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Abstract

In the field of image identification and vibrancy theory, we often
consider the equations for the generalized eigenvalues of matrix. We
discuss perturbation questions on generalized eigenvalues of the
complex positive definite matrix (possibly non-Hermitian). Some relative
perturbation bounds for generalized eigenvalues of the complex positive
definite matrix are established.

1. Introduction

We denote the set of nxn complex matrices by M,. Let A = (a;)
€ M,, A" be the conjugate transpose of matrix A and A~" be the conjugate
transpose of matrix A~! if A is invertible. | A lo = (Amax (A*A))l/ % is the

spectral norm of matrix A and x(A) = | A [, Al [, is the spectral norm

condition number of matrix A with respect to inversion.
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In the field of image identification and vibrancy theory, we often
consider the equation

Ax = ABx, 0= x e C",

where A is a scalar, and both A and B are nxn matrices. If a scalar A and

a non-zero vector x € C" happen to satisfy this equation, then A is called
an eigenvalue of A with respect to B (it is called generalized eigenvalue of

A for short). If B is nonsingular, then A is an eigenvalue of A with respect
to B if and only if A is the eigenvalue of B7'A. Amatrix Ae M » 1s called

a normal matrix with respect to H (it is called generalized normal matrix

for short) if there exists a positive definite Hermitian matrix H such that

A"HA = AHA" (see [10, 11, 12]). A matrix A € M,, is called a complex
positive definite matrix if Re(x*Ax)>0, for any non-zero x € C" (see [6]).
We denote the Toeplitz decomposition A = H(A)+ K(A), where H(A) =
%(A +A"),K(A)= %(A — A™). Obviously, A is a complex positive definite
matrix if and only if H(A) is positive definite.

Now, there are many famous results on the perturbation problems for
eigenvalues of the positive definite Hermitian matrix (see [1], [3], [7-9]).
In this paper, we discuss perturbation questions on the generalized
eigenvalues of complex positive definite matrix (possibly non-Hermitian).
Some relative perturbation bounds for generalized eigenvalues of the

complex positive definite matrix are established.
2. Main Result

Lemma 1 (see [10, Theorem 5]). Suppose A € M,, and H is a positive

definite Hermitian mairix. Then A is a normal matrix with respect to H if

and only if there exists a nonsingular matrix P such that
PAP™ = A, @)
where

A = diag(hy, Ay, ooy Ap)-
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Furthermore, Ay, Ag, ..., A,, are n eigenvalues of HA with H = P*P (orn
eigenvalues of A with respect to H _1).

Remark 1. By the proof of Lemma 1, we see that P = HY2U* with
U is unitary in (1) (see [10], the proof of Theorem 5).

Lemma 2. If A € M,, is a positive definite matrix, then
A*H(A)A = AH(A) A", @)

and A is a normal matrix with respect to H(A) ™, where H(A):%(A +A").

Proof. By a simple calculation, we have
A*H(A)A = AH(A)tA*

= H(A)- K(A)H(A) ' K(A).

Theorem 1. A € M,, is a complex positive definite matrix if and only

if there exists a nonsingular matrix P, such that
PAP* = A, 3)

where A = diag(hy, Mg, ..., y), H(A) ™ = P*P and Ay, kg, ..., A, are the
eigenvalues of A with respect to H(A), where H(A) = %(A + A"

Proof. If A is a complex positive definite matrix, then by Lemma 1

and Lemma 2, it is easy to get the necessity. Conversely, since P is
nonsingular and H(A)™' = P*P, we know that H(A) is positive definite,

s0 A is a positive definite matrix.

Remark 2. Since (3) is equivalent to H(A)_lA =P*AP™", A, hg, s Ay,
are the eigenvalues of A with respect to H(A), so we say that (3) is a
generalized eigenvalue decomposition of matrix A and any positive
definite matrix A has generalized eigenvalue decomposition (3).

If H is a positive definite Hermitian matrix and A € M, is a normal

matrix with respect to H, we say that A is an H-normal matrix.
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Theorem 2. Let A € M,, be an H-normal matrix with (1). If A isan
eigenvalue of A = A+ E with respect to H L then

min|% - 4; | < PEP" |, < «(P)| HE |, @

1<i<n
where H = P*P.
Proof. By equality (1), we have PAP* = A + PEP*, so
H(A + E) = P*(A+ PEP*)P".
Then XA is an eigenvalue of A + PEP* from the assumption. Hence

AM-A-PlEP™ isa singular matrix, where I is the identity matrix. If

M- A s singular, then there is some i, such that A= A; and the bound

(4) holds. If A - A is nonsingular, then
(A = A)*(\I - A — PEP*) = I - (\I - A) ' PEP*
is singular, and hence it must be that || (AI — A)" PEP* o =1 (see [5,
Corollary 5.6.16]). Thus
1< | (- AYPEP" |, < | PEP || (11 - A |,

~ -1 . e —1
= | PEP" |l max| % = 2; [ = | PEP” [y (min| % = 2; ).

Since H = P*P, apply the property of spectral norm to get

min|k —k; | < | PEP" ||y < | P7" |y HE [ P |-

1<i<n
(4) holds by k(P) = k(P™).
Theorem 3. Let A € M,, be a positive definite matrix with generalized

eigenvalue decomposition (3). If A is an eigenvalue of A=A+E with
respect to H(A), then

min| % - 2; | < | PEP" |, < x(P)| H(A) " E |, ®)

1<i<n

where H(A)™! = P*P.



GENERALIZED SPECTRAL RELATIVE PERTURBATION ... 139

Proof. Applying Lemma 2 and Theorem 2, Theorem 3 can easily be

proved.
Theorem 4. Let A € M,, be a positive definite matrix with generalized

eigenvalue decomposition (3). If A is an eigenvalue of A=A+E with
respect to H(A), then

min
1<i<n

|2 = |

A |

Proof. Let A = ZH(A)A™'H(A) and E = —~H(A)A'E. If

< k(P)| A7'E ||, (6)

HA YA+ E)X =7,
then
RAIH(A) - A'E]R = %,
so (A + E)Y = "H(A)%, and H(A) (4 + E)X = A%. Hence, we can write
H(A) ' (A + E)X = 2% as
HA YA+ E)% =%, (7
where
A =2 H(A)A'H(A) and E = -H(A)A™'E. ©)
Since A is normal with respect to H(A)™, AH(A) ' A* = A*H(A) A.
By (8), we have
AH(AY'A* = XX H(A)AT'H(A)A™* H(A)
and
A*H(A) 1A = VAH(A)A™"H(A)A H(A).
Then AH(A)_IA* = A*H(A)_1 A, so A is normal with respect to H(A) .
Since

A=7%H(A)A'H(A) and H(A) = (P"P)},
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by (3), we get
PAP* = APH(A)A™'H(A)P*
AP AP = AL )
So A has the generalized eigenvalue decomposition (9) with n
eigenvalues A/A; (i =1,2, .., n) with respect to H(A). By (7), we know
that 1 is the eigenvalue of A+ E with respect to H(A). Hence, applying

Theorem 2 to the eigenvalues X/Xi (=12, .. n)of A with respect to
H(A) and the eigenvalue 1 of A + E with respect to H(A), and by (8),

we have

min|1-7/1; | < k(p)| HA ' E |,

1<i<n
= K(P)| AT'E ;.

So inequality (6) holds.

Let B, C € M,,. Then [B, C] = BC - CB is called the commutator, B
and C commute if and only if [B, C] = 0.

Theorem 5. Let A e M, be positive definite with generalized

eigenvalue decomposition (3) and let
A=A Ay and [HA) Y24, A,H(A 2] = 0. (10)
If % is an eigenvalue of A = A + E with respect to H(A), then

N L
< . 11
11;1};}7’ | )\‘i | " Al EA2 ”2 ( )

Proof. Define
A, = HAY Y24, A, = AH(A) V2

Then H(A)_I/QAH(A)_l/2 = A Ay, and we get AjAy = AyA; from (10).

From the hypothesis, A is a normal matrix with respect to H (A)_l, we
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have AH(A) ' A* = A*H(A) A, then
[H(A) V2 AR (A2 [H(A)? AH(A) 2T
= [H(A) 2 AH(A) T [H(A) Y2 AH(A) V)

and hence H (A)_l/ 2AH (A)_l/ 2 is normal. Obviously, A; is the eigenvalue
of H (A)_l/ 2AH (A)_l/ 2 and X is the eigenvalue of H (A)_l/ 2AH (A)_l/ 2,
Notice that

HA) V2 AHAY 2 = HAY V2 AHA)Y? + HA) V2EH(A) Y2,

applying [3, Corollary 3.1], we get

min u
1<i<n |7¥i |

<| AT H(A) VP EH(A) P A5 |, = | AT'EAS |,

Theorem 6. Let A € M,, be positive definite and H(A)_l/2 AH(A)_l/2
= PU be a polar factorization with P positive definite Hermitian and U
be unitary. Then

(1) matrix A has a QU factorization A = QUQ", where @ =
H(A)l/z PY2 is a positive definite symmetrizable matrix, i.e., there exists a

nonsingular matrix D, such that D_lQD is a positive definite diagonal
matrix.
(2) if My, Mg, ..., A, are n eigenvalues of A with respect to H(A), and

~

% is an eigenvalue of A = A + E with respect to H(A), then

min i = | PV2H(A)YYV2EH(A) 2PV, (12)

1<i<n | A |

Proof. (1) Because H (A)_l/ 2AH (A)_l/ % is normal (see the proof of
Theorem 5) with a polar factorization H (A)fl/ 2AH (A)fl/ 2=PU and PU =
PY2UPY? (see [3, Lemma 3.2]), so A = QUQ*, where Q@ = H(A)/2PY2
Since both P and H(A) are positive definite Hermitian matrices, pY2
and H (A)l/ 2 are positive definite Hermitian matrices, too. Hence

R=H (A)l/ 2 p1/2 is similar to a positive definite diagonal matrix.
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(2) Matrix A has a QU factorization A = QUQ", where @ =
H(A)2PY2. Set
A = QU, Ay = @7,
then A = A;Ay. By Q*H(A)'Q = P and H(A) V2 AH(A) Y% = pY2ypY2,
we have
[H(A) 2 4y, AH(AYYV?] = HAAH(A)? - AH(A) A
= P2UPY? — @"H(A) QU
= PY2yp2 _ py - o.
Notice that U is unitary, apply Theorem 5 to get that

A A Tpa-ly _ 1 77-1o-1 o~
fgig}lwﬁ I AT EA;" [, = [UTQEQ™ |,
— " P—]./ZH(A)—]./ZEH(A)—1/2P—1/2 "2
Theorem 7. Let A € M,, be positive definite. Suppose
H(A) 2 AH(A)V? = PU
is a polar factorization with P positive definite Hermitian, and U is
unitary. If X isan eigenvalue of A = A+ E with respect to H(A), and D
is nonsingular such that
E = DE,D*, P = DM,D",
then
x

| A =]
| % |

where L, Mg, ..., A, are n eigenvalues of A with respect to H(A) and

2
<[ Ey [, G5 (13)

min
1<i<n

G = M{2D'H(AYY?D.

Proof. Since P is positive definite Hermitian, M; = D'PD™ is also

positive definite Hermitian. Since
p = PY2p2 — pMI2(DMY?Y,
PY2 and DM 11/ 2 are both “Cholesky factorizations” of P, they are related

by a unitary matrix @, i.e., PY% = (DM11/2)Q_
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Since |. |, is unitarily invariant norm and @ is unitary, by
~1/2 x 0 r-1/2 -1 ko r—1/2 _1/2\*
P2 - @*M?D" = D M[V?Q = (P7V?)
and applying Theorem 6, we have

min 2 < | p2 g a) V2 gr(a) V2 py2 Iy

1<i<n |7\’i |
= | M2 D H(AY V2 DE D" H(AY 2D M
= |GE\G™ |y <[ Ey [l G 5,
where G = M; YD H(A)/?D.
Corollary 7.1. Let A € M,, be positive definite. Let
H(A) M2 AH(A) V2 = PU

be a polar factorization with P Hermitian positive definite and U be

unitary. Let D be nonsingular and
A = DMD*, E = DE,D*, P = DM,D".
If X is an eigenvalue of A = A + E with respect to H(A), and | E; lo <

g| M ||, where ¢ is a small positive number, then

e
min LRl lal2, (a1

I<isn | Ay |
where L, Ay, ..., A, are n eigenvalues of A with respect to H(A) and
G = M;?D ' H(AY?D.
Proof. Theorem 7 implies

. |7\'L —X| 2 2
min Pl < m e < g MG

where G = M{Y>D'H(A)™/?D.
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Corollary 7.2. If, in addition to the assumptions of Corollary 7.1, D

also commutes with H(A)l/z, and M is unitary, then

min M

12 12 2
i<isn |2y | < ¢ My 77H(A) l5- (15)

Proof. | M|, =1 because M is unitary. G = M1_1/2H(A)_1/2 because

D commutes with H (A)l/ 2. So Corollary 7.1 implies inequality (15).
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