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Abstract

Let R be a (commutative unital) ring. If S and T are distinct minimal

ring extensions of R, their composite ST may not exist; i.e., there may

not exist a (commutative unital) R-algebra U containing both S and T as

R-subalgebras. We assume henceforth that such U exists. It seems

natural to ask ( ) :∗  is ST necessarily a minimal ring extension of both S

and T ? If R is a field and S, T (as above) are splitting field extensions of

R, the answer to ( )∗  is “yes”; without this “splitting field” assumption

on the fields S and T, the answer is, in general, “no”. If R is a field and

either S or T is not a field, the answer to ( )∗  is, in general, “no”. Let M

and N be the so-called crucial maximal ideals of R relative to S and T,

respectively. If ,NM ≠  the answer to ( )∗  is “yes”. Assume henceforth

that R is a ring with von Neumann regular total quotient ring and that
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S and T are overrings of R. If R is integrally closed in both S and T, the

answer to ( )∗  is “yes”. If ,NM =  it cannot be the case that T is integral

over R while R is integrally closed in S. If NM =  with S (and hence T )

integral over R, then the answer to ( )∗  can be “no” and we give best-

possible finite upper bounds for the cardinalities of chains of rings

between S and ST and chains of rings between T and ST.

1. Introduction

All rings and algebras considered below are commutative with

identity; all subrings/subalgebras and ring/algebra homomorphisms are

unital. Recall that a ring extension BA ⊂  is called a minimal ring

extension if the inclusion map BA →⊂  is a minimal homomorphism in

the sense of [9], i.e., if there is no ring D such that .BDA ⊂⊂  (As

usual, ⊂  denotes proper inclusion.) If BA ⊂  is a minimal ring

extension, then it was shown in [9, Théorème 2.2(ii), (iii)] that either B is

integral over A or BA →⊂  is a flat epimorphism (in the category of

commutative rings). Suppose that SR ⊂  and TR ⊂  are minimal ring

extensions such that the composite ST exists, i.e., such that there exists a

(commutative unital) R-algebra U containing S and T as R-subalgebras.

(See Example 2.1 for cases where S and T are minimal ring extensions of

R for which no such U exists.) If SR →⊂  and TR →⊂  are also each flat

epimorphisms, then TSST R⊗=~  and both STS →⊂  and STT →⊂

are flat epimorphisms. By analogy, we are led to ask the following basic

question of this paper. If SR ⊂  and TR ⊂  are arbitrary minimal ring

extensions such that the composite ST exists, must STS ⊂  and STT ⊂

be minimal ring extensions? In the next four paragraphs, we summarize

the answers that are given in the following sections.

Section 2 begins with some simple contexts in which our basic

question has a positive answer. For instance, it is shown in Proposition

2.2(b) that if FK ⊂  and LK ⊂  are distinct minimal field extensions

inside some algebraic closure of K such that F and L are each splitting

fields over K, then FLF ⊂  and FLL ⊂  are each minimal field

extensions. However, Example 2.3 shows that the basic question has a

negative answer (with base field ,KR =  a field) if LF ,  are replaced
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with any of the other kinds of minimal ring extensions TS,  of a field

that are catalogued in [9, Lemme 1.2].

Working over more general base rings requires the following concept

from [9]. If BA ⊂  is a minimal ring extension, then there is a unique

maximal ideal M of A, called the crucial maximal ideal of BA ⊂  (or of

A relative to B or, simply, of B) such that if P is any prime ideal of A,

then the canonical injective A-algebra homomorphism PP BA →  is an

isomorphism if MP ≠  and a minimal homomorphism if .MP =  (As

usual, if E is an A-module and P is a prime ideal of A, then .): \PAP EE =

Perhaps our most useful positive answer for the basic question is given

in Theorem 2.5: if SR ⊂  and TR ⊂  are minimal ring extensions, with

distinct crucial maximal ideals M and N, respectively, and if the

composite ST exists in some ring extension of R, then both STS ⊂  and

STT ⊂  are minimal ring extensions.

The most striking applications of Theorem 2.5 arise when S and T are

overrings of R. (As  usual, if A is a ring, then ( )Atq  denotes a/the

total quotient ring of A; and, by an overring of A, we mean an

A-subalgebra of ( ),tq A  i.e., a ring B such that ( ) ).tq ABA ⊆⊆  Perhaps

the most important kinds of minimal ring extensions are overrings.

Indeed, recall from [19, p. 1738] that if R is a (commutative integral)

domain which is not a field and B is a domain such that BR ⊂  is a

minimal ring extension, then B is (R-algebra isomorphic to) an overring of

R. (See [18, Proposition 3.9] and [4, Theorem 2.2] for some recent

generalizations of this result to contexts involving nontrivial zero-

divisors.) As an application of Theorem 2.5, it is shown in Corollary 2.7

that if R is a ring such that ( )RK tq:=  is a von Neumann regular ring

(for instance, R a domain) and KTS ⊆,  are distinct minimal overrings

of R such that R is integrally closed in both S and T, then both STS ⊂

and STT ⊂  are minimal ring extensions. Thus, Corollary 2.7 gives an

affirmative answer to our basic question if TS,  are flat epimorphic

overrings of a ring with von Neumann regular total quotient ring. It is

noteworthy that the proof of Corollary 2.7 makes use of the classification
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in [7] of the minimal ring extensions of rings R having von Neumann

regular ( )Rtq  and no minimax prime ideal, and hence, makes use of the

generalized Kaplansky transform that was introduced in [20]. This same

background is used in proving Theorem 2.8, which shows that if ( )Rtq  is

von Neumann regular, then R cannot have composable minimal overrings

S and T such that R is integrally closed in TS,  is integral over R, and

the minimal ring extensions SR ⊂  and TR ⊂  have the same crucial

maximal ideal.

In view of Example 2.3, Corollary 2.7, Theorem 2.8, and the

classification of minimal ring extensions in [7, Corollary 2.5], the study of

our basic question is reduced to considering composable integral minimal

overrings TS,  of a ring R with the same crucial maximal ideal M.

Section 3 gives an extensive study of this context, showing that in most

cases, the basic question has a negative answer. The relevant cases arise

since MS  and MT  are minimal ring extensions of the field MR  and,

hence, are each isomorphic to one of the three archetypes noted in

[9, Lemme 1.2]. These three possibilities for integral minimal overrings

were characterized by generator-and-relations in [7, Proposition 2.12],

which is restated for convenience as Lemma 3.1 below. In general, any

chain of rings contained between S and ST or between T and ST must be

finite. An upper bound for the cardinalities of such chains is given in

Proposition 3.3. Example 3.9 shows this upper bound to be best possible,

even when R is a Noetherian domain. In particular, STS ⊂  need not be

a minimal ring extension in general (cf. Examples 3.6, 3.8 and 3.9).

Proposition 3.4(a) identifies cases for which STS ⊂  is, in general, a

minimal ring extension.

In addition to the notation and terminology introduced above, it is

convenient to use the following conventions. If A is a ring, then Spec(A)

denotes the set of all prime ideals of A; Max(A) the set of all maximal

ideals of A; and Min(A) the set of all minimal prime ideals of A. If I is an

ideal of A, then ( ) ( )II ARad:Rad =  denotes the radical of I in A. If E is

an A-module, then ( )EA +  denotes the idealization built from A and E;



COMPOSITES OF MINIMAL RING EXTENSIONS 245

a convenient reference for basic facts about the idealization construction

is [12]. Also, X and Y denote commuting algebraically independent

indeterminates over the ambient coefficient ring(s). As usual, char(K)

denotes the characteristic of a field K; ( )EKdim  denotes the vector space

dimension of a K-vector space E over a field SK ;  denotes the cardinal

number of a set S; and N  denotes the set of positive integers. Unexplained

material is standard, as in [10] and [15].

2. Generalities and the Relatively Integrally Closed Case

We begin by showing that minimal ring extensions SR ⊂  and TR ⊂

need not have a composite.

Example 2.1. There exist minimal ring extensions SR ⊂  and TR ⊂

for which there does not exist a (commutative unital) R-algebra U

containing both S and T as R-subalgebras.

Proof. Suppose that a domain R has a minimal overring S such that

the crucial maximal ideal for the minimal ring extension SR ⊂  is N and

there exists a nonzero element Nn ∈  such that .1 Sn ∈−  (We recall

below one way to construct such a Bézout domain R having Krull

dimension 1 and such an overring S.) Next, let T be another minimal ring

extension of R having crucial maximal ideal N such that T is not

R-algebra isomorphic to S. (For instance, by [3, Corollary 2.5] and

[6, Theorem 2.7], take T to be either the idealization ( ) NRR +  or the

direct product .)NRR ×  Then one cannot form the composite ST in any

sensible universe.

To see this, suppose, on the contrary, that it makes sense to consider

the composite ST inside some universe U. Then n is a unit of U (since the

ring extension US ⊂  is unital). However, n is also a nontrivial zero-

divisor of U, since

( ) ( ) ( ) ( ) ( ) ( ) 00,01,0,1,00,1,0 ==++=+=+ NNnnNnNn

in both ( ) NRR +  and .NRR ×  The presence of this unit which is a

non-trivial zero-divisor contradicts the fact that U is a nonzero ring.
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We next indicate one way to construct R and S as above and offer an

alternate explanation for the assertion. By taking R to be the intersection

of two incomparable valuation domains of (Krull) dimension 1 having the

same quotient field, we obtain R as a one-dimensional Bézout domain

with exactly two maximal ideals, say M and N (cf. [15, Theorem 107]).

As ( ) { }NMR ,,0Spec =  and R is a Prüfer domain, it follows from

[10, Theorem 26.1(2)] that MRS =:  is a minimal ring extension of R. It is

clear that the crucial maximal ideal for SR ⊂  is N. Moreover, any

element MNn \∈  satisfies .1 Sn ∈−  Taking T as above, we could argue

as above to get the assertion. The following is a more ornate way to reach

the same conclusion.

Suppose, on the contrary, that it makes sense to consider the

composite ST inside some universe U. Then TRST M=  is canonically

identified with .\ MRT  Indeed, since MR  is R-flat, the canonical

R-algebra homomorphism MRMRMRMR URURTT \\
~~ =⊗→⊗=  is

an injection whose image clearly is .STTRTR MM ==  Therefore, we

can view ,\ MRTST =  which is canonically identified with SRM =

since the crucial maximal ideal of T is not M. Thus, ,RTSTS ⊃⊃=

contradicting the minimality of the ring extension .SR ⊂  This proves

that no such U exists.

Chastened by the above example, we retreat to the context of a base
field, beginning there with the case of minimal field extensions. Recall

from [13, Definition 3, pp. 83-84] that if F and L are field extensions of a

field K, there is a classical concept of composite which uses the fact that

some K-algebra E does contain K-algebra isomorphic copies of both F and

L. (For  instance, take the field ( ) ,: NLFE K⊗=  where ( ).)Max LFN K⊗∈

However, our concept of a composite of minimal ring extensions SR ⊂

and TR ⊂  is more prosaic, requiring that the given S and T (not just

copies of them) lie in some universe R-algebra U; and our composite is

then  just the subring of U generated by .TS ∪  For the case of minimal

field extensions FK ⊂  and ,LK ⊂  we wish to use classical field theory

and so we will take U to be an algebraic closure of K.
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The simplest case where our basic question has an affirmative answer

concerns quadratic field extensions. Indeed, if F and L are distinct field

extensions of a field K inside some algebraic closure of K such that

[ ] [ ],:2: KLKF ==  then FL is minimal over F (and, similarly, minimal

over L) since [ ] [ ] 2::1 =≤< KLFFL  and the conclusion follows since

[ ] ,2: =FFL  a prime number. We collect some generalizations of this

example in Proposition 2.2. For motivation, note that if MK ⊂  is any

field extension such that [ ] ,2: =KM  then M is a splitting field (i.e.,

normal) over K.

Consider any splitting field M over a field K. Let sM  (resp., iM )

denote the set of elements of M that are separable (resp., purely

inseparable) over K. Then sM  and iM  are fields contained between K

and M whose composite MMM is =  [14, Theorem 46, p. 56]. It follows

that if MK ⊂  is also a minimal field extension, then M coincides with

either sM  or ;iM  i.e, M  is either Galois or purely inseparable over K.

We claim that in either of these cases, [ ]KM :  is a prime number. (The

referee has kindly pointed out that this assertion has appeared in

unpublished work of A. Philippe in 1969: see [18, Proposition 2.2].)

Indeed, if M is Galois over K, the assertion follows by combining the

Fundamental Theorem of Galois Theory with the existence of Sylow

subgroups and the solvability of p-groups. On the other hand, if M is

purely inseparable over K, then [ ] ,: npKM =  where ( )Kp char0 =<  is

a prime number and ,N∈n  with ( )uKM =  and .Ku
np ∈  (Of course,

more generally, any minimal field extension KM ⊃  is of the form

( )uKM =  for some .)Mu ∈  If ,1>n  then ( )
1−npuK  is a field contained

strictly between K and M, a contradiction. Therefore, ,1=n  whence

[ ] ,: pKM =  completing the proof of the claim. These observations will

be used in the proof of Proposition 2.2(b).

Proposition 2.2. Let FK ⊂  and LK ⊂  be distinct field extensions

that are contained in some algebraic closure of K. Then:
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(a) If [ ]KF :  and [ ]KL :  are distinct prime numbers, then ,FK ⊂

FLFLK ⊂⊂ ,  and FLL ⊂  are each minimal field extensions.

(b) If FK ⊂  and LK ⊂  are minimal field extensions such that F

and L are each splitting fields over K, then FLF ⊂  and FLL ⊂  are

each minimal field extensions.

Proof. (a) By hypothesis, [ ]KFp ::=  and [ ]KLq ::=  are prime

numbers. Hence, FK ⊂  and LK ⊂  are minimal field extensions. Since

qp ≠  by hypothesis, it follows from [14, Theorem 3(c), p. 6] that

[ ] [ ] qKLFFL == ::  and similarly that [ ] ,: pLFL =  whence FLF ⊂

and FLL ⊂  are minimal field extensions.

(b) By the above comments, F and L are each either Galois or purely

inseparable over K and, furthermore, [ ]KFp ::=  and [ ]KLq ::=  are

(possibly equal) prime numbers. By (a), we may assume that .qp =

Suppose first that both F and L are Galois over K. We show that

FLF ⊂  is a minimal field extension (as the proof for FLL ⊂  is

similar). Since F and L are distinct and minimal over K, it follows that

.KLF =∩  Then by standard Galois theory (cf. [16, Theorem 1.12,

p. 266]), FL is a Galois field extension of F and we have an isomorphism

of Galois groups ( ) ( ).Gal~Gal KLFFL =  Thus, by the Fundamental

Theorem of Galois Theory, [ ] ( ) ( ) === KLFFLKFL GalGal:

[ ] pKL =:  is prime, and so FLF ⊂  is a minimal field extension, as

asserted.

Suppose next that both F and L are purely inseparable over K. By the

above comments, ( )uKF =  and ( )vKL =  with ., Kvu pp ∈  Then FLF ⊂

is a minimal field extension since ( )vFFL =  is purely inseparable over F

with .Fv p ∈  Similarly, one shows that FLL ⊂  is a minimal field

extension.

Since ,LFFL =  there is essentially only one remaining case: suppose

that F is Galois over K and L is purely inseparable over K. By the above

comments, ( )vKL =  with .Kv p ∈  Then FLF ⊂  is a minimal field
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extension since ( )vFFL =  is purely inseparable over F with .Fv p ∈  In

fact, [ ] .: pFFL =  Consequently,

[ ] [ ]
[ ]

[ ] [ ]
[ ] ,

:
::

:
:: p

p
pp

KL
KFFFL

KL
KFL

LFL =⋅===

which is a prime number, and so FLL ⊂  is a minimal field extension, to

complete the proof.

Continuing with a base field K, we show next by example that if S

and T are composable minimal ring extensions of K such that not both S

and T are fields, then, in contrast to the conclusions in Proposition 2.2,

our basic question has a negative answer. Recall from the classification in

[9, Lemme 1.2] that S and T are each isomorphic to either [ ] ( ),2XXK

,KK ×  or a minimal field extension of K. As ,TSST =  these are

essentially five cases, and these are covered by the parts of Example 2.3.

Example 2.3. Let K be a field. Then:

(a) Let LS =  be a minimal field extension of K. Let [ ] ( ),: 2XXKT =

viewed as a (minimal) ring extension of K via [ ] ,KxKxKTK ⊕==→⊂

,aa  where ( ) TXXx ∈+= 2:  satisfies .02 =x  Consider the K-algebra

[ ] ( ) ,: 2 LyLYYLU ⊕==  where ( ) UYYy ∈+= 2:  satisfies .02 =y  View

ULS ⊂=  as above. View UT ⊂  via byabxa ++  for all ., Kba ∈

Then UST =  and STS ⊂  is a minimal ring extension, while STT ⊂

is not a minimal ring extension.

(b) Let LS =  be a minimal field extension of K. Let ,: KKT ×=

viewed as a (minimal) ring extension of K via the diagonal map

( ).,,: aaaTKK →∆ ⊂  Consider the K-algebra .: LLU ×=  View

ULS ⊂=  via the diagonal map .L∆  View UT ⊂  as usual. Then

UST =  and STS ⊂  is a minimal ring extension, while STT ⊂  is not

a minimal ring extension.

(c) Let [ ] ( ) KxKXXKS ⊕== 2:  and [ ] ( ) ,: 2 KyKYYKT ⊕==

viewed as minimal ring extensions of K as above. Consider the K-algebra
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[ ] ( ) [ ] KvwKwKvKwvKYXYXKU ⊕⊕⊕=== ,,,: 22  ( Xv =:where

( ) ( ) ).0satisfy,:,, 222222 wvYXYwYX ==+=+  View US ⊂  via

bvabxa ++  for ;, Kba ∈  and view UT ⊂  via bwabya ++  for

., Kba ∈  Then UST =  and neither STS ⊂  nor STT ⊂  is a minimal

ring extension.

(d) Let [ ] ( ) [ ] ,: 2 KxKxKXXXKS ⊕==−=  where ( )XXXx −+= 2:

satisfies xx =2  and, similarly, [ ] ( ) [ ] ,: 2 KyKyKYYYKT ⊕==−=

with ( )2: YYy +=  satisfying .2 yy =  Consider the K-algebra =:U

[ ] ( ) [ ] ,,,, 22 KvwKwKvKwvKYYXXYXK ⊕⊕⊕==−−  where Xv =:

( )YYXX −−+ 22 ,  and ( ).,: 22 YYXXYw −−+=  View US ⊂  via

bvabxa ++  for all ., Kba ∈  View UT ⊂  via bya + bwa +  for

all ., Kba ∈  Then TKKS =×= ~~  as K-algebras, S and T are each

minimal ring extensions of ,, USTK =  and neither STS ⊂  nor STT ⊂

is a minimal ring extension.

(e) Let [ ] ( ) KxKXXKS ⊕== 2:  and ,: KKT ×=  viewed as

minimal ring extensions of K as above. Consider the K-algebra

[ ] ( ) [ ] ,,,,: 22 KvwKwKvKwvKYXYXKV ⊕⊕⊕===  ( += Xv :where

( ) ( ) ).0satisfy,:,, 222222 wvYXYwYX ==+=  Put [ ] [ ].: wKvKU ×=

View US ⊂  via ( )bwabvabxa +++ ,  for all ., Kba ∈  View UT ⊂

via ( ) ( )dcdc ,,  for all ., Kdc ∈  Then UST =  and neither STS ⊂

nor STT ⊂  is a minimal ring extension.

Proof. (a) The specified identifications allow us to view .yx =  It

follows that ,UST =  for the typical element of U, namely, dyc +  with

Lc ∈  and ,Ld ∈  is the sum of the element SLc =∈  and the product

of the element Sd ∈  with the element .Txy ∈=  Hence, STSL ⊂=

[ ] ( )2YYLU ==  is one of the kinds of minimal ring extensions that were

noted in [9, Lemme 1.2]. However, STT ⊂  is not a minimal ring
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extension, in view of the proper inclusions

.STULyLLxLLxKKxKT ==⊕=⊕⊂⊗⊂⊕=

(b) To see that ,UST =  note that if ,, Ldc ∈  then

( ) ( ) ( ) ( ) ( ) ,1,0,0,1,, LLddccdc ×∈+=

with ( ) ( ) ( ) ,,,0,1,, SddTKKSLcc ∈=×∈=∈  and ( ) .1,0 T∈  Hence,

LLUSTSL ×==⊂=  is one of the kinds of minimal ring extensions

that were noted in [9, Lemme 1.2]. However, STT ⊂  is not a minimal

ring extension, since the rings LK ×  and KL ×  are each properly

contained between T and ST.

(c) The specified inclusion maps allow us to view vx =  and .wy =  It

is then clear that .UST =  Note that neither STS ⊂  nor STT ⊂  is a

minimal ring extension because of the proper inclusions

[ ] [ ] [ ] [ ] .,,and,, STvwwKxyyKTSTvwvKxyxKS ⊂=⊂⊂=⊂

(d) Observe that [ ] ( )( ) [ ] ( ) [ ] ( ) ≅−×=−= 1~1 XXKXXKXXXKS

KK ×  by the Chinese Remainder Theorem. Similarly, .~ KKT ×=  Thus

(or directly by considering vector space dimensions), we can view SK ⊂

and TK ⊂  as minimal ring extensions. The above proof of (c) can now be

repeated verbatim.

(e) The specified identifications allow us to view ( )., wvx =  Also, it is

clear that .UST ⊆  To prove the reverse inclusion, it is enough to show

that both ( )0,v  and ( )w,0  lie in ST. This, in turn, follows since ( ) =wv,

STSx ⊂∈  and ST is closed under multiplication by ( ) ( ) .1,0,0,1 T∈

Next, note that STT ⊂  is not a minimal ring extension since the rings

[ ]wKK ×  and [ ] KvK ×  are each contained properly between TKK =×

and [ ] [ ] .STwKvK =×

It remains only to show that STS ⊂  is not a minimal ring extension.

Observe that ( )w,0  cannot be expressed as ( )bwabva ++ ,  with ., Kba ∈

Consequently, ( ) Sw ∉,0  and ( )[ ] ( )[ ] ( )[ ].,0,,0: wwvKwSAS ==⊂  Hence,

it suffices to find an element in [ ] [ ]wKvK ×  which is not in A. Note that
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( ) ( ) ( )awwbwabva ,0,0, =++  for all ., Kba ∈  It follows easily that

( )[ ] ( )[ ] ( ){ } ( ){ }.,0,,,0, KccwKbabwabvawwvKA ∈|+∈|++==

The element ( )w,1  is not in the displayed set. The proof is complete.

Remark 2.4. (a) The behavior noted in Example 2.3 depended on the

fact that the base ring was a field. Indeed, the negative answers that we

found there can disappear when the base ring has more than one

maximal ideal. Consider, for instance, the following analogue of Example

2.3(c). (It is an analogue because [ ] ( ) ( )KKXXK +=~2  for any field K.)

Let M and N be distinct maximal ideals of a ring R. As noted in the proof

of [7, Corollary 2.5], ( ) MRRS +=:  and ( ) NRRT +=:  are each minimal

ring extensions of R (via the canonical inclusions). Then the ring

( ) ( )NRMRRB ⊕+=:  contains both S and T as subrings (viewing

MR  and NR  as subgroups of NRMR ⊕  via the canonical injections),

the composite ,BST =  and, in contrast to Example 2.3(c), one can show

that ST is a minimal ring extension of both S and T. (The verification of

the final assertion is immediate from [3, Remark 2.9] and the fact that

NR  and MR  are simple R-modules.) Thus, the present context

supports a positive answer to our basic question. It turns out that the

behavior noted here is possible because the crucial maximal ideals of

the minimal ring extensions SR ⊂  and TR ⊂  (namely, M and N,

respectively) are distinct. As we will prove in Theorem 2.5, this is a

general phenomenon.

(b) The point made in (a) applies as well to analogues of Example

2.3(d) in which the base ring R is not quasilocal and the given minimal

ring extensions have distinct crucial maximal ideals. To see this, consider

distinct fields K and L which are sub fields of a field F which is a minimal

field extension of both K and L. (For instance, take K and L each to be

algebraic of different prime degrees over some field k, working in an

algebraic closure of k, take ,: KLF =  and apply Proposition 2.2(a).) Put

,: LKR ×=  and consider the maximal ideals of R, namely, { }0: ×= KM

and { } .0: LN ×=  As was noted in the proof of [7, Corollary 2.5], MRR ×
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and NRR ×  are each minimal ring extensions of R (via the canonical

inclusions). Observe that ( ) MRRLLKS ×=××= ~:  and ( )LKT ×=:

.~ NRRK ×=×  Moreover, the composite ST exists inside, and in fact

coincides with, ( ) .FLK ××  It is easy to see, in contrast to Example

2.3(d), that ST is a minimal ring extension of both S and T (the  point

being, for instance, that any ring A such that STAS ⊆⊆  must be of

the form ( ) ,BLK ××  where B is a ring such that .)FBL ⊆⊆

(c) The chains [ ] STxyxKS ⊂⊂ ,  and [ ] STxyyKT ⊂⊂ ,  that

were noted in Example 2.3(c) are saturated, in the sense that each of

[ ] [ ] [ ]xyyKTSTxyxKxyxKS ,,,,, ⊂⊂⊂  and [ ] STxyyK ⊂,  is a

minimal ring extension. One can say in this example that STS ⊂  and

STT ⊂  each factored into two minimal ring extensions. This leads one

to wonder if, when one relaxes the condition that the base ring is a field,

one can find examples of minimal ring extensions SR ⊂  and TR ⊂

such that STS ⊂  or STT ⊂  is not a minimal ring extension but,

similarly, factors as a product of infinitely many minimal ring extensions.

This question has a negative answer when the base ring is an arbitrary

domain. This can be seen by combining the later results in this section

and Proposition 3.3 with the classification result in [6, Theorem 2.7].

We now present an important class of pairs of minimal ring

extensions for which our basic question has an affirmative answer, and

thereby present the promised generalization of parts (a) and (b) of

Remark 2.4.

Theorem 2.5. Let SR ⊂  and TR ⊂  be minimal ring extensions,

with crucial maximal ideals M and N, respectively. If NM ≠  and if the

composite ST exists in some ring extension U of R, then both STS ⊂  and

STT ⊂  are minimal ring extensions.

Proof. All the calculations and identifications given below are to be

interpreted canonically inside the appropriate rings of fractions of U.

Note that TS ≠  since .NM ≠  Now, since M is the crucial maximal ideal

of the minimal ring extension ,SR ⊂  we have that MRMM SSR \:=⊂  is
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a minimal ring extension and PP SR =  for all ( ) { }.\Spec MRP ∈

Similarly, NN TR ⊂  is a minimal ring extension and PP TR =  for all

( ) { }.\Spec NRP ∈  We show next that STS ⊂  is a minimal ring

extension, leaving the similar verification for STT ⊂  to the reader.

Note that ( ) MMMMMM SRSTSST ===  and, similarly, ( )NST

.NT=  In particular, if ( ) { },,\Spec NMRP ∈  then

( ) .PPPPPPPP TSRRRTSST =====

Now, consider any ring A such that .STAS ⊆⊆  It suffices to show that

A is either S or ST, equivalently by globalization, that A agrees locally

with either S or ST. Of course, ( ) ,MMMM SSTAS =⊆⊆  and so =MS

( ) .MM STA =  Similarly, if ( ) { },,\Spec NMRP ∈  then == PP AS

( ) ( ).PP RST =

On the other hand, since ( ) NNNNN TSTASR =⊆⊆=  and

NN TR ⊂  is a minimal ring extension, we have that NA  is either NS  or

.NT  If NN SA = ( ),.,resp NN TA =  it follows that A agrees locally with

S (resp., with ST ), which completes the proof.

Corollary 2.6. Let R be a ring such that ( )Rtq  is a von Neumann

regular ring (for instance, take R to be a domain). Let SR ⊂  and TR ⊂

be distinct minimal ring extensions such that R is integrally closed in both

S and T. If the composite ST exists in some ring extension U of R, then

both STS ⊂  and STT ⊂  are minimal ring extensions.

Proof. Let M be the crucial maximal ideal of the minimal ring

extension SR ⊂  and let 1K  be a total quotient ring of R such that

.1KSR ⊆⊂  By [7, Theorem 3.7], ( ),
1

MS KΩ=  the generalized

Kaplansky transform of M inside ,1K  in the sense of [20]. In other words,

{ ( ) } .:Rad
11 RMqRKqS K ∪=|∈=

Similarly, if N denotes the crucial maximal ideal of the minimal ring



COMPOSITES OF MINIMAL RING EXTENSIONS 255

extension TR ⊂  and 2K  is a total quotient ring of R such that TR ⊂

,2K⊆  then

{ ( ) } .:Rad
22 RNqRKqT K ∪=|∈=

By Theorem 2.5, we are done if .NM ≠  Thus, without loss of

generality, .NM =  Now, let f denote the unique R-algebra isomorphism

.21 KK →  It is easy to see from the above description of the generalized

Kaplansky transform that ( ( )) ( ),
21

MMf KK Ω=Ω  and so ( ) .TSf =  In

particular, TS =~  as R-algebras. If ,21 KK =  we have ,TS =  the desired

contradiction, as it was shown in the first paragraph of [6, Remark 2.8(a)]

that distinct overrings of a given ring A inside the same total quotient

ring of A cannot be isomorphic as A-algebras. To handle the general case,

we proceed to adapt the reasoning from [6].

Let S  denote the multiplicatively closed set consisting of all the

non-zero-divisors of R. All the calculations and identifications given

below are to be interpreted canonically inside .SU  In particular, we view

( ) SSS USKK ⊆== 11  and, similarly, ( ) .22 SSS UTKK ⊆==

To obtain the desired contradiction, it is enough to show that .TS =

We will show that ,TS ⊆  leaving the similar proof of the reverse

inclusion for the reader. Consider an arbitrary element .Ss ∈  Since

( ) ,Tsf ∈  it is enough to prove that ( ) .ssf =  As 1K  is a total quotient

ring of R, there exist Rr ∈  and S∈z  such that 1
1 Krzs ∈= −  (viewed

inside .)SU  Hence, .rsz =  Recall that f restricts to an R-algebra

isomorphism .TS →  This induces an R-algebra isomorphism SSh :

,ST→  which can be viewed as the unique R-algebra isomorphism

.: 21 KKf →  Given the above identifications, we thus have that ( ) =zsf

( ) ( ) ( ) ( ) ,rrfszfzfsf ===  since ,Rz ∈  and so ( ) .1 srzsf == −  The proof

is complete.

Corollary 2.7. Let R be a ring such that ( )RtqK =:  is a von Neumann

regular ring (for instance, take R to be a domain). Let S and T be distinct
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minimal overrings of R, with KS ⊆  and ,KT ⊆  such that R is integrally

closed in both S and T. Then both STS ⊂  and STT ⊂  are minimal

ring extensions.

Proof. Apply Corollary 2.6, with .: KU =

Recall from [7, Corollary 2.5] that if ( )Rtq  is a von Neumann regular

ring such that ( ) ( ) ,MinMax ∅=RR ∩  then up to R-algebra isomorphism,

the minimal rings extensions of R take one of the forms ( ) MRR +  (with

( )),Max RM ∈  MRR ×  ( )( ),Maxwith RM ∈  and a (minimal) overring

of R. Given the above material, we therefore focus our study of the basic

question for the rest of this paper on the case in which S and T are

minimal overrings (inside the same total quotient ring) of R. In view of

Corollary 2.7 and our next result, Section 3 need only focus on S and T

being integral minimal overrings of R.

Theorem 2.8. Let R be a ring such that a total quotient ring of R is a

von Neumann regular ring (for instance, take R to be a domain). Then

there do not exist minimal overrings S and T of R (possibly inside

different total quotient rings of R) such that the composite ST exists in

some ring extension U of R with R being integrally closed in TS,  being

integral over R, and the minimal ring extensions SR ⊂  and TR ⊂

having the same crucial maximal ideal.

Proof. Assume, on the contrary, that S and T exist with the stated

properties. As in the proof of Corollary 2.6, we may show, by working

with canonical identifications inside ,SU  that we can assume that S and

T are contained in the same total quotient ring of R, say K. Since [9,

Théorème 2.2(iii)] ensures that S is a flat (epimorphic) extension of R, we

obtain the exact sequence

,00 →⊗→⊗→⊗→ RTSTSRS RRR

or equivalently, .00 →⊗→⊗→→ RTSTSS RR  We claim that

.0=⊗ RTS R  It is enough to prove this locally, i.e., that ( )PR RTS ⊗

0=  for all ( ).Spec RP ∈
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Let M denote the common crucial maximal ideal of the minimal ring

extensions SR ⊂  and .TR ⊂  Now, if ,MP ≠  we have

( ) ( ) ( ) ,00~ =⊗=⊗=⊗=⊗ RPPRPPRPR SRRSRTSRTS

since PP TR =  canonically (as P is not the crucial maximal ideal relative

to T ). Thus, the above claim reduces to showing that ( ) ,0=⊗ MR RTS

or equivalently, that .0=⊗ MMRM RTS
M

Since K is von Neumann regular, MS  and MT  are minimal overrings

of MR  inside ( )MM RtqK =  (cf. [17, Lemme 2.5], [7, Lemma 3.5]). As

MR  is integrally closed in ,MS  it follows from [7, Theorem 3.1] that

( ) PPRMM RRS
M

== ~~  for some divided prime ideal MPR  of MR  (in the

sense of [1]) such that MM PRR  is a (valuation) domain of Krull

dimension 1.

In particular, .MP ⊂  As PP TR =  canonically since P is not

the crucial maximal ideal relative to T, we therefore have that

MMRM RTS
M

⊗  is isomorphic to

( ) ( ) ( ) .0~~ ====⊗ PPPPPRMPRMMMRPRM RRRTRTRTR
MMMM

This completes the proof of the above claim.

By the exactness of the displayed sequence, we can now conclude

that the canonical ring homomorphism ,1, ⊗⊗→ ssTSS R  is an

isomorphism. However, since S is R-flat, we have that the multiplication

map 




 ∈∈⊗→⊗ ∑ ∑ TtSststsSTTS iiiiiiR ,for  is an R-module

isomorphism. Hence, .RTSTS ⊃⊇=  The minimality of SR ⊂  entails

,TS =  a contradiction since R cannot be integrally closed in a proper

integral extension. The proof is complete.

We next record an important special case of Theorem 2.8.

Corollary 2.9. Let R be a ring such that ( )RtqK =:  is a von

Neumann regular ring (for instance, take R to be a domain). Then there do
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not exist minimal overrings S and T of R, with KS ⊆  and ,KT ⊆  such

that R is integrally closed in TS,  is integral over R, and the minimal

ring extensions SR ⊂  and TR ⊂  have the same crucial maximal ideal.

We close the section with an example showing that one cannot delete

the hypothesis in Theorem 2.8 and Corollary 2.9 that SR ⊂  and TR ⊂

have the same crucial maximal ideal.

Remark 2.10. There exist a ring R and minimal overrings TS,  of R

inside ( )RK tq:=  such that K is von Neumann regular, R is integrally

closed in S, and T is integral over R. (Also, necessarily by Corollary 2.9,

the minimal ring extensions SR ⊂  and TR ⊂  do not have the same

crucial maximal ideal.) For instance, take a quasilocal domain

( ) ( ))NBMA ,resp.,,  with a minimal overring C inside ( )Atq  ( D.,resp

inside ( ))Btq  such that A is integrally closed in C (resp., D is integral over

B). Put .: BAR ×=  Then ( ) ( ) ( ) KBAR :tqtq~tq =×=  is von Neumann

regular. Moreover, BC ×  is a minimal overring of R with crucial maximal

ideal BM ×  such that R is integrally closed in ;BC ×  and DA ×  is an

integral minimal overring of R with crucial maximal ideal .NA ×

3. The Case of Integral Overrings

As noted prior to the statement of Theorem 2.8, this section is devoted

to the case of our basic question in which S and T are integral minimal

overrings of a ring R, with S and T both contained in ( ).tq: RK =  As in

Section 2, the role of the crucial maximal ideals is central in studying this

context. Proposition 3.3(a) establishes that in general (for TS,  as above),

there is a finite upper bound on the cardinality of any chain of rings

between S and ST. Moreover, we show that in some instances (with TS,

as above), ST is actually a minimal ring extension of S. However, the

main emphasis of this section is a comprehensive presentation of

examples in which S and T are integral minimal overrings of a

Noetherian domain R, with S and T each inside ( )RK tq:=  and ST not a

minimal ring extension of S.
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To organize that study, we begin by stating [7, Proposition 2.12],
which was built in part on results from [9].

Lemma 3.1. Let R be a ring with total quotient ring K. Let KB ⊆  be

an integral overring of R. Then B is a minimal ring extension of R if and

only if there exists ( )RM Max∈  such that one of the following three

conditions holds:

(1) M is a maximal ideal of B and MB  is a minimal field extension

of ;MR

(2) there exists RBq \∈  such that [ ] ,, 2 MqqqRB ∈−=  and

;RMq ⊆

(3) there exists RBq \∈  such that [ ] ,,, 32 RqRqqRB ∈∈=  and

.RMq ⊆

If any of the above three conditions holds, then M is uniquely

determined as ( ),: BR  the crucial maximal ideal of the extension .BR ⊂

Furthermore, conditions (1), (2), (3) are mutually exclusive. Indeed, if B is
an integral minimal ring extension of R, then (2) (resp., (3)) is equivalent

to MB  being isomorphic as an MR -algebra to MRMR ×  ( .,resp

( )[ ] ( )).2XXMR

It will be convenient to say that an integral minimal overring B of R
( ( ))RK tqinside =  is of type 1, type 2, or type 3 according as to whether

B satisfies condition (1), (2), or (3) of Lemma 3.1. Given two distinct
integral minimal overrings KTS ⊂,  of R, we will say that TS,  are a

type ( )ba,  example if S is of type a and T is of type b, while SR ⊂  and

TR ⊂  have the same crucial maximal ideal M. Occasionally, we will

relax this terminology by not requiring the ring extensions TS,  to be

overrings of R.

We next collect some examples of type ( ).1,1  Without seeking

maximum generality, Remark 3.2 indicates how the study of this type
of example is often equivalent to the corresponding field-theoretic
considerations.
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Remark 3.2. (a) We assume familiarity with the lore of the ideals
and overrings of the classical MD +  construction, as summarized in
[2, Theorems 2.1 and 3.1]. Let F and L be distinct proper field extensions

of a field k which are contained in the same algebraic closure k  of k. Let

MkV +=  be any valuation domain with maximal ideal 0≠M  such

that V contains a copy of its residue field. Put ,:,: MFSMkR +=+=

and .: MLT +=  Then TS,  are integral overrings of R that are

contained in V (which is actually the integral closure of R); and TS,  are

each quasilocal, with common maximal ideal M. Moreover, S and T are
minimal overrings of R if and only if F and L are minimal field extensions
of k (the point being that, cf. [18, Corollary 1.4], the rings E between R
and S are in one-to-one correspondence with the fields D between K and F
via .): MDED +=  If these equivalent conditions hold, then TS,

give an example of type ( ).1,1  Observe that the composite MFLST +=

(viewed  inside ).V  By reasoning as above, we see that STS ⊂  (resp.,

)STT ⊂  is a minimal ring extension if and only if ( )FLLFLF ⊂⊂ resp.,

is a minimal field extension.

(b) We next slightly generalize the considerations in (a). Let TS,  be

distinct integral proper overrings of a domain R inside some quotient field
K of R. Let ( )RM Max∈  also be an ideal of both S and T. Consider the

field MRk =:  and the rings ,:,: MTLMSF ==  together with the

composite ST (viewed  inside ( )).:: MMV K=  Then ( ) ( )MTMSFL =

( ) .MVMST ⊆=  By a standard homomorphism theorem, S and T are

minimal overrings of R if and only if F and L are minimal ring extensions
of k. If these equivalent conditions hold with SR ⊂  and TR ⊂  having the

same crucial maximal ideal M which is a maximal ideal of both S and T,
then TS,  give an example of type ( ).1,1  Suppose next that ( ).Spec VM ∈

(For instance, take R to be a pseudo-valuation domain, in the sense of
[11]; note that the R in (a) is a pseudo-valuation domain and that the V in
(a) is both ( )MM :  and the canonically associated valuation overring of

R.) Then ,, LF  and the composite FL are fields, and ( )STTSTS ⊂⊂ resp.,

is a minimal ring extension if and only if ( )FLLFLF ⊂⊂ .,resp  is a

minimal field extension.
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The considerations involving ( ) MMM :  in the preceding remark

are relevant more generally, as we illustrate in the proof of part (c) of the

next result. Proposition 3.3(a) provides the final step to a finiteness result

that was promised in Remark 2.4(c) in Section 2. Example 3.9 shows that

the inequalities in Proposition 3.3(d) are best possible.

Proposition 3.3. Let R be a ring. Let SR ⊂  and TR ⊂  be distinct

integral minimal ring extensions with the same crucial maximal ideal M.

Suppose also that S and T are each R-algebra isomorphic to overrings of R

(possibly inside different total quotient rings of R) and that S and T are

not isomorphic as R-algebras. Suppose that the composite ST exists in

some ring extension of R. Let k denote the field .MR  Put ( )MSd kdim:=

and ( ).dim: MTn k=  Let C  be any chain of rings contained between S

and ST, and let D  be any chain of rings contained between T and ST.

Then:

(a) C  and D  are each finite. In fact, ( ) 11 +−≤ dnC  and

( ) .11 +−≤ ndD

(b) Suppose also that ( )MTrespMS .,  is a field. Then n≤C

( ).., dresp ≤D

(c) Suppose also that MS  and MT  are each fields and that TS,

are each contained in ( ).tq RK =  Then n≤C  and .d≤D  Moreover,

if ( ),:Spec MMM K∈  then ( )n2log≤C  and ( ).log2 d≤D

(d) If neither MS  nor MT  is a field, then 3≤C  and .3≤D

Proof. By reasoning as in the proof of Corollary 2.6, we may suppose

that TS,  are each contained in ( );tq RK =  and then, since S and T are

not isomorphic as R-algebras, that .TS ≠

(a) Since ,TSST =  it suffices to prove the assertion concerning .C

Let Taa n ∈...,,1  be such that their cosets modulo M form a k-vector

space basis of .MT  In other words, { }ia  is a minimal generating set of

T as an R-module. In the same way, there are elements Sbb d ∈...,,1
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forming a mimimal generating set for the R-module S (i.e., whose cosets

modulo M form a k-basis of .)MS  Now, since =






= ∑ =
n
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1
,  we have that ( ) MST  can be written as

( ) ( ) ( ) ( ) ( )
( )

∑ ∑∑ ∑
= = =

+=+












+=+

n

i ji
jii

n

i

d

j
ji MbakMaMbkMaMS

1 ,1 1

.

So, ( )( ) .dim ndMSTk ≤  Note that the given chain C  induces a chain

of the same cardinality of k-vector spaces from MS  to ( ) MST

( ).via MAA  The cardinality of any such chain of subspaces from

(the d-dimensional k-vector space) MS  to (the at most ( )nd -dimensional

k-vector space) ( ) MST  is at most ( ) ( ) .111 +−=−− dndnd

(b) It is enough to prove that if MT  is a field, then the given chain

D  has cardinality at most d. (By  (a), we know that D  is finite, of

cardinality at most ( ) ,11 +− nd  but this general bound exceeds d because

.)1≥n  For a proof, recall that ( )( ) .dim ndMSTk ≤  Consider MTk ⊂

( ) .MST⊂  Since MT  is a field, we have (cf. [13, page 66]) that

( )( )MSTkdim ( ) ( )( )MSTMT MTk dimdim ⋅=  ( )( ).dim MSTn MT⋅=

Thus, ( )( ) .dim ndMSTn MT ≤⋅  Cancelling the factor n, we find that

( )( ) .dim dMSTMT ≤  To finish the proof of (b), consider MTdim  for the

members of the chain { }.D∈| EME

(c) Since ,TSST =  it suffices to prove the assertions concerning .C

The first assertion is immediate from (b). Consider the fields ,: MRk =

,: MSF =  and .: MTL =  We have ( ) == MSTFL ( ) ( ) ⊆MTMS

( ) .: MMM K  By a standard homomorphism theorem, there is an order

isomorphism between the poset of rings E such that STES ⊆⊆  and

the poset of rings D such that ,FLDF ⊂⊂  given by .: MEDE =

The first assertion concerning C  (which we have already established) is

therefore equivalent to the statement that if K  is any chain of rings
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(necessarily fields) contained between F and FL, then .n≤K  The final

assertion follows from the multiplicativity of field degrees in towers of

fields, as in the comment following the proof of [5, Proposition 2.1].

(d) It follows from [9, Lemme 1.2] that MS  and MT  are each

k-algebra isomorphic to either the ring of dual numbers over k or the
direct product of two copies of k. Thus, ,2== dn  and so the conclusion

follows from (a).

Some useful upper bounds that are weaker than those given in
Proposition 3.3(c) can be found as follows. Assume the notation and
hypotheses of Proposition 3.3(c). Let λ (resp., µ) be the minimal degree
of a monic polynomial [ ] [ ]( )XRgXRf ∈∈ ,resp.  such that ( ) 0=tf  for

some element Tt ∈  satisfying [ ] TtR =  ( .,resp  such that ( ) 0=sg  for

some element Ss ∈  satisfying [ ] .)SsR =  Then n≥λ  and ,d≥µ  so

that Proposition 3.3(c) (or its proof) gives, for instance, that λ≤C  and

.µ≤D

Despite Proposition 3.3, we will show in Corollary 3.7 that for all nine
types ( )ba,  of examples TS,  of integral minimal overrings of a ring R

(with the same crucial maximal ideal), our basic question (whether both
STS ⊂  and STT ⊂  must be minimal ring extensions) has, in general,

a negative answer, even if R is a Noetherian ring. First, we present in
Proposition 3.4(a) the two situations where ST, if it exists, must be a
minimal ring extension of S. Proposition 3.4(c) gives the first of the
Noetherian examples.

Proposition 3.4. Let R be any ring. Suppose that ( )TS,  are a type

( )b,1  example of integral minimal ring extensions of R, each with crucial

maximal ideal M. Suppose also that the composite ST exists. Then:

(a) Suppose that { }.3,2∈b  Then ST is a minimal ring extension of S

of type b.

(b) Suppose that 1=b  and, in addition, that S and T are overrings of
R that are each contained in ( ).t: RqK =  Then ST is a minimal ring

extension of S if and only if ( ) ( )MTMSMS ⊂  is a minimal extension

of fields.
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(c) For 1=b  it is possible to choose SR,  and T as above so that R is

a Noetherian domain, S and T are integral minimal overrings of R each of

type 1 and with the same crucial maximal ideal, and STS ⊂  is not a

minimal ring extension.

Proof. (a) Proposition 3.3 can be used to show that ST is a minimal

ring extension of S. Indeed, with ,: MRk =  we have that { }3,2∈b  gives

MT  isomorphic, as a k-algebra, to either kk ×  or [ ] ( ).2XXk  In

particular, ( ) .2dim: == MTn k  Hence, the minimality of STS ⊂

follows from Proposition 3.3(b). It is possible to extend the reasoning in

Example 2.3 to show that this extension is of type b, but instead, we next

show how to use Lemma 3.1 to obtain all the assertions at once.

Since T is of type b, with { },3,2∈b  there exists RTq \∈  such that

[ ] ,, RMqqRT ⊆=  and either ( )2if2 =∈− bMqq  or Rqq ∈32,

( ).3if =b  Note that ( )SM Max∈  since S is of type 1. Moreover, =ST

[ ] [ ] ( ),since\, TSSSTqqSqSR ≠∈=  and ;SMq ⊆  and either qq −2

( )2if =∈ bM  or Sqq ∈32,  ( ).3if =b  All the assertions now follow

from Lemma 3.1.

(b) We rework some of the ideas and notation in Remark 3.2(b). Since

TS,  are a type ( )1,1  example, we can consider the fields ,: MRk =

MSF =:  and ,: MTL =  together with the composite ST (viewed  inside

( )).:: MMV K=  By a standard homomorphism theorem, S and T are

minimal overrings of R since (in fact, if and only if) F and L are minimal

field extensions of k. Note that ( ) ( ) == MTMSFL .MVMST ⊆

Another application of the homomorphism theorem yields the assertion.

(c) Let K be a field with algebraic closure ,K  and let LF ,  be distinct

minimal field extensions of K inside .K  Let MFLV +=  be a DVR with

nonzero maximal ideal M (for  instance, [ ][ ]).XFLV =  By [10, Exercise

8(3), pp. 270-271], the domain MKR +=:  is Noetherian, as are its

integral overrings MFS +=:  and .: MLT +=  Note that TS,  (as
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overring extensions of R) give an example of type ( ).1,1  It follows from

each of Remark 3.2(b) and part (b) of this proposition that VSTS =⊂

is a minimal ring extension if and only if FLF ⊂  is a minimal field

extension. Accordingly, it suffices to find LFK ,,  as above such that

FLF ⊂  is not a minimal field extension. The following example of such

data may be known but is included here for the sake of completeness.

Let 5≥p  be a prime number, ω a primitive thp  root of unity (in the

complex numbers) and α the real thp  root of 2. Consider the fields

( )α== QQ :,: FK  and ( ).: ωα= QL  Of course, [ ] [ ],:: KLpKF ==

since 2−pX  is irreducible over Q (by, for instance, Eisenstein’s

Criterion). Also, the standard theory of cyclotomic field extensions tells us

that ( )[ ] ( ) 1: −=ϕ=ω ppQQ  (where ϕ denotes the Euler phi-function).

Since p and 1−p  are relatively prime, [14, Theorem 3(c), p. 6] ensures

that the degree of ( ) ( )ωα=ω ,QQ F  over F is .1−p  Note that ( )ωα,Q  is

the splitting field of 2−pX  over ,Q  and so is a Galois field extension of

.Q  By standard Galois Theory, it follows that ( )ωα= ,QFL  is Galois

over F. Therefore, by the comments preceding Proposition 2.2, FLF ⊂  is

a minimal field extension if and only if 1−p  is a prime number. But

1−p  is not a prime number because it is even and greater than 2. This

completes the proof.

Remark 3.5. Despite Proposition 3.4(c), it is possible for integral

minimal overrings TS,  giving an example of type ( )1,1  (and having the

same crucial maximal ideal) to be such that STS ⊂  is a minimal ring

extension. For instance, let us work inside the valuation domain =:V

[ ] [ ][ ],3,2 XQ  with maximal ideal .XVM =  As in the proof of

Proposition 3.4(c), the domain MR += Q:  is Noetherian, as are its

integral overrings [ ] MS += 2: Q  and [ ] .3: MT += Q  Since [ ]2Q  and

[ ]3Q  are each minimal field extensions of ,Q  it follows from any of

Remark 3.2(a), Remark 3.2(b) or Proposition 3.4(b) that VSTS =⊂  and

STT ⊂  are each minimal ring extensions of type 1.
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We next show how to use Example 2.3 to produce negative answers to

our basic question for the six types ( )ba,  that were not addressed in

Proposition 3.4, namely, those types where  .1≠a

Example 3.6. Let ( ) { } { }.3,2,13,2, ×∈ba  Then there exist a

Noetherian ring R and distinct integral minimal overrings TS,  of R that

are inside the same total quotient ring of R, have the same crucial

maximal ideal, and give an example of type ( )ba,  such that STS ⊂  is

not a minimal ring extension.

Proof. As in Example 2.3, let K be a field. For the various parts of

Example 2.3, let the symbols TS,  and U have the meanings given to

them earlier in Example 2.3. Let W be an indeterminate that is

algebraically independent from the variables YX ,  that appeared in

Example 2.3. By the Hilbert Basis Theorem, the ring U is a Noetherian

ring (for all parts of Example 2.3) and, hence, so is the polynomial ring

[ ].WU  Consider its subring [ ].: WWUKR +=  As we can see from the

description of U in the various parts of Example 2.3 that U is a finite-

dimensional vector space over K, it follows that [ ] [ ]WWUUWU +=  is a

finitely generated module over [ ] .RWWUK =+  Therefore, by Eakin’s

Theorem [8], the ring R is Noetherian. Moreover, since S and T are

integral ring extensions of K, we have that [ ]WWUSS +=:1  and =:1T

[ ]WWUT +  are each integral ring extensions of R. In fact, 1S  and 1T  are

actually overrings of R, the point being that if ,U∈λ  then 

W
Wλ=λ  in the

total quotient ring of R since W is a non-zero-divisor of R. Also, since S

and T are distinct integral minimal ring extensions of K (necessarily

having the same crucial maximal ideal, { }),0  it follows easily by analyzing

the cases in Lemma 3.1 that 1S  and 1T  are distinct integral minimal

overring extensions of R with the same crucial maximal ideal, [ ].WWU  As

,UST =  we have that the composite [ ] =+= WWUUTS 11 [ ].WU  We

proceed to determine the possible minimality of the extensions 111 TSS ⊂

and 111 TST ⊂  for the various parts of Example 2.3.
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In part (a) of Example 2.3, we saw that ,STLxKT ⊂⊕⊂  and so

( ) [ ] [ ] .111 TSWWUSTWWULxKT =+⊂+⊕⊂  In particular, 11, ST  give

a type (3, 1) example of integral minimal overrings of the Noetherian ring

R (which have the same crucial maximal ideal [ ]WWU  and) for which

111 STT ⊂  is not a minimal ring extension.

In part (b) of Example 2.3, we saw that ,STLKT ⊂×⊂  and so

( ) [ ] [ ] .111 TSWWUSTWWULKT =+⊂+×⊂  In particular, 11, ST  give

a type ( )1,2  example of integral minimal overrings of the Noetherian ring

R (which have the same crucial maximal ideal [ ]WWU  and) for which

111 STT ⊂  is not a minimal ring extension.

By reasoning as above, we see similarly that Example 2.3(c) leads to

11, TS  giving a type ( )3,3  example for which neither 111 TSS ⊂  nor

111 STT ⊂  is a minimal ring extension; Example 2.3(d) leads to 11, TS

giving a type ( )2,2  example for which neither 111 TSS ⊂  nor 111 STT ⊂

is a minimal ring extension; and Example 2.3(e) leads to 11, TS  giving a

type (3, 2) example (and 11, ST  giving a type ( )3,2  example) for which

neither 111 TSS ⊂  nor 111 STT ⊂  is a minimal ring extension.

In summary, part (a) of Example 2.3 leads to an example of type

( )1,3  with the asserted properties; part (b), type ( ),1,2  part (c), type

( );3,3  part (d), type ( );2,2  and part (e), types ( )2,3  and ( ).3,2

The referee has kindly noted that our reasoning in the second, third

and fourth paragraphs of the proof of Example 3.6 leads to the following

enhancement of [18, Corollary 1.4]: if BA ⊆  are rings with a common

ideal ,0≠I  then BA ⊆  is a minimal ring extension if and only if

IBIA ⊆  is a minimal ring extension; and if these conditions hold with

( )IBB ,resp.  integral over ( ),,resp. IAA  then the integral minimal

ring extensions BA ⊆  and IBIA ⊆  are of the same type.

Corollary 3.7. Let ( ) { } { }.3,2,13,2,1, ×∈ba  Then there exist a

Noetherian ring R and distinct integral minimal overrings TS,  of R that
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are inside the same total quotient ring of R, have the same crucial

maximal ideal, and give an example of type ( )ba,  such that either STS ⊂

is not a minimal ring extension or STT ⊂  is not a minimal ring extension

(or both).

Proof. Example 3.6 takes care of eight of the nine cases, namely,
the cases where ( ) ( ).1,1, ≠ba  Finally, for the case ( ) ( ),1,1, =ba  apply

Proposition 3.4(c).

Much of the literature on minimal overrings concerns the case of base
rings that are domains. For that reason, we next present an alternate set
of examples providing a negative answer to our basic question in which
the base ring is not only Noetherian but also a domain.

Example 3.8. Let { }.3,2,1∈a  Then there exist a Noetherian domain

R and distinct integral minimal overrings TS,  of R that are inside the

same quotient field of R, have the same crucial maximal ideal, and give
an example of type ( )1,a  such that STS ⊂  is not a minimal ring

extension.

Proof. The case 1=a  was handled in Proposition 3.4(c). We proceed

to provide examples of types ( )1,2  and (3, 1) with the asserted properties.

Let YX ,  be algebraically independent indeterminates over .Q  All rings

considered henceforth will be subrings of the polynomial ring [ ]., YXQ  It

will be easy to see that [ ]YX ,Q  is module-finite, and hence integral, over

each of these subrings. Hence, as in the proof of Example 3.6, each of
these subrings is Noetherian. Moreover, it will also be clear that all the
rings under consideration have quotient field ( )., YXQ

Type (2, 1). Let R be the subring of [ ]YX ,Q  defined by

[{ ( ) ( ) }].0,,,2,: 22 ≥|−−= tsnmYYXYXXXR tsmnQ

It is easy to see that the quotient field of R is ( );, YXQ  and that

[ ]YX ,Q  is a module-finite R-algebra. Note that .RX ∉  (Indeed, if X

were a polynomial over Q  in { ( ) ( ) },2, 22 tsmn YYXYXXX −−  then the

substitution 2Y  would show that X is a polynomial over R  in
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{ ( )}.2 XXX n −  However, X cannot be the sum of a real number and a real

polynomial of degree at least 2.) Similarly, one sees by considering the
substitution 0X  that .RY ∉  Thus, the rings

[ ] [{ ( ) ( ) }]0,2,,: 22 ≥|−−== tmYYYXXXXRS tmQ

and [ ] [{ ( ) ( ) }]0,2,,: 22 ≥|−−== snYXYXXXYRT snQ  are proper

integral overrings of R. Moreover, we claim that .TS ≠  The easiest way

to see this is to observe that ,SXY ∉  and this can be shown by reasoning

as above. (In detail, if ,SXY ∈  apply the substitution 1X  and infer

the contradiction that Y is the sum of a rational number and a rational

polynomial of degree at least 2.) On the other hand, by using the

substitution ,0X  we see similarly that [ ].XYSY ∉  One consequence

is that [ ] [ ] ., STYXXYSS =⊂⊂ Q  It remains only to show that TS,

are minimal ring extensions of R having the same crucial maximal ideal

such that S is of type 2 and T is of type 1.

Let M be the ideal of R defined by

({ ( ) ( ) }).0,,,2,: 22 ≥|−−= tsnmYYXYXXXM tsmn

It is clear that ,~ Q=MR  and so ( ).Max RM ∈  Observe that the

product of X with each member of the given generating set of M is again

in M, and so .RMXM ⊂⊆  As ,2 MXX ∈−  Lemma 3.1 yields that S is

an integral minimal overring of R of type 2 with crucial maximal ideal M.

Finally, observe (by checking the product of Y with each member of

the given generating set of M) that ,TRMYM ⊂⊂⊆  and so M is a

proper ideal of T. Furthermore, there is a canonical surjective ring-

homomorphism [ ] ( ) ,22 MTYY →−Q  and this must be an isomorphism

since [ ] ( ) ( )2~22 QQ =−YY  is a field. It is of degree 2 and, hence,

minimal over .~ MR=Q  Therefore, Lemma 3.1 yields that T is an

integral minimal overring of R of type 1 with crucial maximal ideal M.

Thus, TS,  give an example with the asserted properties.
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Type (3, 1). Let R be the subring of [ ]YX ,Q  defined by

[{ ( ) ( ) }].0,,2,2,,: 2232 ≥|−−= tnmYYXYYYXYXR nntmQ

It is easy to see that the quotient field of R is ( );, YXQ  and that

[ ]YX ,Q  is a module-finite R-algebra. Note that .RX ∉  (Indeed, if X

were a polynomial over Q  in { ( ) ( ) |−− nntm YYXYYYXYX 2,2,, 2232

},0,, ≥tnm  then the substitution 2Y  would show that ∈X

[ ],, 32 XXR  which is absurd.) As above, the substitution 0X  can be

used to show that .RY ∉  Thus, the rings

[ ] [{ ( ) }]0,,2,,: 22 ≥|−== tnmYYYXXXRS nmQ

and [ ] [ ( )]2,,,: 232 −== YXYXXYRT Q  are proper integral overrings

of R. We leave it to the reader to check that .SXY ∉  Moreover, the

substitution 0X  can be used to show that [ ].XYSY ∉  Consequently,

[ ] [ ] ., STYXXYSS =⊂⊂ Q  It remains only to show that TS,  are

minimal ring extensions of R having the same crucial maximal ideal such

that S is of type 3 and T is of type 1.

Let M be the ideal of R defined by

({ ( ) ( ) }).0,,2,2,,: 2232 ≥|−−= tnmYYXYYYXYXM nntm

It is clear that ,~ Q=MR  and so ( ).Max RM ∈  Observe that ⊆MX

.RM ⊂  Since RXX ∈32,  by definition, it follows from Lemma 3.1

that S is an integral minimal overring of R of type 3 with crucial maximal

ideal M.

Observe that .RMMY ⊂⊆  In particular, M is a proper ideal of T.

One can show that [ ] ( ) ( ),2~2~ 2 QQ =−= YYMT  which is a minimal

field extension of .~ MR=Q  Therefore, Lemma 3.1 yields that T is an

integral minimal overring of R of type 1 with crucial maximal ideal M.

The proof is complete.



COMPOSITES OF MINIMAL RING EXTENSIONS 271

It follows from Proposition 3.3(d) that if S and T are minimal integral

overrings of a domain R with the same crucial maximal ideal such that

neither S nor T is of type 1, then any chain of rings between S and ST has

cardinality at most 3. We next show that this is best possible, by

presenting examples in all possible cases (where neither S nor T is of type

1) where the maximal cardinality 3 can be achieved, i.e., where there is a

ring properly between S and ST, with R a suitable Noetherian domain.

Example 3.9. Let ( ) { } { }.3,23,2, ×∈ba  Then there exist a Noetherian

domain R and distinct integral minimal overrings TS,  of R that are

inside the same quotient field of R, have the same crucial maximal ideal,

and give an example of type ( )ba,  such that STS ⊂  is not a minimal

ring extension.

Proof. Let F be an arbitrary field, and let YX ,  be algebraically

independent indeterminates over F. All rings considered henceforth will

be subrings of the polynomial ring [ ]., YXF  It will be easy to see that

[ ]YXF ,  is module-finite, and hence integral, over each of these subrings.

Hence, as in the proofs of Examples 3.6 and 3.8, each of these subrings is

Noetherian. Moreover, it will also be clear that all the rings under

consideration have quotient field ( )., YXF  The verifications have much

the same tempo as those in Example 3.8 and so we leave some of the

details to the reader.

Type (2, 2). Let R be the subring of [ ]YXF ,  defined by

[{ ( ) ( ) }].0,,,,: 22 ≥|−−== tsmnYYYXYXXXFR tsmn

By using the substitution ,0Y  one can show that .RX ∉  Similarly,

.RY ∉  Let M be the ideal of R defined by

({ ( ) ( ) }).0,,,,: 22 ≥|−−= tsmnYYYXYXXXM tsmn

Evidently, ,~ FMR =  and so ( ).Max RM ∈  Since ,, MMYMX ⊆  it

follows via Lemma 3.1 that the rings

[ ] [{ ( ) ( ) }]0,,: 22 ≥|−−== mYYYYXXXFXRS mm
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and [ ]YRT =:  are integral minimal overrings of R, each of type 2 and

having crucial maximal ideal M.

Observe that SXY ∉  (for, otherwise, the substitution 1X  would

lead to a contradiction). Consequently, TS ≠  and [ ].XYSS ⊂  It remains

only to check that [ ] [ ]., YXFSTXYS =⊂  To this end, it suffices to show

that [ ].XYSY ∉  This, in turn, follows by considering the substitution

.0X  Thus, TS,  give an example with the asserted properties.

Type (3, 3). Let R be the subring of [ ]YXF ,  defined by

[ ].,,,,,,,: 32323232 XYXYYXYXYYXXFR =

The definition of the data MTS ,,  and their analysis can proceed

almost exactly as for the preceding example of type ( )2,2  with the

following exception. The verification that SXY ∉  is somewhat tedious

but straight forward. Details are left to the reader.

Types (2, 3) and (3, 2). Let R be the subring of [ ]YXF ,  defined by

[{ ( ) ( ) }].0,,,,,: 3222 ≥|−−= tsnYXYXYXXXXXXFR tsnn

Note that RX ∉  (for, otherwise, the substitution 0Y  would lead to X

being the sum of a constant in F and a polynomial of degree at least 2, a

contradiction). Also, RY ∉  (for, otherwise, the substitution 1X  would

lead to [ ],, 32 YYFY ∈  a contradiction).

Consider the subrings of [ ]YXF ,  defined by

[ ] [ ( ) ]YXXYYXFXRS −== 232 ,,,:

and

[ ] [{ ( ) }].0,,,: 22 ≥|−== mnXXXYXYFYRT mn

Let M be the ideal of R defined by

({ ( ) ( ) }).0,,,,,: 3222 ≥|−−= tsnXYXYYXXXXXXM tsnn
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As ,~ FMR =  we have that ( ).RMax∈M  Since ,, RMMYMX ⊂⊆  it

follows via Lemma 3.1 that S and T are integral minimal overrings of R

which each have crucial maximal ideal M and are of types 2 and 3,

respectively.

Since S and T are of different types, it must be the case that .TS ≠

Another way to see this is to show that .SXY ∉  The latter fact can be

proved by considering the substitution .1X  An important consequence

is that [ ].XYSS ⊂  To show that TS,  are a type (2, 3) example with

the asserted properties, it suffices ( [ ])YXFST ,since =  to prove that

[ ].XYSY ∉  This, in turn, follows by considering the substitution .0X

It remains only to show that ST ,  are a type (3, 2) example such that

[ ] [ ]., YXFTSXYTT =⊂⊂  Now, the substitution 0Y  easily leads

to the fact that [ ],XYTX ∉  and so [ ] .TSXYT ⊂  We turn, finally, to the

non-routine part of this verification, namely, the proof that TXY ∉ (and,

hence, that [ ]).XYTT ⊂

Suppose, on the contrary, that .TXY ∈  Then XY is a polynomial f

(with coefficients in F) in the terms { }.1,, 12 ≥|−+ nXXYXY nnn  The

only way for the monomial XY to appear as a term in f would be for f

to contain the expression ( )YXX −− 2  (when written as a polynomial in

the terms { }).1,, 12 ≥|−+ nXXYXY nnn  However, in that case, the

monomial YX 2−  would have to be cancelled without cancelling the term

.XY  The only way for this to occur would be for ( )YXX 23 −−  to appear

in f. However, in that case, we would need to explain the cancellation of

.3YX−  In fact, we would need to repeat the argument indefinitely, in

order to explain the cancellation of YX n−  for all .2≥n  As a polynomial

can have only finitely many terms, it cannot be the case that .TXY ∈

The proof is complete.
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Remark 3.10. The upshot of combining Proposition 3.4(a), Example

3.8 and Example 3.9 is that we can sharpen the “Noetherian ring R”

assertion in Corollary 3.7 to “Noetherian domain R”.
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