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Abstract

In the field of image identification and vibrancy theory, we often

consider the equations for the generalized eigenvalues of matrix. We

discuss perturbation questions on generalized eigenvalues of the

complex positive definite matrix (possibly non-Hermitian). Some relative

perturbation bounds for generalized eigenvalues of the complex positive

definite matrix are established.

1. Introduction

We denote the set of nn ×  complex matrices by .nM  Let ( )ijaA =

∗∈ AMn ,  be the conjugate transpose of matrix A and ∗−A  be the conjugate

transpose of matrix 1−A  if A is invertible. ( ( )) 21
max2 AAA ∗λ=  is the

spectral norm of matrix A and ( ) 2
1

2
−=κ AAA  is the spectral norm

condition number of matrix A with respect to inversion.
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In the field of image identification and vibrancy theory, we often
consider the equation

,0, nCxBxAx ∈≠λ=

where λ is a scalar, and both A and B are nn×  matrices. If a scalar λ and

a non-zero vector nCx ∈  happen to satisfy this equation, then λ is called

an eigenvalue of A with respect to B (it is called generalized eigenvalue of

A for short). If B is nonsingular, then λ is an eigenvalue of A with respect

to B if and only if λ is the eigenvalue of .1AB−  A matrix nMA∈  is called

a normal matrix with respect to H (it is called generalized normal matrix

for short) if there exists a positive definite Hermitian matrix H such that
∗∗ = AHAHAA  (see [10, 11, 12]). A matrix nMA ∈  is called a complex

positive definite matrix if ( ) ,0Re >∗Axx  for any non-zero nCx ∈  (see [6]).

We denote the Toeplitz decomposition ( ) ( ),AKAHA +=  where ( ) =AH

( ) ( ) ( ).
2
1,

2
1 ∗∗ −=+ AAAKAA  Obviously, A is a complex positive definite

matrix if and only if ( )AH  is positive definite.

Now, there are many famous results on the perturbation problems for
eigenvalues of the positive definite Hermitian matrix (see [1], [3], [7-9]).
In this paper, we discuss perturbation questions on the generalized
eigenvalues of complex positive definite matrix (possibly non-Hermitian).
Some relative perturbation bounds for generalized eigenvalues of the
complex positive definite matrix are established.

2. Main Result

Lemma 1 (see [10, Theorem 5]). Suppose nMA ∈  and H is a positive

definite Hermitian matrix. Then A is a normal matrix with respect to H if

and only if there exists a nonsingular matrix P such that

,Λ=∗PAP (1)

where

( )....,,, 21 ndiag λλλ=Λ
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Furthermore, nλλλ ...,,, 21  are n eigenvalues of HA  with PPH ∗=  (or n

eigenvalues of A with respect to .)1−H

Remark 1. By the proof of Lemma 1, we see that ∗−= UHP 21  with

U is unitary in (1) (see [10], the proof of Theorem 5).

Lemma 2. If nMA ∈  is a positive definite matrix, then

( ) ( ) ,11 ∗−−∗ = AAAHAAHA (2)

and A is a normal matrix with respect to ( ) ,1−AH  where ( ) ( ).
2
1 ∗+= AAAH

Proof. By a simple calculation, we have

( ) ( ) ∗−−∗ = AAAHAAHA 11

( ) ( ) ( ) ( ).1 AKAHAKAH −−=

Theorem 1. nMA ∈  is a complex positive definite matrix if and only

if there exists a nonsingular matrix P, such that

,Λ=∗PAP (3)

where ( ) ( ) PPAHdiag n
∗− =λλλ=Λ 1

21 ,...,,,  and nλλλ ...,,, 21  are the

eigenvalues of A with respect to ( ),AH  where ( ) ( ).
2
1 ∗+= AAAH

Proof. If A is a complex positive definite matrix, then by Lemma 1

and Lemma 2, it is easy to get the necessity. Conversely, since P is

nonsingular and ( ) ,1 PPAH ∗− =  we know that ( )AH  is positive definite,

so A is a positive definite matrix.

Remark 2. Since (3) is equivalent to ( ) ,1 −∗∗− Λ= PPAAH nλλλ ...,,, 21

are the eigenvalues of A with respect to ( ),AH  so we say that (3) is a

generalized eigenvalue decomposition of matrix A and any positive

definite matrix A has generalized eigenvalue decomposition (3).

If H is a positive definite Hermitian matrix and nMA ∈  is a normal

matrix with respect to H, we say that A is an H-normal matrix.
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Theorem 2. Let nMA ∈  be an H-normal matrix with (1). If λ~  is an

eigenvalue of EAA +=~
 with respect to ,1−H  then

( ) ,~min 221
HEPPEPini

κ≤≤λ−λ ∗
≤≤

(4)

where .PPH ∗=

Proof. By equality (1), we have ,~ ∗∗ +Λ= PEPPAP  so

( ) ( ) .∗−∗∗ +Λ=+ PPEPPEAH

Then λ~  is an eigenvalue of ∗+Λ PEP  from the assumption. Hence
∗−−−Λ−λ EPPI 1~  is a singular matrix, where I is the identity matrix. If

Λ−λI~  is singular, then there is some i, such that iλ=λ~  and the bound

(4) holds. If Λ−λI~  is nonsingular, then

( ) ( ) ( ) ∗−∗− Λ−λ−=−Λ−λΛ−λ PEPIIPEPII 11 ~~~

is singular, and hence it must be that ( ) 1~
2

1 ≥Λ−λ ∗− PEPI  (see [5,

Corollary 5.6.16]). Thus

( ) ( ) 2
1

22
1 ~~1 −∗∗− Λ−λ≤Λ−λ≤ IPEPPEPI

( ) .~min~max 1
12

1
12

−
≤≤

∗−
≤≤

∗ λ−λ=λ−λ= iniini
PEPPEP

Since ,PPH ∗=  apply the property of spectral norm to get

.~min 22221
∗∗−∗

≤≤
≤≤λ−λ PHEPPEPini

(4) holds by ( ) ( ).∗= PkPk

Theorem 3. Let nMA ∈  be a positive definite matrix with generalized

eigenvalue decomposition (3). If λ~  is an eigenvalue of EAA +=~
 with

respect to ( ),AH  then

( ) ( ) ,~min 2
1

21
EAHPPEPini

−∗
≤≤

κ≤≤λ−λ (5)

where ( ) .1 PPAH ∗− =
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Proof. Applying Lemma 2 and Theorem 2, Theorem 3 can easily be
proved.

Theorem 4. Let nMA∈  be a positive definite matrix with generalized

eigenvalue decomposition (3). If λ~  is an eigenvalue of EAA +=~
 with

respect to ( ),AH  then

( ) .
~

min 2
1

1
EAPk

i

i
ni

−
≤≤

≤
λ

λ−λ
(6)

Proof. Let ( ) ( )AHAAHA 1~ˆ −λ=  and ( ) .ˆ 1EAAHE −−=  If

( ) ( ) ,~~ˆˆ1 xxEAAH =+−

then

[ ( ) ] ,~~~ 11 xxEAAHA =−λ −−

so ( ) ( ) ,~~~ xAHxEA λ=+  and ( ) ( ) .~~~1 xxEAAH λ=+−  Hence, we can write

( ) ( ) xxEAAH ~~~1 λ=+−  as

( ) ( ) ,~~ˆˆ1 xxEAAH =+− (7)

where

( ) ( )AHAAHA 1~ˆ −λ=   and  ( ) .ˆ 1EAAHE −−= (8)

Since A is normal with respect to ( ) ( ) ( ) ., 111 AAHAAAAHAH −∗∗−− =

By (8), we have

( ) ( ) ( ) ( )AHAAHAAHAAHA ∗λλ= −−∗∗− 11 ~~ˆˆ

and

( ) ( ) ( ) ( ).~~ˆˆ 11 AHAAHAAHAAHA −∗−∗−∗ λλ=

Then ( ) ( ) ,ˆˆˆˆ 11 AAHAAAHA −∗∗− =  so Â  is normal with respect to ( ) .1−AH

Since

( ) ( )AHAAHA 1~ˆ −λ=   and  ( ) ( ) ,1−∗= PPAH
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by (3), we get

( ) ( ) ∗−∗ λ= PAHAAPHPAP 1~ˆ

.~~ 111 −−−∗− Λλ=λ= PAP (9)

So Â  has the generalized eigenvalue decomposition (9) with n

eigenvalues ( )nii ...,,2,1~ =λλ  with respect to ( ).AH  By (7), we know

that 1 is the eigenvalue of EA ˆˆ +  with respect to ( ).AH  Hence, applying

Theorem 2 to the eigenvalues ( )nii ...,,2,1~ =λλ  of Â  with respect to

( )AH  and the eigenvalue 1 of EA ˆˆ +  with respect to ( ),AH  and by (8),

we have

( ) ( ) 2
1

1
ˆ~1min EAHpkini

−
≤≤

≤λλ−

( ) .2
1EAPk −=

So inequality (6) holds.

Let ., nMCB ∈  Then [ ] CBBCCB −=,  is called the commutator, B

and C commute if and only if [ ] .0, =CB

Theorem 5. Let nMA ∈  be positive definite with generalized

eigenvalue decomposition (3) and let

21AAA =   and  [ ( ) ( ) ] .0, 21
21

21 =−− AHAAAH (10)

If λ~  is an eigenvalue of EAA +=~
 with respect to ( ),AH  then

.
~

min 2
1

2
1

11
−−

≤≤
≤

λ
λ−λ

EAA
i

i
ni

(11)

Proof. Define

( ) ( ) .
~

,
~ 21

221
21

1
−− == AHAAAAHA

Then ( ) ( ) ,
~~

21
2121 AAAAHAH =−−  and we get 1221

~~~~
AAAA =  from (10).

From the hypothesis, A is a normal matrix with respect to ( ) ,1−AH  we



GENERALIZED SPECTRAL RELATIVE PERTURBATION … 141

have ( ) ( ) ,11 AAHAAAAH −∗∗− =  then

   [ ( ) ( ) ] [ ( ) ( ) ]∗−−−− 21212121 AAHAHAAHAH

[ ( ) ( ) ] [ ( ) ( ) ]21212121 −−∗−−= AAHAHAAHAH

and hence ( ) ( ) 2121 −− AAHAH  is normal. Obviously, iλ  is the eigenvalue

of ( ) ( ) 2121 −− AAHAH  and λ~  is the eigenvalue of ( ) ( ) .
~ 2121 −− AHAAH

Notice that

( ) ( ) ( ) ( ) ( ) ( ) ,
~ 212121212121 −−−−−− += AEHAHAAHAHAHAAH

applying [3, Corollary 3.1], we get

( ) ( ) .
~~

~
min 2

1
2

1
12

1
2

21211
11

−−−−−−
≤≤

=≤
λ

λ−λ
EAAAAEHAHA

i

i
ni

Theorem 6. Let nMA ∈  be positive definite and ( ) ( ) 2121 −− AAHAH

PU=  be a polar factorization with P positive definite Hermitian and U

be unitary. Then

(1) matrix A has a QU factorization ,∗= QUQA  where =Q

( ) 2121 PAH  is a positive definite symmetrizable matrix, i.e., there exists a

nonsingular matrix D, such that QDD 1−  is a positive definite diagonal
matrix.

(2) if nλλλ ...,,, 21  are n eigenvalues of A with respect to ( ),AH  and

λ~  is an eigenvalue of EAA +=~
 with respect to ( ),AH  then

( ) ( ) .
~

min 2
21212121

1
−−−−

≤≤
≤

λ
λ−λ

PAEHAHP
i

i
ni

(12)

Proof. (1) Because ( ) ( ) 2121 −− AAHAH  is normal (see the proof of

Theorem 5) with a polar factorization ( ) ( ) PUAAHAH =−− 2121  and =PU
2121 UPP  (see [3, Lemma 3.2]), so ,∗= QUQA  where =Q  ( ) .2121 PAH

Since both P and ( )AH  are positive definite Hermitian matrices, 21P

and ( ) 21AH  are positive definite Hermitian matrices, too. Hence

( ) 2121 PAHQ =  is similar to a positive definite diagonal matrix.
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(2) Matrix A has a QU factorization ,∗= QUQA  where =Q

( ) .2121 PAH  Set

,, 21
∗== QAQUA

then .21AAA =  By ( ) PQAHQ =−∗ 1  and ( ) ( ) ,21212121 UPPAAHAH =−−

we have

[ ( ) ( ) ] ( ) ( ) ( ) 1
1

2
212121

21
21 , AAHAAAHAHAHAAAH −−−−− −=

( ) QUAHQUPP 12121 −∗−=

.02121 =−= PUUPP

Notice that U is unitary, apply Theorem 5 to get that

2
11

2
1

2
1

11

~
min ∗−−−−−

≤≤
=≤

λ
λ−λ

EQQUEAA
i

i
ni

( ) ( ) .2
21212121 −−−−= PAEHAHP

Theorem 7. Let nMA ∈  be positive definite. Suppose

( ) ( ) PUAAHAH =−− 2121

 is a polar factorization with P positive definite Hermitian, and U is

unitary. If λ~  is an eigenvalue of EAA +=~
 with respect to ( ),AH  and D

is nonsingular such that

,, 11
∗∗ == DDMPDDEE

then

,
~

min 2
221

1
GE

i

i

ni
≤

λ
λ−λ

≤≤
(13)

where nλλλ ...,,, 21  are n eigenvalues of A with respect to ( )AH  and

( ) .21121
1 DAHDMG −−−=

Proof. Since P is positive definite Hermitian, ∗−−= PDDM 1
1  is also

positive definite Hermitian. Since

( ) ,21
1

21
1

2121 ∗== DMDMPPP

21P  and 21
1DM  are both “Cholesky factorizations” of P, they are related

by a unitary matrix Q, i.e., ( ) .21
1

21 QDMP =
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Since 2.  is unitarily invariant norm and Q is unitary, by

( )∗−−∗−−−∗− === 2121
1

121
1

21 PQMDDMQP

and applying Theorem 6, we have

( ) ( ) 2
21212121

1

~
min −−−−

≤≤
≤

λ
λ−λ

PAEHAHP
i

i
ni

( ) ( ) 2
21

1
21

1
21121

1
−∗−−∗−−−= MDAHDDEAHDM

,2
22121 GEGGE ≤= ∗

where ( ) .21121
1 DAHDMG −−−=

Corollary 7.1. Let nMA ∈  be positive definite. Let

( ) ( ) PUAAHAH =−− 2121

be a polar factorization with P Hermitian positive definite and U be

unitary. Let D be nonsingular and

.,, 11
∗∗∗ === DDMPDDEEDMDA

If λ~  is an eigenvalue of EAA +=~
 with respect to ( ),AH  and ≤21E

,2Mε  where ε is a small positive number, then

,
~

min 2
221

GM
i

i
ni

ε≤
λ

λ−λ
≤≤

(14)

where nλλλ ...,,, 21  are n eigenvalues of A with respect to ( )AH  and

( ) .21121
1 DAHDMG −−−=

Proof. Theorem 7 implies

,
~

min 2
22

2
2211

GMGE
i

i
ni

ε≤≤
λ

λ−λ
≤≤

where ( ) .21121
1 DAHDMG −−−=
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Corollary 7.2. If, in addition to the assumptions of Corollary 7.1, D

also commutes with ( ) ,21AH  and M is unitary, then

( ) .
~

min 2
2

2121
11

−−
≤≤

ε≤
λ

λ−λ
AHM

i

i
ni

(15)

Proof. 12 =M  because M is unitary. ( ) 2121
1

−−= AHMG  because

D commutes with ( ) .21AH  So Corollary 7.1 implies inequality (15).
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