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Abstract

In this paper, we generalize a process of iteration of a positive arithmetic

function. We introduce densities: HP, p e N*, H® and study these

densities for positive arithmetic functions. Some applications are
obtained.

1. Introduction

To resolve the problem of the nonexistence of asymptotic density in

the first-digit problem, we have used in [6] the following method:

Let E be the subset of N* of the first-digit problem. Consider, for all
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integer n > 1, the expression defined by

(HF) (2) = v(Tg) =+ D Tp(k),
k=1

where I (k) is the indicator function of the set E.

If the limit, lim vg)(l ) exists, as n tends to infinity, then E admits
n

an asymptotic density, else, we pass to the next iterate. Namely, we form

V(1) = Y V().

s=1

To remove the abnormal behavior of this mean, Flehinger [7] suggests
that if we proceed to one infinity of iterates, we come to compute a
density of the set E of the first-digit problem.

The above leads us to consider the process of iterates for positive
arithmetic functions.
In this paper, introducing the notions of H?, p € N*, H” -densities,

we study these for a class of positive bounded arithmetic functions.
Further, we generalize some results obtained in [6]. We further obtain
that

H'-density < HP(p € N*)-density = H”-density
for positive bounded arithmetic functions. Finally, some applications are
demonstrated.
Definition 1.1. Let f be a positive arithmetic function and let
p € N*. We say that f has the number ¢ >0 as an HP?-density, if,

¢ =1lim(H?f)(n), when n tends to infinity. If this is the case, we shall
n
denote this density by d,(f).

Definition 1.2. Let f be a positive arithmetic function, with the same

notations as above. We say that f has the number ¢ >0 as an H” -density,
if the limits

lim _(lim inf) v{P)(f)

(P=+0) " (n—>+00)
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and

lim (lim sup) v (f)

(P>+0) " (n—>+)
exist and are equal to /. If this is the case, we shall denote this density by

doo ().

2. Main Results
Next, the concept of H™ -density is defined with the Holder’s

transformation H. These averages are known as Césaro means [1, p. 103].

We prove that asymptotic density and H? -density, for p € N*, are

equivalent for the class of positive arithmetic functions.
2.1. Generalities on the transformation H
Denote the set of real sequences by §F, and the set of limited real

sequences by §°. Denote the elements of § by f, g, h, .... .
For f € §, we define

f = lim sup f(n); f = liminf f(n).

(n—+om) (n—+0)
Proposition 2.1. For f € §°,
IFl=7F-f

defines a semi-norm on §°.

Definition 2.1. We call Holder’s transformation all maps

{H:&—)&
f = Hf,

where

(Hf) (n) = %Zf(k), n=12.. .
k=1
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In other words, (Hf)(n) is the expectation of f relatively to the probability

measure v,, introduced in [3]. Namely,
E,, (f) = (Hf)(n).

Like that, convergence of the sequence (Hf) is equivalent to the

existence of an asymptotic density of f.
2.2. Properties of the transformation H

The Holder’s transformation H has some characteristic properties

given by the following propositions:

Proposition 2.2. For all f € §, we have
—o < f<Hf <Hf < f <+,
Proof. (a) Obviously, we have Hf < Hf.

(b) Remains to prove that f < Hf and ﬁf < f

(b); We prove that Hf < f. For this purpose; for all m, n € N* such

that n > m, we have

(HF) () = = Y f(k)
k=1

LS 3
k=1

k=m+1

<

SEE

2 )+ = (sup f())
=1 >m

the integer m is fixed, for all (¢ > 0), there exists an integer N(g) > m

such that

V(n 2 N(e)), (Hf)(n) < &+ sup f(k),



HP, p e N*, H” -DENSITIES IN NUMBER THEORY ... 85
which implies that for all m € N*, for all (¢ > 0)

lim sup(Hf) (n) < & + sup f(k).

(n—>+wx) k>
Namely,

lim sup(Hf) (n) < l(im suI)) f(n). Thus Hf < f.

n—+o0) n—>+0o
(b)g We prove that f < Hf.

Holds by the same way.

Remark 2.1. (a) The Holder’s transformation H transforms limited
sequence to a limited sequence.

(b) The Hélder’s transformation H transforms a convergent sequence
to a convergent sequence.

Proposition 2.3. If f € §°, then the set of limit points of the sequence

(Hf) is the interval [Hf, Hf).

Proof. Let f € §°, and let M >0 be such that for all n e N*,
| f(n)| < M. We have

n+l

1
(HD) 04 2) = (H) @) = = 370 = (D )

1 n
7 2 10 (D))

=Lf(n+1)+
n+1 n

1
= —— (f(n +1) = (Hf) (n).
So
() (4 1) = (H) )| < (| £+ 1) = | (H) (0)]) < 22
It holds that

Jm [ () (n ) = () ()] = 0
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Proposition 2.4 [8]. For all couples (a, B) of real numbers such that

0 < a <B <1, there exists a sequence f with valued in {0; 1} such that

Hf = o and Hf = p.

Proof. For all n € N* and for all f, we have

(Hf) -+ 1) = " (h) )+ L2 1),

n+1

Put

e(n) = (HF) (2 +1) = (HF) () = ——— (f(n + 1) = (HF) ()
So, if fis with valued in {0; 1}, the difference e(n) proves that

1
n+1’

|e(n)| <

Further,
e(n)>0 if f(n+1)=1.
e(n)<0 if f(n+1)=0.

These relations allow us to construct a sequence f which answers to
Proposition 2.4. Put

1 *
€, =—, neN
n

and

0 for k=1,

f(k) =
1 for k=2 .. n,
where n; is the least integer > 2, such that (Hf)(n;) e |B —¢1, B+ ]

(here, as g =1, ny = 2).

And, put f(k) =0 for k = n; +1, ..., ng, where ngy is the least integer
> ny, such that (Hf)(ng) € Jo. — ¢, o + g;].



HP, p e N*, H” -DENSITIES IN NUMBER THEORY ... 87

Thus, we construct by recurrence a strictly increasing sequence of

integers (ny, )kzl’ and we define successively the sequence f on the sets

{np, +1, ..., np,1} such that

(a) we have

(k 0 ifRk=1lorke {T’L2p+1 +1, ceey T’l2p+2},
f )_ 1 if ke {ngp +1, ..., n2p+1}.

(b) . ngp,1 1s the least integer > ng,, such that
(Hf)(n2p+1) € ]B ~—€p, B+ Sp[‘
. Ngp.o 1s the least integer > ngy, .1, such that
(Hf)(n2p+2) € ]a —Ep, A+ Sp[‘
Then, we have

(p]i)rg—lao)(Hf) (ngp) = a, (plililw)(Hf )(n2ps1) = B

Vk e {ng, +1, ..., ngpit,  (Hf)(ngp) < (Hf)(R) < (Hf)(ngp_1).
Vk € {ngp g, .. nopt,  (Hf)(ngp) < (Hf) (k) < (Hf)(ngp-1).
It holds that Hf =B, Hf = o
Proposition 2.2 shows that for all f € §°, | Hf | < | f |

Consequently, if we denote HP the pth iteration of Hélder’s

transformation H, namely,

H° =1, H' =H,HP*' =HoHP? forp=1,2,..
then, for all f € §°, the sequence (||pr||)le is decreasing, limited below
by 0, and consequently it converges.

Definition 2.2. Let f: N* —» R* be a positive arithmetic function
and p € N*. We call that f admits ¢ (¢ > 0) as HP” -density if the limit,

lim(H?f)(n) exists and equal to /, as n — +oo. If this is the case, we
n

shall denote this density d,,(f).
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Definition 2.3. Let f : N* — R™ be a positive arithmetic function.

We say that fadmits ¢ (¢ > 0), as H” -density if limits,

lim )(H_pf )(n)

(p—>+x

and
lim (H?f)(n)
(p—>+o)

exist and are equal to /. If this is the case, we shall denote this density

doo (f)-

Remark 2.2. (a) The existence of one H? -density, for f e §°, is

equivalent to |H?f| = 0.
(b) The existence of one H® -density, for f € §°, is equivalent to

lim )||pr|| =0.

(p—>+oo

(c) The case p =1 agrees to the asymptotic density introduced in [3],
denoted d(f).

We have the following theorems which characterize these densities.

Theorem 2.5 (Comparison Theorem between: H' and HP peN*-

densities). Let f : N* — R* be a limited and positive arithmetic function.
Then, for all real number (¢ >0, the following two statements are

equivalent:
(p1): f admits ( as H'-density and (dy(f) = 0);
(po) : f admits ¢ as HP -density, for all p € N* and (dp(f) = Z).

Nevertheless this is not true for p = +ow, as shows by the Theorem
2.7 below.

Proof. (p;) = (py) holds from Proposition 2.2.
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(p2) = (py): It is enough to prove that if ( lim )HQf(n) =/, then
n—+o0

lim Hlf(n) = /.

(n—+ow
For this purpose, we use Theorem 2.2 [3, Theorem 2.2, p. 340]; the
general term of the sequence H 1 f is

k

gk) =1 f(s).

s=1

It proves

n+l
n(e(n) - gln +1) = n[ Zﬂ ) D >J
- ’{& Th+ 1)2 flk) - f(nn:1l)J

- Zf( ) - = fln +1).

n+1

Since f(k) is limited by assumption, the above quantity is limited,

namely,
n(gn)-gln+1)) < M

and the proof of theorem holds.
We have the following corollary:

Corollary 2.6. Let E be a subset of N*. Then, for ( € [0, 1], the

following two statements are equivalent:
(p1) : E admits ¢ as H'-density and (dy(E) = 1);
(p2) : E admits ¢ as HP -density, for all p € N* and (d,(E) = ¢).

Theorem 2.7 (Comparison Theorem between: HP, p e N* and

H® - densities). Let f: N* —> RY be a limited and positive arithmetic

function. Consider, for all real number { >0, the following two statements:
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(1) : f admits ( as HP -density, for all p e N* and (d,(f) = ();
(p2) : f admits ¢ as H” -density and (d,(f) = /).
Then (p;) = (pg). The converse is not true.

Moreover, the H” -density is an extension of the HP -density, for all

p € N*, for the class of limited and positive arithmetic functions.
Proof. (p;) = (ps) holds from Proposition 2.2.

(p2) = (py): For the converse, we take f(k) = I (k), where E is the

subset of N* introduced by Proposition 3.2 [6]. Then f admits an

H” -density and d(f) = d -d , but it does not admit an H?P -density

[2, Theorem 2.6, pp. 516-517].

Corollary 2.8. Let E be a subset of N* and let ¢ € [0, 1]. If E admits ¢

as an HP -density, for one p € N*, then E admits ( as an H® -density.

The converse does not true.
2.3. Generalizations

Put

3t = 1{f € §: E,(f) exists for all s > 1.

5 I denotes the class of Dirichlet’s series of the form

>

n>1 n’
with the absolute convergence abscissa is < 1.
Lemma 2.9 [8, p. 51]. If f € &1, then for all s >1 and all p € N,
E (HPf) exists and we have

E (HPf)-sE,(HP™f) = o(1), as (s > 1).
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Proof. From the relation | H(f)| < H(| f|), it holds that if f e ',
then, for all p € N and all s > 1, the series

(H"f)(n)

1s absolutely convergent. Let p € N, put
g =HPf, g" =sup(g, 0), g =sup(-g,0)

From inequalities

5 Y S S

nxk+1 1 nxk
it holds that
S +
Es(g>s@[kz (k)Z Zg (k)n;1 1} 1)
[ Yew Y Lo ewy Ll e
k>1 nxk+1 1 k>1 nxk I
By writing

Z sl+1 - z sl+1 h ksl+1 ’

n>k+1 nxk 1

inequalities (2.1) and (2.2) give

Ey(g) < (s )[Z U”Z#* isglf)]

k>1 n>k k>1
and
g (k)
Then
E,(g) < sE,(Hg) + = Z g (k) 2.3)
C( ) ks+1 ’
(k)
Ey(g) > sE,(Hg) - 5 )Z é; R (2.4)

k21
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Or, since g € §' we deduce that g and g~ € 3! and consequently

: 1 g’ (k) _ g (k)
lim —— =
(sﬁl*) &(s) Z kSt (s_>1+) &s) Z ESt1

k21 k21

And from relations (2.3) and (2.4) it holds that E,(g) - sE;(Hg) = o(1).
Immediately, from Lemma 2.9 follows the following theorem:

Theorem 2.10. If f < 3! with f positive and there exists py € N
such that HPOf admits an analytic density S(HPOf) = ¢, then for all

p € N, HPf admits an analytic density 8(H?f) which is equal to ¢

By combining Theorem 3.12 [4, Theorem 3.12, p. 220], with Theorem
2.10 above, which gives first generalization of Theorem 3.7 [4, Theorem
3.7, p. 214].

Theorem 2.11. If f € 3! and if there exists p € N such that HPf

converges, then f admits an analytic density §(f) and
8(f) = lim (HPf)(n).
(n—+o)

We can prove that if f € § admits an H™ -density, then there exists
p e N such that Hf e 3°.

The following theorem is another generalization of Theorem 3.7 [4,
p. 214]. It proves that we can replace the hypothesis of mean convergence
of rank 1, in Theorem 2.5 above by the hypothesis of mean convergence of

rank co.

Theorem 2.12. If an arithmetic function f admits an H® -density,
d(f), then it admits an analytic density 5(f), and d(f) = 5(f).

Remark 2.3. The converse of this theorem is not true.

Proof. Let

E = U b 9
kzl[pk qrl
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where

TN ECP
@ = 0%, Q) = (k4 1)

and b € {2, 3, ..., 9}. By taking f(k) = Ig(k), f does not admit an H” -

density [6, Proposition 3.12], but it admits an analytic density 8(f) = %

[6, Remark 3.2].
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