$H^{p}, p \in \mathbb{N}^{*}, H^{\infty}$-DENSITIES IN NUMBER THEORY.

PART II: $H^{p}, p \in \mathbb{N}^{*}, H^{\infty}$-DENSITIES OF ARITHMETIC FUNCTIONS

(In memory of Professor Aimé Fuchs (1925-2006) my teacher in probabilistic number theory)

N. DAILI
Department of Mathematics
Faculty of Sciences
F. Abbas University
19000 Sétif, Algeria
e-mail: nourdaili_dz@yahoo.fr

Abstract

In this paper, we generalize a process of iteration of a positive arithmetic function. We introduce densities: $H^{p}, p \in \mathbb{N}^{*}, H^{\infty}$ and study these densities for positive arithmetic functions. Some applications are obtained.

1. Introduction

To resolve the problem of the nonexistence of asymptotic density in the first-digit problem, we have used in [6] the following method:

Let E be the subset of \mathbb{N}^{*} of the first-digit problem. Consider, for all

2000 Mathematics Subject Classification: Primary 11R45, 11B05; Secondary 11A25, 60A10, 60 E 05.

Keywords and phrases: first-digit problem, arithmetic function, H^{p}-density $\left(p \in \mathbb{N}^{*}\right)$,
H^{∞}-density.
Received April 19, 2007
integer $n \geq 1$, the expression defined by

$$
(H f)(n):=v_{n}^{(1)}\left(I_{E}\right):=\frac{1}{n} \sum_{k=1}^{n} I_{E}(k),
$$

where $I_{E}(k)$ is the indicator function of the set E.
If the limit, $\lim _{n} v_{n}^{(1)}\left(I_{E}\right)$ exists, as n tends to infinity, then E admits an asymptotic density, else, we pass to the next iterate. Namely, we form

$$
v_{n}^{(2)}\left(I_{E}\right):=\frac{1}{n} \sum_{s=1}^{n} v_{s}^{(1)}\left(I_{E}\right) .
$$

To remove the abnormal behavior of this mean, Flehinger [7] suggests that if we proceed to one infinity of iterates, we come to compute a density of the set E of the first-digit problem.

The above leads us to consider the process of iterates for positive arithmetic functions.

In this paper, introducing the notions of $H^{p}, p \in \mathbb{N}^{*}, H^{\infty}$-densities, we study these for a class of positive bounded arithmetic functions. Further, we generalize some results obtained in [6]. We further obtain that

$$
H^{1} \text {-density } \Leftrightarrow H^{p}\left(p \in \mathbb{N}^{*}\right) \text {-density } \Rightarrow H^{\infty} \text {-density }
$$

for positive bounded arithmetic functions. Finally, some applications are demonstrated.

Definition 1.1. Let f be a positive arithmetic function and let $p \in \mathbb{N}^{*}$. We say that f has the number $\ell \geq 0$ as an H^{p}-density, if, $\ell=\lim _{n}\left(H^{p} f\right)(n)$, when n tends to infinity. If this is the case, we shall denote this density by $d_{p}(f)$.

Definition 1.2. Let f be a positive arithmetic function, with the same notations as above. We say that f has the number $\ell \geq 0$ as an H^{∞}-density, if the limits

$$
\lim _{(p \rightarrow+\infty)}\left(\liminf _{(n \rightarrow+\infty)}\right) v_{n}^{(p)}(f)
$$

$$
H^{p}, p \in \mathbb{N}^{*}, H^{\infty} \text {-DENSITIES IN NUMBER THEORY ... }
$$

and

$$
\lim _{(p \rightarrow+\infty)}\left(\limsup _{(n \rightarrow+\infty)}\right) v_{n}^{(p)}(f)
$$

exist and are equal to ℓ. If this is the case, we shall denote this density by $d_{\infty}(f)$.

2. Main Results

Next, the concept of H^{∞}-density is defined with the Hölder's transformation H. These averages are known as Césaro means [1, p. 103].

We prove that asymptotic density and H^{p}-density, for $p \in \mathbb{N}^{*}$, are equivalent for the class of positive arithmetic functions.

2.1. Generalities on the transformation H

Denote the set of real sequences by \mathfrak{F}, and the set of limited real sequences by \mathfrak{F}°. Denote the elements of \mathfrak{F} by f, g, h, \ldots.

For $f \in \mathfrak{F}$, we define

$$
\bar{f}:=\limsup _{(n \rightarrow+\infty)} f(n) ; \quad \underline{f}:=\liminf _{(n \rightarrow+\infty)} f(n)
$$

Proposition 2.1. For $f \in \mathfrak{F}^{\circ}$,

$$
\|f\|=\bar{f}-\underline{f}
$$

defines a semi-norm on \mathfrak{F}°.
Definition 2.1. We call Hölder's transformation all maps

$$
\left\{\begin{array}{c}
H: \mathfrak{F} \rightarrow \mathfrak{F} \\
f \mapsto H f
\end{array}\right.
$$

where

$$
(H f)(n):=\frac{1}{n} \sum_{k=1}^{n} f(k), \quad n=1,2, \ldots
$$

In other words, $(H f)(n)$ is the expectation of f relatively to the probability measure v_{n} introduced in [3]. Namely,

$$
E_{v_{n}}(f)=(H f)(n)
$$

Like that, convergence of the sequence $(H f)$ is equivalent to the existence of an asymptotic density of f.

2.2. Properties of the transformation H

The Hölder's transformation H has some characteristic properties given by the following propositions:

Proposition 2.2. For all $f \in \mathfrak{F}$, we have

$$
-\infty \leq \underline{f} \leq \underline{H} f \leq \bar{H} f \leq \bar{f} \leq+\infty .
$$

Proof. (a) Obviously, we have $\underline{H} f \leq \bar{H} f$.
(b) Remains to prove that $\underline{f} \leq \underline{H} f$ and $\bar{H} f \leq \bar{f}$.
$(b)_{1}$ We prove that $\bar{H} f \leq \bar{f}$. For this purpose; for all $m, n \in \mathbb{N}^{*}$ such that $n>m$, we have

$$
\begin{aligned}
(H f)(n) & =\frac{1}{n} \sum_{k=1}^{n} f(k) \\
& =\frac{1}{n} \sum_{k=1}^{m} f(k)+\frac{1}{n} \sum_{k=m+1}^{n} f(k) \\
& \leq \frac{1}{n} \sum_{k=1}^{m} f(k)+\frac{n-m}{n}\left(\sup _{k>m} f(k)\right)
\end{aligned}
$$

the integer m is fixed, for all $(\varepsilon>0)$, there exists an integer $N(\varepsilon)>m$ such that

$$
\forall(n \geq N(\varepsilon)),(H f)(n) \leq \varepsilon+\sup _{k>m} f(k),
$$

$$
H^{p}, p \in \mathbb{N}^{*}, H^{\infty} \text {-DENSITIES IN NUMBER THEORY ... }
$$

which implies that for all $m \in \mathbb{N}^{*}$, for all $(\varepsilon>0)$

$$
\limsup _{(n \rightarrow+\infty)}(H f)(n) \leq \varepsilon+\sup _{k>m} f(k) .
$$

Namely,

$$
\limsup _{(n \rightarrow+\infty)}(H f)(n) \leq \limsup _{(n \rightarrow+\infty)} f(n) \text {. Thus } \bar{H} f \leq \bar{f} .
$$

$(b)_{2}$ We prove that $\underline{f} \leq \underline{H} f$.
Holds by the same way.
Remark 2.1. (a) The Hölder's transformation H transforms limited sequence to a limited sequence.
(b) The Hölder's transformation H transforms a convergent sequence to a convergent sequence.

Proposition 2.3. If $f \in \mathfrak{F}^{\circ}$, then the set of limit points of the sequence (Hf) is the interval $[\underline{H} f, \bar{H} f]$.

Proof. Let $f \in \mathfrak{F}^{\circ}$, and let $M \geq 0$ be such that for all $n \in \mathbb{N}^{*}$, $|f(n)| \leq M$. We have

$$
\begin{aligned}
(H f)(n+1)-(H f)(n) & =\frac{1}{n+1} \sum_{k=1}^{n+1} f(k)-(H f)(n) \\
& =\frac{1}{n+1} f(n+1)+\frac{1}{n+1} \sum_{k=1}^{n} f(k)-(H f)(n) \\
& =\frac{1}{n+1}(f(n+1)-(H f)(n)) .
\end{aligned}
$$

So

$$
|(H f)(n+1)-(H f)(n)| \leq \frac{1}{n+1}(|f(n+1)|-|(H f)(n)|) \leq \frac{2 M}{n+1} .
$$

It holds that

$$
\lim _{(n \rightarrow+\infty)}|(H f)(n+1)-(H f)(n)|=0
$$

Proposition 2.4 [8]. For all couples (α, β) of real numbers such that $0 \leq \alpha \leq \beta \leq 1$, there exists a sequence f with valued in $\{0 ; 1\}$ such that $\underline{H} f=\alpha$ and $\bar{H} f=\beta$.

Proof. For all $n \in \mathbb{N}^{*}$ and for all f, we have

$$
(H f)(n+1)=\frac{n}{n+1}(H f)(n)+\frac{f(n+1)}{n+1} .
$$

Put

$$
e(n):=(H f)(n+1)-(H f)(n)=\frac{1}{n+1}(f(n+1)-(H f)(n)) .
$$

So, if f is with valued in $\{0 ; 1\}$, the difference $e(n)$ proves that

$$
|e(n)| \leq \frac{1}{n+1} .
$$

Further,

$$
\begin{array}{ll}
e(n) \geq 0 & \text { if } f(n+1)=1 . \\
e(n) \leq 0 & \text { if } f(n+1)=0 .
\end{array}
$$

These relations allow us to construct a sequence f which answers to Proposition 2.4. Put

$$
\varepsilon_{n}=\frac{1}{n}, \quad n \in \mathbb{N}^{*}
$$

and

$$
f(k)= \begin{cases}0 & \text { for } k=1, \\ 1 & \text { for } k=2, \ldots, n_{1},\end{cases}
$$

where n_{1} is the least integer ≥ 2, such that $\left.(H f)\left(n_{1}\right) \in\right] \beta-\varepsilon_{1}, \beta+\varepsilon_{1}[$ (here, as $\varepsilon_{1}=1, n_{1}=2$).

And, put $f(k)=0$ for $k=n_{1}+1, \ldots, n_{2}$, where n_{2} is the least integer $>n_{1}$, such that $\left.(H f)\left(n_{2}\right) \in\right] \alpha-\varepsilon_{1}, \alpha+\varepsilon_{1}[$.

$$
H^{p}, p \in \mathbb{N}^{*}, H^{\infty} \text {-DENSITIES IN NUMBER THEORY ... }
$$

Thus, we construct by recurrence a strictly increasing sequence of integers $\left(n_{k}\right)_{k \geq 1}$, and we define successively the sequence f on the sets $\left\{n_{k}+1, \ldots, n_{k+1}\right\}$ such that
(a) we have

$$
f(k)= \begin{cases}0 & \text { if } k=1 \text { or } k \in\left\{n_{2 p+1}+1, \ldots, n_{2 p+2}\right\}, \\ 1 & \text { if } k \in\left\{n_{2 p}+1, \ldots, n_{2 p+1}\right\} .\end{cases}
$$

(b). $n_{2 p+1}$ is the least integer $>n_{2 p}$, such that

$$
\left.(H f)\left(n_{2 p+1}\right) \in\right] \beta-\varepsilon_{p}, \beta+\varepsilon_{p}[.
$$

. $n_{2 p+2}$ is the least integer $>n_{2 p+1}$, such that

$$
\left.(H f)\left(n_{2 p+2}\right) \in\right] \alpha-\varepsilon_{p}, \alpha+\varepsilon_{p}[.
$$

Then, we have

$$
\begin{aligned}
& \lim _{(p \rightarrow+\infty)}(H f)\left(n_{2 p}\right)=\alpha, \quad \lim _{(p \rightarrow+\infty)}(H f)\left(n_{2 p+1}\right)=\beta . \\
& \forall k \in\left\{n_{2 p}+1, \ldots, n_{2 p+1}\right\}, \quad(H f)\left(n_{2 p}\right) \leq(H f)(k) \leq(H f)\left(n_{2 p-1}\right) . \\
& \forall k \in\left\{n_{2 p-1}, \ldots, n_{2 p}\right\}, \quad(H f)\left(n_{2 p}\right) \leq(H f)(k) \leq(H f)\left(n_{2 p-1}\right) .
\end{aligned}
$$

It holds that $\bar{H} f=\beta, \quad \underline{H} f=\alpha$;
Proposition 2.2 shows that for all $f \in \mathfrak{F}^{\circ},\|H f\| \leq\|f\|$.
Consequently, if we denote H^{p} the p th iteration of Hölder's transformation H, namely,

$$
H^{0}=I, H^{1}=H, H^{p+1}=H \circ H^{p} \quad \text { for } p=1,2, \ldots
$$

then, for all $f \in \mathfrak{F}^{\circ}$, the sequence $\left(\left\|H^{p} f\right\|_{p \geq 1}\right.$ is decreasing, limited below by 0 , and consequently it converges.

Definition 2.2. Let $f: \mathbb{N}^{*} \rightarrow \mathbb{R}^{+}$be a positive arithmetic function and $p \in \mathbb{N}^{*}$. We call that f admits $\ell(\ell \geq 0)$ as H^{p}-density if the limit, $\lim _{n}\left(H^{p} f\right)(n)$ exists and equal to ℓ, as $n \rightarrow+\infty$. If this is the case, we shall denote this density $d_{p}(f)$.

Definition 2.3. Let $f: \mathbb{N}^{*} \rightarrow \mathbb{R}^{+}$be a positive arithmetic function. We say that f admits $\ell(\ell \geq 0)$, as H^{∞}-density if limits,

$$
\lim _{(p \rightarrow+\infty)}\left(\underline{H^{p}} f\right)(n)
$$

and

$$
\left.\lim _{(p \rightarrow+\infty)} \overline{\left(H^{p}\right.} f\right)(n)
$$

exist and are equal to ℓ. If this is the case, we shall denote this density $d_{\infty}(f)$.

Remark 2.2. (a) The existence of one H^{p}-density, for $f \in \mathfrak{F}^{\circ}$, is equivalent to $\left\|H^{p} f\right\|=0$.
(b) The existence of one H^{∞}-density, for $f \in \mathfrak{F}^{\circ}$, is equivalent to

$$
\lim _{(p \rightarrow+\infty)}\left\|H^{p} f\right\|=0
$$

(c) The case $p=1$ agrees to the asymptotic density introduced in [3], denoted $d(f)$.

We have the following theorems which characterize these densities.
Theorem 2.5 (Comparison Theorem between: H^{1} and $H^{p}, p \in \mathbb{N}^{*}$ densities). Let $f: \mathbb{N}^{*} \rightarrow \mathbb{R}^{+}$be a limited and positive arithmetic function. Then, for all real number $\ell \geq 0$, the following two statements are equivalent:
$\left(p_{1}\right): f$ admits ℓ as H^{1}-density and $\left(d_{1}(f)=\ell\right) ;$
$\left(p_{2}\right): f$ admits ℓ as H^{p}-density, for all $p \in \mathbb{N}^{*}$ and $\left(d_{p}(f)=\ell\right)$.
Nevertheless this is not true for $p=+\infty$, as shows by the Theorem 2.7 below.

Proof. $\left(p_{1}\right) \Rightarrow\left(p_{2}\right)$ holds from Proposition 2.2.
$\left(p_{2}\right) \Rightarrow\left(p_{1}\right)$: It is enough to prove that if $\lim _{(n \rightarrow+\infty)} H^{2} f(n)=\ell$, then $\lim _{(n \rightarrow+\infty)} H^{1} f(n)=\ell$.

For this purpose, we use Theorem 2.2 [3, Theorem 2.2, p. 340]; the general term of the sequence $H^{1} f$ is

$$
g(k)=\frac{1}{k} \sum_{s=1}^{k} f(s) .
$$

It proves

$$
\begin{aligned}
n(g(n)-g(n+1)) & =n\left(\frac{1}{n} \sum_{k=1}^{n} f(k)-\frac{1}{n+1} \sum_{k=1}^{n+1} f(k)\right) \\
& =n\left(\left(\frac{1}{n}-\frac{1}{n+1}\right) \sum_{k=1}^{n} f(k)-\frac{f(n+1)}{n+1}\right) \\
& =\frac{1}{n+1} \sum_{k=1}^{n} f(k)-\frac{n}{n+1} f(n+1) .
\end{aligned}
$$

Since $f(k)$ is limited by assumption, the above quantity is limited, namely,

$$
n(g(n)-g(n+1)) \leq M
$$

and the proof of theorem holds.
We have the following corollary:
Corollary 2.6. Let E be a subset of \mathbb{N}^{*}. Then, for $\ell \in[0,1]$, the following two statements are equivalent:
$\left(p_{1}\right): E$ admits ℓ as H^{1}-density and $\left(d_{1}(E)=\ell\right) ;$
$\left(p_{2}\right): E$ admits ℓ as H^{p}-density, for all $p \in \mathbb{N}^{*}$ and $\left(d_{p}(E)=\ell\right)$.
Theorem 2.7 (Comparison Theorem between: $H^{p}, p \in \mathbb{N}^{*}$ and H^{∞} - densities). Let $f: \mathbb{N}^{*} \rightarrow \mathbb{R}^{+}$be a limited and positive arithmetic function. Consider, for all real number $\ell \geq 0$, the following two statements:
$\left(p_{1}\right): f$ admits ℓ as H^{p}-density, for all $p \in \mathbb{N}^{*}$ and $\left(d_{p}(f)=\ell\right) ;$
$\left(p_{2}\right): f$ admits ℓ as H^{∞}-density and $\left(d_{\infty}(f)=\ell\right)$.
Then $\left(p_{1}\right) \Rightarrow\left(p_{2}\right)$. The converse is not true.
Moreover, the H^{∞}-density is an extension of the H^{p}-density, for all $p \in \mathbb{N}^{*}$, for the class of limited and positive arithmetic functions.

Proof. $\left(p_{1}\right) \Rightarrow\left(p_{2}\right)$ holds from Proposition 2.2.
$\left(p_{2}\right) \Rightarrow\left(p_{1}\right)$: For the converse, we take $f(k)=I_{E}(k)$, where E is the subset of \mathbb{N}^{*} introduced by Proposition 3.2 [6]. Then f admits an H^{∞}-density and $d_{\infty}(f)=\frac{d^{*}-d}{a}$, but it does not admit an H^{p}-density [2, Theorem 2.6, pp. 516-517].

Corollary 2.8. Let E be a subset of \mathbb{N}^{*} and let $\ell \in[0,1]$. If E admits ℓ as an H^{p}-density, for one $p \in \mathbb{N}^{*}$, then E admits ℓ as an H^{∞}-density. The converse does not true.

2.3. Generalizations

Put

$$
\mathfrak{F}^{1}:=\left\{f \in \mathfrak{F}: E_{s}(f) \text { exists for all } s>1\right\} .
$$

\mathfrak{F}^{1} denotes the class of Dirichlet's series of the form

$$
\sum_{n \geq 1} \frac{f(n)}{n^{s}},
$$

with the absolute convergence abscissa is ≤ 1.
Lemma 2.9 [8, p. 51]. If $f \in \mathfrak{F}^{1}$, then for all $s>1$ and all $p \in \mathbb{N}$, $E_{s}\left(H^{p} f\right)$ exists and we have

$$
E_{s}\left(H^{p} f\right)-s E_{s}\left(H^{p+1} f\right)=o(1), \quad a s\left(s \rightarrow 1^{+}\right) .
$$

$$
H^{p}, p \in \mathbb{N}^{*}, H^{\infty} \text {-DENSITIES IN NUMBER THEORY ... }
$$

Proof. From the relation $|H(f)| \leq H(|f|)$, it holds that if $f \in \mathfrak{F}^{1}$, then, for all $p \in \mathbb{N}$ and all $s>1$, the series

$$
\sum_{n \geq 1} \frac{\left(H^{p} f\right)(n)}{n^{s}}
$$

is absolutely convergent. Let $p \in \mathbb{N}$, put

$$
g=H^{p} f, \quad g^{+}=\sup (g, 0), \quad g^{-}=\sup (-g, 0) .
$$

From inequalities

$$
s \sum_{n \geq k+1} \frac{1}{n^{s+1}}<\frac{1}{k^{s}}<s \sum_{n \geq k} \frac{1}{n^{s+1}},
$$

it holds that

$$
\begin{align*}
& E_{s}(g) \leq \frac{s}{\zeta(s)}\left(\sum_{k \leq 1} g^{+}(k) \sum_{n \geq k} \frac{1}{n^{s+1}}-\sum_{k \geq 1} g^{-}(k) \sum_{n \geq k+1} \frac{1}{n^{s+1}}\right), \tag{2.1}\\
& E_{s}(g) \geq \frac{s}{\zeta(s)}\left(\sum_{k \geq 1} g^{+}(k) \sum_{n \geq k+1} \frac{1}{n^{s+1}}-\sum_{k \geq 1} g^{-}(k) \sum_{n \geq k} \frac{1}{n^{s+1}}\right) . \tag{2.2}
\end{align*}
$$

By writing

$$
\sum_{n \geq k+1} \frac{1}{n^{s+1}}=\sum_{n \geq k} \frac{1}{n^{s+1}}-\frac{1}{k^{s+1}},
$$

inequalities (2.1) and (2.2) give

$$
E_{S}(g) \leq \frac{s}{\zeta(s)}\left(\sum_{k \geq 1} g(k) \sum_{n \geq k} \frac{1}{n^{s+1}}+\sum_{k \geq 1} \frac{g^{-}(k)}{k^{s+1}}\right)
$$

and

$$
E_{s}(g) \geq \frac{s}{\zeta(s)}\left(\sum_{k \geq 1} g(k) \sum_{n \geq k} \frac{1}{n^{s+1}}-\sum_{k \geq 1} \frac{g^{+}(k)}{k^{s+1}}\right) .
$$

Then

$$
\begin{align*}
& E_{s}(g) \leq s E_{s}(H g)+\frac{s}{\zeta(s)} \sum_{k \geq 1} \frac{g^{-}(k)}{k^{s+1}}, \tag{2.3}\\
& E_{s}(g) \geq s E_{s}(H g)-\frac{s}{\zeta(s)} \sum_{k \geq 1} \frac{g^{+}(k)}{k^{s+1}} . \tag{2.4}
\end{align*}
$$

Or, since $g \in \mathfrak{F}^{1}$ we deduce that g^{+}and $g^{-} \in \mathfrak{F}^{1}$ and consequently

$$
\lim _{\left(s \rightarrow 1^{+}\right)} \frac{1}{\zeta(s)} \sum_{k \geq 1} \frac{g^{+}(k)}{k^{s+1}}=\lim _{\left(s \rightarrow 1^{+}\right)} \frac{1}{\zeta(s)} \sum_{k \geq 1} \frac{g^{-}(k)}{k^{s+1}}=0 .
$$

And from relations (2.3) and (2.4) it holds that $E_{s}(g)-s E_{s}(H g)=o(1)$.
Immediately, from Lemma 2.9 follows the following theorem:
Theorem 2.10. If $f \in \mathfrak{F}^{1}$ with f positive and there exists $p_{0} \in \mathbb{N}$ such that $H^{p_{0}} f$ admits an analytic density $\delta\left(H^{p_{0}} f\right)=\ell$, then for all $p \in \mathbb{N}, H^{p} f$ admits an analytic density $\delta\left(H^{p} f\right)$ which is equal to ℓ.

By combining Theorem 3.12 [4, Theorem 3.12, p. 220], with Theorem 2.10 above, which gives first generalization of Theorem 3.7 [4, Theorem 3.7, p. 214].

Theorem 2.11. If $f \in \mathfrak{F}^{1}$ and if there exists $p \in \mathbb{N}$ such that $H^{p} f$ converges, then f admits an analytic density $\delta(f)$ and

$$
\delta(f)=\lim _{(n \rightarrow+\infty)}\left(H^{p} f\right)(n) .
$$

We can prove that if $f \in \mathfrak{F}$ admits an H^{∞}-density, then there exists $p \in \mathbb{N}$ such that $H^{p} f \in \mathfrak{F}^{0}$.

The following theorem is another generalization of Theorem 3.7 [4, p. 214]. It proves that we can replace the hypothesis of mean convergence of rank 1, in Theorem 2.5 above by the hypothesis of mean convergence of rank ∞.

Theorem 2.12. If an arithmetic function f admits an H^{∞}-density, $d_{\infty}(f)$, then it admits an analytic density $\delta(f)$, and $d_{\infty}(f)=\delta(f)$.

Remark 2.3. The converse of this theorem is not true.
Proof. Let

$$
E=\bigcup_{k \geq 1}\left[p_{k}, q_{k}[,\right.
$$

where

$$
\left\{\begin{array} { l }
{ p _ { k } = b ^ { P (k) } , } \\
{ q _ { k } = b ^ { Q (k) } , }
\end{array} \quad \text { with } \left\{\begin{array}{c}
P(k)=k^{2} \\
Q(k)=\left(k+\frac{1}{2}\right)^{2}
\end{array}\right.\right.
$$

and $b \in\{2,3, \ldots, 9\}$. By taking $f(k)=I_{E}(k), f$ does not admit an H^{∞} density [6, Proposition 3.12], but it admits an analytic density $\delta(f)=\frac{1}{2}$ [6, Remark 3.2].

Acknowledgement

The author is thankful to the referee for some helpful corrections which greatly improved the presentation of this paper.

References

[1] T. J. I. Bromwich, An Introduction to the Theory of Infinite Series, 2nd Edition, MacMillan, London, 1947.
[2] N. Daili, Asymptotic densities in number theory. Part I: a survey, JP Jour. Algebra, Number Theory \& Appl. 5(3) (2005), 513-533.
[3] N. Daili, Asymptotic densities in number theory. Part II: asymptotic densities of arithmetic functions, JP Jour. Algebra, Number Theory \& Appl. 6(2) (2006), 335-360.
[4] N. Daili, Analytic densities in number theory. Part II: analytic densities of arithmetic functions, Int. J. Math. Anal. 1(2) (2006), 205-227.
[5] N. Daili, Analytic densities in number theory. Part I: analytic densities of subsets, Far East J. Math. Sci.(FJMS) 20(2) (2006), 219-240.
[6] N. Daili, $H^{p}, p \in \mathbb{N}^{*}, H^{\infty}$-densities in number theory. Part I: $H^{p}, p \in \mathbb{N}^{*}, H^{\infty}$ densities of subsets, JP Jour. Algebra, Number Theory \& Appl. 9(1) (2007), 61-79.
[7] B. J. Flehinger, On the probability that a random integer has initial digit A, Amer. Math. Monthly 73 (1966), 1056-1061.
[8] A. Fuchs-Ph. Nanopoulos, Mesures invariantes par translation, classes de Dynkin, first digit problem, Adv. Math. 1(55) (1985), 24-74.

