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Abstract

In this paper, we generalize a process of iteration of a positive arithmetic

function. We introduce densities: ∞∗∈ HpH p ,, N  and study these

densities for positive arithmetic functions. Some applications are

obtained.

1. Introduction

To resolve the problem of the nonexistence of asymptotic density in

the first-digit problem, we have used in [6] the following method:

Let E be the subset of ∗N  of the first-digit problem. Consider, for all
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integer ,1≥n  the expression defined by

( ) ( ) ( )( ) ( )∑
=

=ν=
n
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where ( )kIE  is the indicator function of the set E.

If the limit, ( )( )Enn
I1lim ν  exists, as n tends to infinity, then E admits

an asymptotic density, else, we pass to the next iterate. Namely, we form

( )( ) ( )( )∑
=

ν=ν
n

s
EsEn I

n
I

1

12 .
1

:

To remove the abnormal behavior of this mean, Flehinger [7] suggests
that if we proceed to one infinity of iterates, we come to compute a
density of the set E of the first-digit problem.

The above leads us to consider the process of iterates for positive
arithmetic functions.

In this paper, introducing the notions of ∞∗∈ HpH p ,, N -densities,

we study these for a class of positive bounded arithmetic functions.
Further, we generalize some results obtained in [6]. We further obtain
that

( ) density-density-density-1 ∞∗ ⇒∈⇔ HpHH p N

for positive bounded arithmetic functions. Finally, some applications are
demonstrated.

Definition 1.1. Let f be a positive arithmetic function and let

.∗∈ Np  We say that f has the number 0≥A  as an pH -density, if,

( ) ( ),lim nfH p
n

=A  when n tends to infinity. If this is the case, we shall

denote this density by ( ).fdp

Definition 1.2. Let f be a positive arithmetic function, with the same

notations as above. We say that f has the number 0≥A  as an ∞H -density,

if the limits

( )
( )
( )

( )( )fp
n

np
ν

+∞→+∞→
inflimlim
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and

( )
( )
( )

( )( )fp
n

np
ν

+∞→+∞→
suplimlim

exist and are equal to .A  If this is the case, we shall denote this density by

( ).fd∞

2. Main Results

Next, the concept of ∞H -density is defined with the Hölder’s

transformation H. These averages are known as Césaro means [1, p. 103].

We prove that asymptotic density and pH -density, for ,∗∈ Np  are

equivalent for the class of positive arithmetic functions.

2.1. Generalities on the transformation H

Denote the set of real sequences by F , and the set of limited real

sequences by .DF  Denote the elements of F  by .....,,, hgf

For ,F∈f  we define

( )
( )

( )
( )+∞→+∞→

==
nn

nffnff .inflim:;suplim:

Proposition 2.1. For ,DF∈f

fff −=

defines a semi-norm on .DF

Definition 2.1. We call Hölder’s transformation all maps





 →

,

:

Hff

H

6

FF

where

( ) ( ) ( ) .,...2,1,
1

:
1
∑
=

==
n

k

nkf
n

nHf
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In other words, ( ) ( )nHf  is the expectation of f relatively to the probability

measure nν  introduced in [3]. Namely,

( ) ( ) ( ).nHffE
n

=ν

Like that, convergence of the sequence ( )Hf  is equivalent to the

existence of an asymptotic density of f.

2.2. Properties of the transformation H

The Hölder’s transformation H has some characteristic properties

given by the following propositions:

Proposition 2.2. For all ,F∈f  we have

.∞+≤≤≤≤≤∞− ffHfHf

Proof. (a) Obviously, we have .fHfH ≤

(b) Remains to prove that fHf ≤  and .ffH ≤

( )1b  We prove that .ffH ≤  For this purpose; for all ∗∈ Nnm,  such

that ,mn >  we have

( ) ( ) ( )∑
=

=
n

k

kf
n

nHf
1

1

( ) ( )∑ ∑
= +=

+=
m
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kf
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11

( ) ( ( ))∑
= >

−
+≤

m

k mk
kf

n
mn

kf
n

1

sup
1

the integer m is fixed, for all ( ),0>ε  there exists an integer ( ) mN >ε

such that

( )( ) ( ) ( ) ( ),sup, kfnHfNn
mk>

+ε≤ε≥∀
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which implies that for all ,∗∈ Nm  for all ( )0>ε

( ) ( )
( )

( )
mkn

kfnHf
>+∞→

+ε≤ .supsuplim

Namely,

( )
( ) ( )

( )
( ).suplimsuplim nfnHf

nn +∞→+∞→
≤  Thus .ffH ≤

( )2b  We prove that .fHf ≤

Holds by the same way.

Remark 2.1. (a) The Hölder’s transformation H transforms limited
sequence to a limited sequence.

(b) The Hölder’s transformation H transforms a convergent sequence
to a convergent sequence.

Proposition 2.3. If ,DF∈f  then the set of limit points of the sequence

( )Hf  is the interval [ ]., fHfH

Proof. Let ,DF∈f  and let 0≥M  be such that for all ,∗∈ Nn

( ) .Mnf ≤  We have

( ) ( ) ( ) ( ) ( ) ( ) ( )∑
+

=

−
+

=−+
1

1
1

11
n

k

nHfkf
n

nHfnHf
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−
+
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=
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n

1
1

11
1

1

( ) ( ) ( )( ).1
1

1
nHfnf

n
−+

+
=

So

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) .
1

21
1

11
+

≤−+
+

≤−+
n

MnHfnf
n

nHfnHf

It holds that

( )
( ) ( ) ( ) ( ) .01lim =−+

+∞→
nHfnHf

n
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Proposition 2.4 [8]. For all couples ( )βα,  of real numbers such that

,10 ≤β≤α≤  there exists a sequence f with valued in { }1;0  such that

α=fH  and .β=fH

Proof. For all ∗∈ Nn  and for all f, we have

( ) ( ) ( ) ( ) ( )
.

1
1

1
1

+
++

+
=+

n
nf

nHf
n

nnHf

Put

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ).1
1

1
1: nHfnf

n
nHfnHfne −+

+
=−+=

So, if f is with valued in { },1;0  the difference ( )ne  proves that

( ) .
1

1
+

≤
n

ne

Further,

( ) ( ) .11if0 =+≥ nfne

( ) ( ) .01if0 =+≤ nfne

These relations allow us to construct a sequence f which answers to

Proposition 2.4. Put

∗∈=ε Nn
nn ,
1

and

( )






=

=
=

,...,,2for1

1for0

1nk

,k
kf

where 1n  is the least integer ,2≥  such that ( ) ( ) ] [111 , ε+βε−β∈nHf

(here, as .)2,1 11 ==ε n

And, put ( ) 0=kf  for ,...,,1 21 nnk +=  where 2n  is the least integer

,1n>  such that ( ) ( ) ] [., 112 ε+αε−α∈nHf
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Thus, we construct by recurrence a strictly increasing sequence of
integers ( ) ,1≥kkn  and we define successively the sequence f on the sets

{ }1...,,1 ++ kk nn  such that

(a) we have

( )
{ }

{ }



+∈
+∈=

=
+

++

....,,1if1
,...,,1or1if0

122

2212

pp

pp

nnk

nnkk
kf

(b) . 12 +pn  is the least integer ,2pn>  such that

( ) ( ) ] [.,12 pppnHf ε+βε−β∈+

. 22 +pn  is the least integer ,12 +> pn  such that

( ) ( ) ] [.,22 pppnHf ε+αε−α∈+

Then, we have

( )
( ) ( )

( )
( ) ( ) .lim,lim 122 β=α= ++∞→+∞→ pppp

nHfnHf

{ } ( ) ( ) ( ) ( ) ( ) ( ).,...,,1 122122 −+ ≤≤+∈∀ pppp nHfkHfnHfnnk

{ } ( ) ( ) ( ) ( ) ( ) ( ).,...,, 122212 −− ≤≤∈∀ pppp nHfkHfnHfnnk

It holds that ;, α=β= fHfH

Proposition 2.2 shows that for all ,DF∈f  .fHf ≤

Consequently, if we denote pH  the thp  iteration of Hölder’s

transformation H, namely,

pp HHHHHIH o,, 110 === +    for ...,2,1=p

then, for all ,DF∈f  the sequence ( ) 1≥p
pfH  is decreasing, limited below

by 0, and consequently it converges.

Definition 2.2. Let +∗ → RN:f  be a positive arithmetic function

and .∗∈ Np  We call that f admits A  ( )0≥A  as pH -density if the limit,

( ) ( )nfH p
n

lim  exists and equal to ,A  as .+∞→n  If this is the case, we

shall denote this density ( ).fdp
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Definition 2.3. Let +∗ → RN:f  be a positive arithmetic function.

We say that f admits A  ( ),0≥A  as ∞H -density if limits,

( )
( ) ( )nfH p

p +∞→
lim

and

( )
( ) ( )nfH p

p +∞→
lim

exist and are equal to .A  If this is the case, we shall denote this density

( ).fd∞

Remark 2.2. (a) The existence of one pH -density, for ,DF∈f  is

equivalent to .0=fH p

(b) The existence of one ∞H -density, for ,DF∈f  is equivalent to

( )
.0lim =

+∞→
fH p

p

(c) The case 1=p  agrees to the asymptotic density introduced in [3],

denoted ( ).fd

We have the following theorems which characterize these densities.

Theorem 2.5 (Comparison Theorem between: 1H  and ∗∈ NpH p , -

densities). Let +∗ → RN:f  be a limited and positive arithmetic function.

Then, for all real number ,0≥A  the following two statements are

equivalent:

( ) fp :1  admits A  as 1H -density and ( )( );1 A=fd

( ) fp :2  admits A  as pH -density, for all ∗∈ Np  and ( )( ).A=fdp

Nevertheless this is not true for ,+∞=p  as shows by the Theorem

2.7 below.

Proof. ( ) ( )21 pp ⇒  holds from Proposition 2.2.
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( ) ( )12 pp ⇒ : It is enough to prove that if 
( )

( ) ,lim 2 A=
+∞→

nfH
n

 then

( )
( ) .lim 1 A=

+∞→
nfH

n

For this purpose, we use Theorem 2.2 [3, Theorem 2.2, p. 340]; the

general term of the sequence fH1  is

( ) ( )∑
=

=
k

s

sf
k

kg
1

.
1

It proves
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1
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1
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( ) ( )∑
=

+
+

−
+

=
n

k

nf
n

n
kf

n
1

.1
11

1

Since ( )kf  is limited by assumption, the above quantity is limited,

namely,

( ) ( )( ) Mngngn ≤+− 1

and the proof of theorem holds.

We have the following corollary:

Corollary 2.6. Let E be a subset of .∗N  Then, for [ ],1,0∈A  the

following two statements are equivalent:

( ) Ep :1  admits A  as 1H -density and ( )( );1 A=Ed

( ) Ep :2  admits A  as pH -density, for all ∗∈ Np  and ( ( ) ).A=Edp

Theorem 2.7 (Comparison Theorem between: ∗∈ NpH p ,  and

∞H - densities). Let +∗ → RN:f  be a limited and positive arithmetic

function. Consider, for all real number ,0≥A  the following two statements:
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( ) fp :1  admits A  as pH -density, for all ∗∈ Np  and ( ( ) );A=fdp

( ) fp :2  admits A  as ∞H -density and ( )( ).A=∞ fd

Then ( ) ( ).21 pp ⇒  The converse is not true.

Moreover, the ∞H -density is an extension of the pH -density, for all

,∗∈ Np  for the class of limited and positive arithmetic functions.

Proof. ( ) ( )21 pp ⇒  holds from Proposition 2.2.

( ) ( )12 pp ⇒ : For the converse, we take ( ) ( ),kIkf E=  where E is the

subset of ∗N  introduced by Proposition 3.2 [6]. Then f admits an

∞H -density and ( ) ,
a

ddfd −=
∗

∞  but it does not admit an pH -density

[2, Theorem 2.6, pp. 516-517].

Corollary 2.8. Let E be a subset of ∗N  and let [ ].1,0∈A  If E admits A

as an pH -density, for one ,∗∈ Np  then E admits A  as an ∞H -density.

The converse does not true.

2.3. Generalizations

Put

( ){ }.1allforexists:1 >∈= sfEf s:FF

1F  denotes the class of Dirichlet’s series of the form

( )
,

1
∑
≥n

sn

nf

with the absolute convergence abscissa is .1≤

Lemma 2.9 [8, p. 51]. If ,1F∈f  then for all 1>s  and all ,N∈p

( )fHE p
s  exists and we have

( ) ( ) ( ) ( ).1,11 ++ →=− sasofHsEfHE p
s

p
s



∞∗∈ HpH p ,, N -DENSITIES IN NUMBER THEORY … 91

Proof. From the relation ( ) ( ),fHfH ≤  it holds that if ,1F∈f

then, for all N∈p  and all ,1>s  the series

( ) ( )∑
≥1n

s

p

n

nfH

is absolutely convergent. Let ,N∈p  put

( ) ( ).0,sup,0,sup, ggggfHg p −=== −+

From inequalities

∑ ∑
+≥ ≥

++
<<

1
11

,111

kn kn
sss n

s
kn

s

it holds that

( ) ( ) ( ) ( ) ,
11

1 1 1
11 









−

ζ
≤ ∑ ∑ ∑ ∑

≤ ≥ ≥ +≥
+

−
+

+

k kn k kn
sss

n
kg

n
kg

s
s

gE (2.1)

( ) ( ) ( ) ( ) .
11

1 1 1
11 









−

ζ
≥ ∑ ∑ ∑ ∑

≥ +≥ ≥ ≥
+

−
+

+

k kn k kn
sss

n
kg

n
kg

s
s

gE (2.2)

By writing

∑ ∑
+≥ ≥

+++
−=

1
111

,111

kn kn
sss knn

inequalities (2.1) and (2.2) give

( ) ( ) ( ) ( )










+

ζ
≤ ∑ ∑ ∑

≥ ≥ ≥
+

−

+
1 1

11
1

k kn k
sss

k

kg

n
kg

s
s

gE

and

( ) ( ) ( ) ( )
.1

1 1
11 












−

ζ
≥ ∑ ∑ ∑

≥ ≥ ≥
+

+

+
k kn k

sss
k

kg

n
kg

s
sgE

Then

( ) ( ) ( )
( )

,
1

1∑
≥

+

−

ζ
+≤

k
sss

k

kg
s
s

HgsEgE (2.3)

( ) ( ) ( )
( )

.
1

1∑
≥

+

+

ζ
−≥

k
sss

k

kg
s
s

HgsEgE (2.4)
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Or, since 1F∈g  we deduce that +g  and 1F∈−g  and consequently

( ) ( )
( )

( ) ( )
( )∑ ∑

≥ ≥
+

−

→+

+

→
=

ζ
=

ζ ++
1 1

1111
.01lim1lim

k k
ssss k

kg
sk

kg
s

And from relations (2.3) and (2.4) it holds that ( ) ( ) ( ).1oHgsEgE ss =−

Immediately, from Lemma 2.9 follows the following theorem:

Theorem 2.10. If 1F∈f  with f positive and there exists N∈0p

such that fH p0  admits an analytic density ( ) ,0 A=δ fH p  then for all

,N∈p  fH p  admits an analytic density ( )fH pδ  which is equal to .A

By combining Theorem 3.12 [4, Theorem 3.12, p. 220], with Theorem

2.10 above, which gives first generalization of Theorem 3.7 [4, Theorem

3.7, p. 214].

Theorem 2.11. If 1F∈f  and if there exists N∈p  such that fH p

converges, then f admits an analytic density ( )fδ  and

( )
( )

( ) ( ).lim nfHf p
n +∞→

=δ

We can prove that if F∈f  admits an ∞H -density, then there exists

N∈p  such that .0F∈fH p

The following theorem is another generalization of Theorem 3.7 [4,

p. 214]. It proves that we can replace the hypothesis of mean convergence

of rank 1, in Theorem 2.5 above by the hypothesis of mean convergence of

rank ∞.

Theorem 2.12. If an arithmetic function f admits an ∞H -density,
( ),fd∞  then it admits an analytic density ( ),fδ  and ( ) ( ).ffd δ=∞

Remark 2.3. The converse of this theorem is not true.

Proof. Let

[ [,,
1

kk
k

qpE
≥

= ∪
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where

( )

( )




=
=

,
,

kQ
k

kP
k

bq

bp    with 
( )

( )










 +=

=
2

2

2
1
,

kkQ

kkP

and { }.9...,,3,2∈b  By taking ( ) ( ),kIkf E=  f does not admit an ∞H -

density [6, Proposition 3.12], but it admits an analytic density ( )
2
1=δ f

[6, Remark 3.2].
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