].

It is easy to see that the quotient field of R is Q(X, Y); and that
Q[X, Y] is a module-finite R-algebra. Note that X ¢ R. (Indeed, if X
were a polynomial over Q in {X2Y™, X3! (Y% - 2)Y", X(Y? - 2)Y"|
m, n, t > 0}, then the substitution Y V2 would show that X e

]R[Xz, X3], which is absurd.) As above, the substitution X — 0 can be
used to show that Y ¢ R. Thus, the rings

S = R[X]=Q[X, X2Y™, (Y2 -2)Y" | m, n, t > 0}]

and T = R[Y] = Q[X?, X3, Y, X(Y? - 2)] are proper integral overrings
of R. We leave it to the reader to check that XY ¢ S. Moreover, the
substitution X + 0 can be used to show that Y ¢ S[XY]. Consequently,

S c S[XY] < Q[X, Y]=ST. It remains only to show that S, T are

minimal ring extensions of R having the same crucial maximal ideal such
that S is of type 3 and T is of type 1.

Let M be the ideal of R defined by
M = ((X2y™, X3y, (Y2 - 2)Y"™, X(Y2 - 2)Y" | m, n, t > O)).

It is clear that R/M = Q, and so M e Max(R). Observe that MX <

M < R. Since XQ, X% eR by definition, it follows from Lemma 3.1

that S is an integral minimal overring of R of type 3 with crucial maximal
ideal M.

Observe that MY ¢ M < R. In particular, M is a proper ideal of 7.

One can show that 7/M = Q[Y]/(Y? - 2) = Q(+/2), which is a minimal
field extension of Q = R/M . Therefore, Lemma 3.1 yields that 7' is an

integral minimal overring of R of type 1 with crucial maximal ideal M.

The proof is complete.
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It follows from Proposition 3.3(d) that if S and T are minimal integral
overrings of a domain R with the same crucial maximal ideal such that
neither S nor 7'is of type 1, then any chain of rings between S and ST has
cardinality at most 3. We next show that this is best possible, by
presenting examples in all possible cases (where neither S nor T'is of type
1) where the maximal cardinality 3 can be achieved, i.e., where there is a
ring properly between S and ST, with R a suitable Noetherian domain.

Example 3.9. Let (a, b) € {2, 3} x {2, 3}. Then there exist a Noetherian

domain R and distinct integral minimal overrings S, T of R that are

inside the same quotient field of R, have the same crucial maximal ideal,

and give an example of type (a, b) such that S = ST is not a minimal

ring extension.

Proof. Let F be an arbitrary field, and let X, Y be algebraically

independent indeterminates over F. All rings considered henceforth will
be subrings of the polynomial ring F[X, Y]. It will be easy to see that

F[X, Y] is module-finite, and hence integral, over each of these subrings.

Hence, as in the proofs of Examples 3.6 and 3.8, each of these subrings is
Noetherian. Moreover, it will also be clear that all the rings under

consideration have quotient field F(X, Y). The verifications have much

the same tempo as those in Example 3.8 and so we leave some of the

details to the reader.
Type (2, 2). Let R be the subring of F[X, Y] defined by
R:=F =[(X"(X%2-X)Y™, X5(Y2 -Y)Y! | n, m, s, t > 0}].

By using the substitution Y +— 0, one can show that X ¢ R. Similarly,
Y ¢ R. Let M be the ideal of R defined by

M = ((X"(X2-X)Y™, X5(Y2 -Y)Y' | n, m, s, t >0}

Evidently, R/M = F, and so M e Max(R). Since MX, MY c M, it

follows via Lemma 3.1 that the rings

S = R[X] = F[{X, (X2 -X)Y™, (Y2 -Y)Y™ | m > 0}]
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and T := R[Y] are integral minimal overrings of R, each of type 2 and

having crucial maximal ideal M.

Observe that XY ¢ S (for, otherwise, the substitution X ~ 1 would
lead to a contradiction). Consequently, S # T and S c S[XY]. It remains

only to check that S[XY] < ST = F[X, Y]. To this end, it suffices to show
that Y ¢ S[XY]. This, in turn, follows by considering the substitution

X — 0. Thus, S, T give an example with the asserted properties.
Type (3, 3). Let R be the subring of F[X, Y] defined by
R = F[X?, X3, Y2, Y3, X%, X3, Y?X, Y3X].

The definition of the data S, T, M and their analysis can proceed
almost exactly as for the preceding example of type (2, 2) with the

following exception. The verification that XY ¢ S is somewhat tedious

but straight forward. Details are left to the reader.
Types (2, 3) and (3, 2). Let R be the subring of F[X, Y] defined by
R = F[{X"(X? - X), X"(X% - X)Y, X°Y2, X'Y3|n, s, t > 0}].

Note that X ¢ R (for, otherwise, the substitution Y — 0 would lead to X
being the sum of a constant in F and a polynomial of degree at least 2, a

contradiction). Also, Y ¢ R (for, otherwise, the substitution X ~ 1 would

lead to Y e F[Y2, Y3], a contradiction).

Consider the subrings of F[X, Y] defined by

S = R[X] = F[X, Y2, Y3, (X% - X)Y]
and
T = R[Y] = F[{Y, X"Y?, X™(X% - X)| n, m > 0}].
Let M be the ideal of R defined by

M = ((X"(X? - X), X"(X% - X)Y, Y2X*, Y3X! | n, s, t > O)).
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As R/M = F, we have that M € Max(R). Since MX, MY c M c R, it

follows via Lemma 3.1 that S and 7 are integral minimal overrings of R
which each have crucial maximal ideal M and are of types 2 and 3,

respectively.

Since S and T are of different types, it must be the case that S = T.
Another way to see this is to show that XY ¢ S. The latter fact can be
proved by considering the substitution X — 1. An important consequence

is that S < S[XY]. To show that S, T are a type (2, 3) example with
the asserted properties, it suffices (since ST = F[X, Y]) to prove that

Y ¢ S[XY]. This, in turn, follows by considering the substitution X ~ 0.

It remains only to show that T', S are a type (3, 2) example such that
T c T[XY] c TS = F[X, Y]. Now, the substitution Y > 0 easily leads
to the fact that X ¢ T[XY], and so T[XY] c T'S. We turn, finally, to the
non-routine part of this verification, namely, the proof that XY ¢ T' (and,

hence, that T < T[XY]).

Suppose, on the contrary, that XY € T. Then XY is a polynomial f
(with coefficients in F) in the terms {Y, X"Y?, X" - X" | n > 1}. The
only way for the monomial XY to appear as a term in f would be for f
to contain the expression —(X2 — X)Y (when written as a polynomial in
the terms {Y, X"Y2, X"*' - X"|n >1}). However, in that case, the
monomial —X2Y would have to be cancelled without cancelling the term
XY. The only way for this to occur would be for —(X® — X2)Y to appear
in f. However, in that case, we would need to explain the cancellation of
-X3Y. In fact, we would need to repeat the argument indefinitely, in
order to explain the cancellation of —X"Y for all n > 2. As a polynomial

can have only finitely many terms, it cannot be the case that XY e T.

The proof is complete.
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Remark 3.10. The upshot of combining Proposition 3.4(a), Example

3.8 and Example 3.9 is that we can sharpen the “Noetherian ring R’

assertion in Corollary 3.7 to “Noetherian domain R”.
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