H^p , $p \in \mathbb{N}^*$, H^{∞} -DENSITIES IN NUMBER THEORY.

PART II: H^p , $p \in \mathbb{N}^*$, H^{∞} -DENSITIES OF ARITHMETIC FUNCTIONS

(In memory of Professor Aimé Fuchs (1925-2006) my teacher in probabilistic number theory)

N. DAILI

Department of Mathematics
Faculty of Sciences
F. Abbas University
19000 Sétif, Algeria
e-mail: nourdaili_dz@yahoo.fr

Abstract

In this paper, we generalize a process of iteration of a positive arithmetic function. We introduce densities: H^p , $p \in \mathbb{N}^*$, H^∞ and study these densities for positive arithmetic functions. Some applications are obtained.

1. Introduction

To resolve the problem of the nonexistence of asymptotic density in the first-digit problem, we have used in [6] the following method:

Let *E* be the subset of \mathbb{N}^* of the first-digit problem. Consider, for all

2000 Mathematics Subject Classification: Primary 11R45, 11B05; Secondary 11A25, 60A10, 60E05.

Keywords and phrases: first-digit problem, arithmetic function, H^p -density $(p \in \mathbb{N}^*)$, H^{∞} -density.

Received April 19, 2007

integer $n \ge 1$, the expression defined by

$$(Hf)(n) := \nu_n^{(1)}(I_E) := \frac{1}{n} \sum_{k=1}^n I_E(k),$$

where $I_E(k)$ is the indicator function of the set E.

If the limit, $\lim_{n} v_n^{(1)}(I_E)$ exists, as n tends to infinity, then E admits an asymptotic density, else, we pass to the next iterate. Namely, we form

$$v_n^{(2)}(I_E) := \frac{1}{n} \sum_{s=1}^n v_s^{(1)}(I_E).$$

To remove the abnormal behavior of this mean, Flehinger [7] suggests that if we proceed to one infinity of iterates, we come to compute a density of the set E of the first-digit problem.

The above leads us to consider the process of iterates for positive arithmetic functions.

In this paper, introducing the notions of H^p , $p \in \mathbb{N}^*$, H^{∞} -densities, we study these for a class of positive bounded arithmetic functions. Further, we generalize some results obtained in [6]. We further obtain that

$$H^1$$
-density $\Leftrightarrow H^p(p \in \mathbb{N}^*)$ -density $\Rightarrow H^{\infty}$ -density

for positive bounded arithmetic functions. Finally, some applications are demonstrated.

Definition 1.1. Let f be a positive arithmetic function and let $p \in \mathbb{N}^*$. We say that f has the number $\ell \geq 0$ as an H^p -density, if, $\ell = \lim_n (H^p f)(n)$, when n tends to infinity. If this is the case, we shall denote this density by $d_p(f)$.

Definition 1.2. Let f be a positive arithmetic function, with the same notations as above. We say that f has the number $\ell \geq 0$ as an H^{∞} -density, if the limits

$$\lim_{(p\to+\infty)} (\liminf_{(n\to+\infty)} v_n^{(p)}(f)$$

and

$$\lim_{(p\to +\infty)} (\limsup_{(n\to +\infty)} v_n^{(p)}(f)$$

exist and are equal to ℓ . If this is the case, we shall denote this density by $d_{\infty}(f)$.

2. Main Results

Next, the concept of H^{∞} -density is defined with the Hölder's transformation H. These averages are known as $C\acute{e}saro\ means\ [1,\ p.\ 103]$.

We prove that asymptotic density and H^p -density, for $p \in \mathbb{N}^*$, are equivalent for the class of positive arithmetic functions.

2.1. Generalities on the transformation H

Denote the set of real sequences by \mathfrak{F} , and the set of limited real sequences by \mathfrak{F}° . Denote the elements of \mathfrak{F} by f, g, h, \dots .

For $f \in \mathfrak{F}$, we define

$$\bar{f} := \limsup_{(n \to +\infty)} f(n);$$
 $\underline{f} := \liminf_{(n \to +\infty)} f(n).$

Proposition 2.1. For $f \in \mathfrak{F}^{\circ}$,

$$||f|| = \bar{f} - f$$

defines a semi-norm on \mathfrak{F}° .

Definition 2.1. We call Hölder's transformation all maps

$$\begin{cases} H: \mathfrak{F} \to \mathfrak{F} \\ f \mapsto Hf, \end{cases}$$

where

$$(Hf)(n) := \frac{1}{n} \sum_{k=1}^{n} f(k), \quad n = 1, 2, \dots$$

In other words, (Hf)(n) is the expectation of f relatively to the probability measure v_n introduced in [3]. Namely,

$$E_{\nu_n}(f) = (Hf)(n).$$

Like that, convergence of the sequence (Hf) is equivalent to the existence of an asymptotic density of f.

2.2. Properties of the transformation H

The Hölder's transformation H has some characteristic properties given by the following propositions:

Proposition 2.2. For all $f \in \mathfrak{F}$, we have

$$-\infty \leq \underline{f} \leq \underline{H} \underline{f} \leq \overline{H} \underline{f} \leq \overline{f} \leq +\infty.$$

Proof. (a) Obviously, we have $\underline{H}f \leq \overline{H}f$.

- (b) Remains to prove that $\underline{f} \leq \underline{H}\underline{f}$ and $\overline{H}\underline{f} \leq \overline{f}$.
- $(b)_1$ We prove that $\overline{H}f \leq \overline{f}$. For this purpose; for all $m, n \in \mathbb{N}^*$ such that n > m, we have

$$(Hf)(n) = \frac{1}{n} \sum_{k=1}^{n} f(k)$$

$$= \frac{1}{n} \sum_{k=1}^{m} f(k) + \frac{1}{n} \sum_{k=m+1}^{n} f(k)$$

$$\leq \frac{1}{n} \sum_{k=1}^{m} f(k) + \frac{n-m}{n} (\sup_{k>m} f(k))$$

the integer m is fixed, for all $(\varepsilon > 0)$, there exists an integer $N(\varepsilon) > m$ such that

$$\forall (n \geq N(\varepsilon)), (Hf)(n) \leq \varepsilon + \sup_{k>m} f(k),$$

which implies that for all $m \in \mathbb{N}^*$, for all $(\varepsilon > 0)$

$$\limsup_{(n \to +\infty)} (Hf)(n) \le \varepsilon + \sup_{k>m} f(k).$$

Namely,

$$\limsup_{(n\to +\infty)} (Hf)(n) \leq \limsup_{(n\to +\infty)} f(n). \text{ Thus } \overline{H}f \leq \bar{f}.$$

 $(b)_2$ We prove that $f \leq \underline{H}f$.

Holds by the same way.

Remark 2.1. (a) The Hölder's transformation H transforms limited sequence to a limited sequence.

(b) The Hölder's transformation ${\cal H}$ transforms a convergent sequence to a convergent sequence.

Proposition 2.3. If $f \in \mathfrak{F}^{\circ}$, then the set of limit points of the sequence (Hf) is the interval $[Hf, \overline{H}f]$.

Proof. Let $f \in \mathfrak{F}^{\circ}$, and let $M \geq 0$ be such that for all $n \in \mathbb{N}^*$, $|f(n)| \leq M$. We have

$$(Hf)(n+1) - (Hf)(n) = \frac{1}{n+1} \sum_{k=1}^{n+1} f(k) - (Hf)(n)$$

$$= \frac{1}{n+1} f(n+1) + \frac{1}{n+1} \sum_{k=1}^{n} f(k) - (Hf)(n)$$

$$= \frac{1}{n+1} (f(n+1) - (Hf)(n)).$$

So

$$|(Hf)(n+1)-(Hf)(n)| \le \frac{1}{n+1}(|f(n+1)|-|(Hf)(n)|) \le \frac{2M}{n+1}.$$

It holds that

$$\lim_{(n\to+\infty)} |(Hf)(n+1) - (Hf)(n)| = 0.$$

Proposition 2.4 [8]. For all couples (α, β) of real numbers such that $0 \le \alpha \le \beta \le 1$, there exists a sequence f with valued in $\{0; 1\}$ such that $\underline{H}f = \alpha$ and $\overline{H}f = \beta$.

Proof. For all $n \in \mathbb{N}^*$ and for all f, we have

$$(Hf)(n+1) = \frac{n}{n+1}(Hf)(n) + \frac{f(n+1)}{n+1}.$$

Put

$$e(n) := (Hf)(n+1) - (Hf)(n) = \frac{1}{n+1}(f(n+1) - (Hf)(n)).$$

So, if f is with valued in $\{0; 1\}$, the difference e(n) proves that

$$|e(n)| \leq \frac{1}{n+1}$$
.

Further,

$$e(n) \ge 0$$
 if $f(n+1) = 1$.

$$e(n) \le 0$$
 if $f(n+1) = 0$.

These relations allow us to construct a sequence f which answers to Proposition 2.4. Put

$$\varepsilon_n = \frac{1}{n}, \quad n \in \mathbb{N}^*$$

and

$$f(k) = \begin{cases} 0 & \text{for } k = 1, \\ 1 & \text{for } k = 2, ..., n_1, \end{cases}$$

where n_1 is the least integer ≥ 2 , such that $(Hf)(n_1) \in]\beta - \varepsilon_1, \beta + \varepsilon_1[$ (here, as $\varepsilon_1 = 1, n_1 = 2$).

And, put f(k) = 0 for $k = n_1 + 1, ..., n_2$, where n_2 is the least integer $> n_1$, such that $(Hf)(n_2) \in]\alpha - \varepsilon_1, \alpha + \varepsilon_1[$.

Thus, we construct by recurrence a strictly increasing sequence of integers $(n_k)_{k\geq 1}$, and we define successively the sequence f on the sets $\{n_k+1,...,n_{k+1}\}$ such that

(a) we have

$$f(k) = \begin{cases} 0 & \text{if } k = 1 \text{ or } k \in \{n_{2p+1} + 1, ..., n_{2p+2}\}, \\ 1 & \text{if } k \in \{n_{2p} + 1, ..., n_{2p+1}\}. \end{cases}$$

(b) n_{2p+1} is the least integer n_{2p} , such that

$$(Hf)(n_{2p+1}) \in]\beta - \varepsilon_p, \beta + \varepsilon_p[.$$

 n_{2p+2} is the least integer $> n_{2p+1}$, such that

$$(Hf)(n_{2p+2}) \in]\alpha - \varepsilon_p, \alpha + \varepsilon_p[.$$

Then, we have

$$\begin{split} &\lim_{(p\to +\infty)} (Hf)(n_{2p}) = \alpha, \quad \lim_{(p\to +\infty)} (Hf)(n_{2p+1}) = \beta. \\ \forall k \in \{n_{2p}+1, \, ..., \, n_{2p+1}\}, \quad (Hf)(n_{2p}) \leq (Hf)(k) \leq (Hf)(n_{2p-1}). \\ \forall k \in \{n_{2p-1}, \, ..., \, n_{2p}\}, \quad (Hf)(n_{2p}) \leq (Hf)(k) \leq (Hf)(n_{2p-1}). \end{split}$$

It holds that $\overline{H}f = \beta$, $\underline{H}f = \alpha$;

Proposition 2.2 shows that for all $f \in \mathfrak{F}^{\circ}$, $||Hf|| \le ||f||$.

Consequently, if we denote H^p the pth iteration of Hölder's transformation H, namely,

$$H^0 = I, H^1 = H, H^{p+1} = H \circ H^p$$
 for $p = 1, 2, ...$

then, for all $f \in \mathfrak{F}^{\circ}$, the sequence $(\|H^p f\|)_{p\geq 1}$ is decreasing, limited below by 0, and consequently it converges.

Definition 2.2. Let $f: \mathbb{N}^* \to \mathbb{R}^+$ be a positive arithmetic function and $p \in \mathbb{N}^*$. We call that f admits ℓ ($\ell \geq 0$) as H^p -density if the limit, $\lim_n (H^p f)(n)$ exists and equal to ℓ , as $n \to +\infty$. If this is the case, we shall denote this density $d_p(f)$.

Definition 2.3. Let $f: \mathbb{N}^* \to \mathbb{R}^+$ be a positive arithmetic function. We say that f admits ℓ ($\ell \geq 0$), as H^{∞} -density if limits,

$$\lim_{(p\to+\infty)} (\underline{H^p}f)(n)$$

and

$$\lim_{(p\to +\infty)} (\overline{H^p}f)(n)$$

exist and are equal to ℓ . If this is the case, we shall denote this density $d_{\infty}(f)$.

Remark 2.2. (a) The existence of one H^p -density, for $f \in \mathfrak{F}^{\circ}$, is equivalent to $||H^p f|| = 0$.

(b) The existence of one H^{∞} -density, for $f \in \mathfrak{F}^{\circ}$, is equivalent to

$$\lim_{(p\to +\infty)} ||H^p f|| = 0.$$

(c) The case p = 1 agrees to the asymptotic density introduced in [3], denoted d(f).

We have the following theorems which characterize these densities.

Theorem 2.5 (Comparison Theorem between: H^1 and H^p , $p \in \mathbb{N}^*$ -densities). Let $f: \mathbb{N}^* \to \mathbb{R}^+$ be a limited and positive arithmetic function. Then, for all real number $\ell \geq 0$, the following two statements are equivalent:

 $(p_1): f \ admits \ \ell \ as \ H^1$ -density and $(d_1(f) = \ell)$;

 (p_2) : f admits ℓ as H^p -density, for all $p \in \mathbb{N}^*$ and $(d_p(f) = \ell)$.

Nevertheless this is not true for $p = +\infty$, as shows by the Theorem 2.7 below.

Proof. $(p_1) \Rightarrow (p_2)$ holds from Proposition 2.2.

$$H^p, p \in \mathbb{N}^*, H^{\infty}$$
-DENSITIES IN NUMBER THEORY ...

 $(p_2)\Rightarrow (p_1)$: It is enough to prove that if $\lim_{(n\to +\infty)}H^2f(n)=\ell$, then $\lim_{(n\to +\infty)}H^1f(n)=\ell$.

For this purpose, we use Theorem 2.2 [3, Theorem 2.2, p. 340]; the general term of the sequence H^1f is

$$g(k) = \frac{1}{k} \sum_{s=1}^{k} f(s).$$

It proves

$$n(g(n) - g(n+1)) = n \left(\frac{1}{n} \sum_{k=1}^{n} f(k) - \frac{1}{n+1} \sum_{k=1}^{n+1} f(k) \right)$$
$$= n \left(\left(\frac{1}{n} - \frac{1}{n+1} \right) \sum_{k=1}^{n} f(k) - \frac{f(n+1)}{n+1} \right)$$
$$= \frac{1}{n+1} \sum_{k=1}^{n} f(k) - \frac{n}{n+1} f(n+1).$$

Since f(k) is limited by assumption, the above quantity is limited, namely,

$$n(g(n) - g(n+1)) \le M$$

and the proof of theorem holds.

We have the following corollary:

Corollary 2.6. Let E be a subset of \mathbb{N}^* . Then, for $\ell \in [0, 1]$, the following two statements are equivalent:

 (p_1) : E admits ℓ as H^1 -density and $(d_1(E) = \ell)$;

 $(p_2): E \ admits \ \ell \ as \ H^p$ -density, for all $p \in \mathbb{N}^*$ and $(d_p(E) = \ell)$.

Theorem 2.7 (Comparison Theorem between: H^p , $p \in \mathbb{N}^*$ and H^{∞} - densities). Let $f: \mathbb{N}^* \to \mathbb{R}^+$ be a limited and positive arithmetic function. Consider, for all real number $\ell \geq 0$, the following two statements:

 (p_1) : f admits ℓ as H^p -density, for all $p \in \mathbb{N}^*$ and $(d_p(f) = \ell)$;

 (p_2) : f admits ℓ as H^{∞} -density and $(d_{\infty}(f) = \ell)$.

Then $(p_1) \Rightarrow (p_2)$. The converse is not true.

Moreover, the H^{∞} -density is an extension of the H^{p} -density, for all $p \in \mathbb{N}^{*}$, for the class of limited and positive arithmetic functions.

Proof. $(p_1) \Rightarrow (p_2)$ holds from Proposition 2.2.

 $(p_2)\Rightarrow (p_1)$: For the converse, we take $f(k)=I_E(k)$, where E is the subset of \mathbb{N}^* introduced by Proposition 3.2 [6]. Then f admits an H^∞ -density and $d_\infty(f)=\frac{d^*-d}{a}$, but it does not admit an H^p -density [2, Theorem 2.6, pp. 516-517].

Corollary 2.8. Let E be a subset of \mathbb{N}^* and let $\ell \in [0, 1]$. If E admits ℓ as an H^p -density, for one $p \in \mathbb{N}^*$, then E admits ℓ as an H^{∞} -density. The converse does not true.

2.3. Generalizations

Put

$$\mathfrak{F}^1 := \{ f \in \mathfrak{F} : E_s(f) \text{ exists for all } s > 1 \}.$$

 \mathfrak{F}^1 denotes the class of Dirichlet's series of the form

$$\sum_{n>1} \frac{f(n)}{n^s},$$

with the absolute convergence abscissa is ≤ 1 .

Lemma 2.9 [8, p. 51]. If $f \in \mathfrak{F}^1$, then for all s > 1 and all $p \in \mathbb{N}$, $E_s(H^p f)$ exists and we have

$$E_s(H^pf)-sE_s(H^{p+1}f)=o(1),\quad as\ (s\to 1^+).$$

Proof. From the relation $|H(f)| \le H(|f|)$, it holds that if $f \in \mathfrak{F}^1$, then, for all $p \in \mathbb{N}$ and all s > 1, the series

$$\sum_{n>1} \frac{(H^p f)(n)}{n^s}$$

is absolutely convergent. Let $p \in \mathbb{N}$, put

$$g = H^p f$$
, $g^+ = \sup(g, 0)$, $g^- = \sup(-g, 0)$.

From inequalities

$$s \sum_{n \geq k+1} \frac{1}{n^{s+1}} < \frac{1}{k^s} < s \sum_{n \geq k} \frac{1}{n^{s+1}} \,,$$

it holds that

$$E_s(g) \le \frac{s}{\zeta(s)} \left(\sum_{k \le 1} g^+(k) \sum_{n \ge k} \frac{1}{n^{s+1}} - \sum_{k \ge 1} g^-(k) \sum_{n \ge k+1} \frac{1}{n^{s+1}} \right), \tag{2.1}$$

$$E_s(g) \ge \frac{s}{\zeta(s)} \left(\sum_{k>1} g^+(k) \sum_{n>k+1} \frac{1}{n^{s+1}} - \sum_{k>1} g^-(k) \sum_{n>k} \frac{1}{n^{s+1}} \right). \tag{2.2}$$

By writing

$$\sum_{n \geq k+1} \frac{1}{n^{s+1}} = \sum_{n \geq k} \frac{1}{n^{s+1}} - \frac{1}{k^{s+1}},$$

inequalities (2.1) and (2.2) give

$$E_s(g) \le \frac{s}{\zeta(s)} \left(\sum_{k>1} g(k) \sum_{n>k} \frac{1}{n^{s+1}} + \sum_{k>1} \frac{g^-(k)}{k^{s+1}} \right)$$

and

$$E_s(g) \geq \frac{s}{\zeta(s)} \Biggl(\sum_{k \geq 1} g(k) \sum_{n \geq k} \frac{1}{n^{s+1}} - \sum_{k \geq 1} \frac{g^+(k)}{k^{s+1}} \Biggr).$$

Then

$$E_s(g) \le sE_s(Hg) + \frac{s}{\zeta(s)} \sum_{k \ge 1} \frac{g^-(k)}{k^{s+1}},$$
 (2.3)

$$E_s(g) \ge sE_s(Hg) - \frac{s}{\zeta(s)} \sum_{k>1} \frac{g^+(k)}{k^{s+1}}.$$
 (2.4)

Or, since $g \in \mathfrak{F}^1$ we deduce that g^+ and $g^- \in \mathfrak{F}^1$ and consequently

$$\lim_{(s\to 1^+)} \frac{1}{\zeta(s)} \sum_{k\geq 1} \frac{g^+(k)}{k^{s+1}} = \lim_{(s\to 1^+)} \frac{1}{\zeta(s)} \sum_{k\geq 1} \frac{g^-(k)}{k^{s+1}} = 0.$$

And from relations (2.3) and (2.4) it holds that $E_s(g) - sE_s(Hg) = o(1)$.

Immediately, from Lemma 2.9 follows the following theorem:

Theorem 2.10. If $f \in \mathfrak{F}^1$ with f positive and there exists $p_0 \in \mathbb{N}$ such that $H^{p_0}f$ admits an analytic density $\delta(H^{p_0}f) = \ell$, then for all $p \in \mathbb{N}$, H^pf admits an analytic density $\delta(H^pf)$ which is equal to ℓ .

By combining Theorem 3.12 [4, Theorem 3.12, p. 220], with Theorem 2.10 above, which gives first generalization of Theorem 3.7 [4, Theorem 3.7, p. 214].

Theorem 2.11. If $f \in \mathfrak{F}^1$ and if there exists $p \in \mathbb{N}$ such that $H^p f$ converges, then f admits an analytic density $\delta(f)$ and

$$\delta(f) = \lim_{(n \to +\infty)} (H^p f)(n).$$

We can prove that if $f \in \mathfrak{F}$ admits an H^{∞} -density, then there exists $p \in \mathbb{N}$ such that $H^p f \in \mathfrak{F}^0$.

The following theorem is another generalization of Theorem 3.7 [4, p. 214]. It proves that we can replace the hypothesis of mean convergence of rank 1, in Theorem 2.5 above by the hypothesis of mean convergence of rank ∞ .

Theorem 2.12. If an arithmetic function f admits an H^{∞} -density, $d_{\infty}(f)$, then it admits an analytic density $\delta(f)$, and $d_{\infty}(f) = \delta(f)$.

Remark 2.3. The converse of this theorem is not true.

Proof. Let

$$E = \bigcup_{k>1} [p_k, q_k[,$$

where

$$\begin{cases} p_k = b^{P(k)}, \\ q_k = b^{Q(k)}, \end{cases} \text{ with } \begin{cases} P(k) = k^2, \\ Q(k) = \left(k + \frac{1}{2}\right)^2 \end{cases}$$

and $b \in \{2, 3, ..., 9\}$. By taking $f(k) = I_E(k)$, f does not admit an H^{∞} -density [6, Proposition 3.12], but it admits an analytic density $\delta(f) = \frac{1}{2}$ [6, Remark 3.2].

Acknowledgement

The author is thankful to the referee for some helpful corrections which greatly improved the presentation of this paper.

References

- T. J. I. Bromwich, An Introduction to the Theory of Infinite Series, 2nd Edition, MacMillan, London, 1947.
- [2] N. Daili, Asymptotic densities in number theory. Part I: a survey, JP Jour. Algebra, Number Theory & Appl. 5(3) (2005), 513-533.
- [3] N. Daili, Asymptotic densities in number theory. Part II: asymptotic densities of arithmetic functions, JP Jour. Algebra, Number Theory & Appl. 6(2) (2006), 335-360.
- [4] N. Daili, Analytic densities in number theory. Part II: analytic densities of arithmetic functions, Int. J. Math. Anal. 1(2) (2006), 205-227.
- [5] N. Daili, Analytic densities in number theory. Part I: analytic densities of subsets, Far East J. Math. Sci.(FJMS) 20(2) (2006), 219-240.
- [6] N. Daili, H^p , $p \in \mathbb{N}^*$, H^{∞} -densities in number theory. Part I: H^p , $p \in \mathbb{N}^*$, H^{∞} -densities of subsets, JP Jour. Algebra, Number Theory & Appl. 9(1) (2007), 61-79.
- [7] B. J. Flehinger, On the probability that a random integer has initial digit A, Amer. Math. Monthly 73 (1966), 1056-1061.
- [8] A. Fuchs-Ph. Nanopoulos, Mesures invariantes par translation, classes de Dynkin, first digit problem, Adv. Math. 1(55) (1985), 24-74.