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Abstract

We single out a class of partial functors, the partial supersaturated

functors, together with the associated partial natural transformations

between them, which allows us to get a symmetric monoidal closed,

non-cartesian, and ordered partially additive category with small

categories as objects and morphisms the partial supersaturated

functors. Moreover, we extend some notions and constructions from

semigroup theory, e.g., Rees congruences, Rees homomorphisms and

ideal extensions, to categories and partial supersaturated functors.

Also, we state a Yoneda-Grothendieck Lemma for the above class of

partial functors and generalize the concept of adjunction to that of

partial adjunction, providing for this last concept one fundamental

example from the field of algebraic logic.
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1. Introduction

In mathematics, leaving out some fields, partiality has a bad
reputation, probably as a consequence of the fact that, e.g., one and the
same concept, when seen from the standpoint of partiality, splits up into
a non well-ordered multiplicity of different concepts. Besides, and this is
perhaps worse, partiality is regarded as needless, this last being wrongly
based on the existence of a reduction process from partiality to totality.
However, as witnessed, e.g., by recursion theory and universal algebra,
partiality not only provides subtle conceptual distinctions that otherwise,
almost surely, would have remained hidden for ever, but also shows itself
as unavoidable when approaching some problems, specially those that by
nature have a computational character. To this we add that during the
last few decades there have been some interesting, although isolated,
contributions to the investigation of partiality, most remarkably those by
Poythress in [10], by Burmeister in [2], and by Robinson-Rosolini in [11],
among others. The mentioned works by Poythress and by Burmeister are
written from the universal algebra standpoint, and we will compare, in

the first section of this paper, the definition of p-morphism of Poythress,

as applied to categories, with our notion of partial supersaturated functor.
As to the above mentioned work by Robinson-Rosolini, which is written
from the category-theoretical standpoint, we should say that it contains
an attempt to reconcile various abstract notions of category of partial

maps which appear in the literature, through the concept of p-category;

nevertheless, it is also imperative to point out that, strangely, in such a
work there is not any example of category of partial functors.

One of the goals of this paper is to specify a class of partial functors
which allows us to get structured categories of the same type as those for
sets and partial mappings. As it happens, there is a wide variety of
classes of partial functors between categories which we could consider,
e.g., the p-functors, as particular examples of the concept of partial
morphism on partial algebras defined by Poythress in [10], as well as
those we could get, more generally, starting from pairs of partial
mappings from a category to another, when their domains of definition
determine some type of subcategory of the domain category, and also
satisfy some definite conditions related to the preservation or reflection of
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some properties. However, almost none of the above classes of partiality
leads to reach the type of structured categories we are interested in.

In the second section of this paper we define the partial

supersaturated functors, and for this type of partiality we show that a

structured category can be obtained, which is symmetric, monoidal closed

(abbreviated to closed), and is such that its underlying category is not

cartesian closed, exactly as it happens for sets and partial mappings.

Also, we show in this section how to extend to categories and partial

supersaturated functors some notions and constructions from semigroup

theory, particularly those of Rees congruence, Rees homomorphism, and

ideal extension of a semigroup by another. Moreover, we prove a Yoneda-

Grothendieck Lemma for partial supersaturated functors, and also

generalize the concept of adjoint situation to the case of partial

supersaturated functors.

In the third section of this paper we show that the set of all partial

supersaturated functors between two categories, when partially ordered

by extension, becomes a coherent algebraic complete partial order, and

also that for partial supersaturated functors a structured category can be

obtained, which is ordered partially additive in the sense of [8], once

again as for sets and partial mappings. However, as we shall see, the

notions of finiteness and compactness are not equivalent for partial

supersaturated functors, while, as it is well known (see, e.g., [1]), they are

so for partial mappings.

As to examples of partial supersaturated functors we remark that

many of the functors in [9], could be considered in a natural way as

partial supersaturated functors. This is due to the fact that, as we show

in the second section, to obtain partial supersaturated functors from a

category C to another D it is enough to give a supersaturated subcategory

of C and an ordinary functor from such a supersaturated subcategory to

D. Actually, the procedure used several times by Petrich in [9], starts by

considering a groupoid C together with a property Φ of the objects of C

that is invariant under isomorphisms, then it goes on by forming the set

of all objects of C that fall under Φ, together with all the isomorphisms

between them, arriving at a supersaturated subcategory of C, and
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finishes by defining a partial functor from C, having as domain of

definition the supersaturated subcategory of C obtained from the abstract

property Φ. Additional examples of partial supersaturated functors from

the fields of recursion theory and of algebraic logic will be provided in the

second section, after having characterized partial supersaturated functors

in terms of the concept of supersaturated subcategory of a category and of

the usual concept of functor.

Finally, let us say that even though partial supersaturated functors

are, in fact, a generalization of functors, giving rise to a closed and

ordered partially additive category, we do not hold in any way that such a

notion is the best generalization of the concept of functor. However, we

believe that the notion of partiality given by partial supersaturated

functors is the weakest one giving rise to a closed and ordered partially

additive category. We should also note, paraphrasing and in complete

agreement with what Ljapin says (in [7, p. 32]) about the reduction of

semigroups of partial transformations to semigroups of transformations,

that it is not always expedient to reduce partial functors to ordinary

functors, because, in the transition, some properties can be lost.

In this paper, U  will be a Grothendieck universe, fixed once and for
all. On the other hand, an expression such as YXF :  means that F

is a partial mapping from X to Y, and in this case ( )FDom  is the domain

of definition of F; finally, if C is a category, ,d0  ,d1  id and  denote the

structural operations of C. It is to be noted that the composition circle is
omitted when composing morphisms.

2. Partial Supersaturated Functors

To begin with, we state the concept of partial supersaturated functor
between two categories.

Definition 2.1. Given two categories C and D, a partial
supersaturated functor from C to D is a triple ( )( ),,,, 10 DC FFF =

denoted by ,: DCF  such that 0F  is a partial mapping from ( )COb  to

( ),Ob D  1F  is a partial mapping from ( )CMor  to ( ),Mor D  and subject to

satisfy the following axioms:
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(1) The domains of definition of the partial mappings 00 dF  and

10d F  are identical, and for every morphism f in this common domain

we have that

( )( ) ( )( ).dd 0010 fFfF =

(2) The domains of definition of the partial mappings 10 dF  and

11d F  are identical, and for every morphism f in this common domain

we have that

( )( ) ( )( ).dd 1011 fFfF =

(3) The domains of definition of the partial mappings id1F  and

0id F  are identical, and for every object x in this common domain we

have that

( ) ( ).idid 10 xxF F=

(4) For every pair ( ) ( ) ,Mor, 2C∈gf  if f and g are composable and fg is

in ( ),Dom 1F  then ( )gf ,  is in ( ),Dom 2
1F  ( )fF1  and ( )gF1  are composable

and

( ) ( ) ( ).111 gFfFfgF =

We agree to denote by ( )DC,P  the set of all partial supersaturated

functors from C to D, and if ,: DCF  then ( ),Dom F  the domain of

definition of F, is the pair ( ) ( )( ).Dom,Dom 10 FF

From axiom (4) in the above definition we get the following property:

For every pair ( ) ( ) ,Mor, 2C∈gf  if f and g are composable, ( )gf ,

( ),Dom 2
1F∈  and ( ),Dom 1Ffg ∈  then ( ) ( ) ( )gFfFfgF 111 =  and ( )fF1  and

( )gF1  are composable. Reciprocally, from this last property together with

the first axiom from Definition 2.1, we get axiom (4). Therefore, if, in the
above definition, we left invariant the first two axioms, then the last
axiom could be replaced equivalently by the above property.

In order to compare the above concept of partial supersaturated

functor with that of p-functor, which falls under the concept of
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p-morphism between partial algebras defined by Poythress in [10], we

recall it in the following

Definition 2.2. Given two categories C and D, a p-functor from C to

D is a triple ( )( ),,,, 10 DC FFF =  such that 0F  is a partial mapping

from ( )COb  to ( ),Ob D  1F  is a partial mapping from ( )CMor  to ( ),Mor D

and subject to satisfy the following axioms:

(1) For every morphism f, if ( ),Dom 1Ff ∈  then, on the one hand,

( ) ( )00 Domd Ff ∈  and ( )( ) ( )( ),dd 0010 fFfF =  and, on the other hand,

( ) ( )01 Domd Ff ∈  and ( )( ) ( )( ).dd 1011 fFfF =

(2) For every object x in ( ),Dom 0F  ( )1Domid Fx ∈  and ( ) =xF0
id

( ).id1 xF

(3) For every pair ( ) ( ) ,Mor, 2C∈gf  if ( ) ( )2
1Dom, Fgf ∈  and ( ),1 fF

( ),1 gF  are composable, then f, g are composable, ( ),Dom 1Ffg∈  and

( ) ( ) ( ).111 gFfFfgF =

From this we see that axioms (1) and (2) in Definition 2.1 are a

strengthening of the corresponding axioms in Definition 2.2, whereas

axiom (4) in Definition 2.1 and axiom (3) in Definition 2.2 are dual.

Following this we introduce the notion of supersaturated subcategory

of a category which will allow us, among other things, to characterize the

partial supersaturated functors through it and that of functor.

Definition 2.3. Given a category C, a subset O of ( )COb  and a subset

M of ( ),Mor C  we say that ( )MO,  is a supersaturated subcategory of C if

it satisfies the following axioms:

(1) For every morphism f in C, Mf ∈  if, and only if, ( ) .d0 Of ∈

(2) For every morphism f in C, Mf ∈  if, and only if, ( ) .d1 Of ∈

We denote by ( )CSsat  the set of all supersaturated subcategories of C.

Let us observe that ( )MO,  is a supersaturated subcategory of C if,
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and only if, for every morphism f in C, if ,Mf ∈  then ( ) Of ∈0d  and

( ) ,d1 Of ∈  and, if ( ) Of ∈0d  or ( ) ,d1 Of ∈  then .Mf ∈

From the above definition we immediately get the following

Corollary 2.4. If ( )MO,  is a supersaturated subcategory of C, then

(1) For every ( ),Ob C∈x  Ox ∈  if, and only if, .id Mx ∈

(2) For every pair ( ) ( ) ,Mor, 2C∈gf  if f and g are composable, then

Mfg ∈  if, and only if, ( ) ., 2Mgf ∈

After this we state in the following proposition some of the relations
between the concept of supersaturated subcategory and those of
connected component, full, and abstract (for this concept see [4, p. 104])
subcategory of a given category.

Proposition 2.5. Let C be a category. Then

(1) Every connected component of C is a supersaturated subcategory of
C.

(2) Every supersaturated subcategory of C is an abstract and full

subcategory of C.

Moreover, the converses of 1 and 2 are not valid in general.

We gather together in the following proposition the main
characterizations of the concept of supersaturated subcategory. But
before that, for a category C and an object x of C, we agree that x↓  and

x↑  are the subsets of ( )COb  defined, respectively, as follows:

( ) ( ){ }∅≠|∈=↓ xyyx ,HomOb C

and

( ) ( ){ }.,HomOb ∅≠|∈=↑ yxyx C

Proposition 2.6. Given a category C, a subset O of ( ),Ob C  and a

subset M of ( ),Mor C  the following conditions are equivalent:

(1) The pair ( )MO,  is a supersaturated subcategory of C.

(2) For every ,Ox ∈  ,x↓  ,Ox ⊆↑  and ( )∪ Oba
baM

∈
=

,
.,Hom
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(3) The pair ( )MO,  is closed under the structural operations ,d0  ,d1

and id of C, and, for every ( ) ( ) ,Mor, 2C∈gf  if f and g are composable

and f or g is in M, then fg is in M.

(4) The pair ( )MO,  can be represented as the union of a set of

connected components of the category C.

From this we obtain immediately the following

Proposition 2.7. If ,: DCF  then ( )FDom  is a supersaturated

subcategory of C.

As it is well known, the set of all subcategories of a category C is an

algebraic closure system on the two-sorted set ( ) ( )( ),Mor,Ob CC  but, in

general, such a set is neither closed under taking finite unions, nor under

taking complements, and identical considerations could also be applied to

the sets of all full or abstract subcategories of C. But for the system of all

supersaturated subcategories of a category we have something more, as

stated in the following

Proposition 2.8. The set of all supersaturated subcategories of a

category C is a complete Boolean subalgebra of the Boolean set algebra of

subsets of the two-sorted set ( ) ( )( ).Mor,Ob CC

Next we characterize the partial supersaturated functors through the

concepts of supersaturated subcategory and functor.

Proposition 2.9. Given two categories C and D, there is a bijection

from the set ( )DC,P  to the set of all those pairs ( )( )FMO ,,  such that

( )MO,  is a supersaturated subcategory of C, and F is a functor from the

category canonically associated to ( )MO,  to D. Therefore, for the final

category 1, ( )1C,P  and ( )CSsat  are isomorphic sets.

Proof. It is readily seen that the mapping that to a partial

supersaturated functor DC:F  assigns ( ) ( )( ),Dom,Dom FFF  is

the desired bijection.

Example 2.10. Let f be a partial mapping from a set X to a set Y.
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Then, denoting by ( )XDis  and ( )YDis  the discrete categories associated

to X and Y, respectively, we have that ( )fDom  can be identified to a

supersaturated subcategory of ( )XDis  and, therefore, that f can be

identified to a supersaturated functor from ( )XDis  to ( ).YDis  By

restricting our attention to computable mappings, and since there is a

partial recursive mapping f such that f cannot be extended to a recursive

mapping, we see that, within recursion theory, there is a supersaturated

(recursive) functor which cannot be extended to a (recursive) functor.

Thus, confirming what Ljapin says (in [7, p. 32]), it is not always

expedient to reduce partial functors to ordinary functors, because, in the

transition, some fundamental properties can be lost, e.g., in this case the

recursiveness.

Our next goal is to provide another example of partial supersaturated
functor from the field of algebraic logic. But to do it, and in order to make
the paper as self-contained as possible, we should begin by recalling a
series of basic notions, constructions, and results from such a field.

Let ( ) N∈∑=∑ nn  be an arbitrary, but fixed, single-sorted signature,

and V be a fixed but unspecified set of (sentential) variables, which we

assume to be countably infinite. Then we denote by ( )V∑T  the free

∑-algebra on V and call its elements, in this context, sentential formulas.

Definition 2.11 (Cf. [5, p. 23]). A sentential logic is a pair

( ( ) ),, SS V∑= T  where ( )V∑T  is the free ∑-algebra on V and

( ( )) ( )VV ∑∑ ×⊆ TTSubS  a relation satisfying, for every ( )V∑∈ϕ T  and

every Γ, ( ),T X∑⊆∆  the following conditions:

(1) If ,Γ∈ϕ  then .ϕΓ S

(2) If ϕΓ S  and ,∆⊆Γ  then .ϕ∆ S

(3) If ϕΓ S  and, for every ,Γ∈γ  ,γ∆ S  then .ϕ∆ S

(4) If ,ϕΓ S  then [ ] ( ),ϕΓ ff S  for every endomorphism f of ( ).V∑T

(5) If ,ϕΓ S  then there exists a finite subset Θ of Γ such that .ϕΘ S
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The main distinctive feature of the approach to the algebraization of
sentential logic on the part of Font-Jansana in [5] lies in the
mathematical objects used as models of a sentential logic. Concretely,
they propose to use abstract logics, instead of logical matrices, as models
of the sentential logic under consideration, essentially, because being
abstract logics structurally more richer than logical matrices, in them the
metalogical properties of the sentential logic will be reflected more
faithfully than in logical matrices. Moreover, they believe that abstract
logics provide an explanation of the connection, both to the logical and
metalogical level, between a sentential logic and the particular class of
models associated with it.

Definition 2.12 (Cf. [5, p. 15]). An abstract logic is a pair ( ),, JA

where A is a ∑-algebra and J is a closure operator on A.

Let us observe that since there is an anti-isomorphism between the

ordered set of all closure operators on a set A and the ordered set of all

closure systems on A, an abstract logic can be defined alternative, but

equivalently, as a pair ( ),, CA  where A is a ∑-algebra and C  is a closure

system on A.

After having fixed the objects, some of which, selected by means of a
suitable property, will be the models of a given sentential logic, we
proceed next to define, the admissible morphisms between abstract logics
which we will consider in what follows.

Definition 2.13 (Cf. [5, p. 18]). Given two abstract logics ( )J,A  and

( ),, J ′′A  a bilogical morphism from ( )J,A  to ( )J ′′,A  is a surjective

homomorphism f from A onto A′  such that, for every ,AX ⊆  ( ) =XJ

[ ]( )[ ].1 XfJf ′−

These bilogical morphisms are particularly relevant, among other
reasons, because they are to logical congruences on an abstract logic,
defined immediately below, as the surjective homomorphisms between
universal algebras are to congruences on a universal algebra.

Definition 2.14 (Cf. [5, p. 16]). If ( )J,A  is an abstract logic, then a

congruence Φ on A is a logical congruence on ( )J,A  when, for every
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,Ax ∈  if ( ) ,, Φ∈yx  then { }( ) { }( ).yJxJ =  The ordered set ( ) =J,ACgr

( )( )⊆,,Cgr JA  is a complete lattice and a principal ideal of the algebraic

lattice ( ).ACgr  Actually, the generator of the principal ideal is the so-

called Tarski congruence on ( )J,A  and it is denoted by ( ).,~ JAΩ

Observe that a congruence Φ on A is a logical congruence on ( )J,A

precisely if, for every fixed point ( )FJF =  of the closure operator J, Φ

saturates F.

The process of reduction of an abstract logic consists in factoring an

abstract logic by its Tarski congruence. The result of the action of this

process on an abstract logic is a new abstract logic of the type specified in

the following

Definition 2.15 (Cf. [5, p. 21]). An abstract logic ( )J,A  is reduced

when it has only one logical congruence, i.e., when ( ),,~ JAΩ  the greatest

logical congruence on ( ),, JA  is precisely .A∆  We write ( )∗∗ J,A  for the

quotient of ( )J,A  by ( )J,~ AΩ  and we call it the reduction of ( )., JA

If an abstract logic ( )K,B  is already reduced, then it is trivially

isomorphic to its reduction ( )., ∗∗ KB

Proposition 2.16 (Cf. [5, p. 21]). If there is a bilogical morphism

between two abstract logics ( )J,A  and ( ),, J ′′A  then their reductions are

isomorphic.

Therefore, the only possible bilogical morphisms between two reduced

abstract logics are logical isomorphisms.

From a sentential logic S  and an abstract logic ( )J,A  we obtain the

binary relation ( ) ( ( )) ( )VVJ ∑∑ ×⊆ TTSub,A  defined, for every { }ϕΓ ∪

( ),T V∑⊆  as ( )ϕΓ J,A  if, and only if, for every homomorphism f from

( )V∑T  to A, we have that ( ) [ ]( ).Γ∈ϕ fJf  The binary relations of the type

( )J,A  are at the basis of the concept of model of a sentential logic as

stated in the following
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Definition 2.17 (Cf. [5, p. 30]). An abstract logic ( )J,A  is a model of

a sentential logic S  when, for every { } ( ),T V∑⊆ϕΓ ∪  from ϕΓ S  it

follows that ( ) ,, ϕΓ JA  or, what is equivalent, when ( )., JAS ⊆

Proposition 2.18 (Cf. [5, p. 30]). If there is a bilogical morphism

between two abstract logics ( )J,A  and ( ),, J ′′A  then ( )J,A  is a model of

S  if, and only if, ( )J ′′,A  is a model of ;S  in particular, ( )J,A  is a model

of S  if, and only if, ( )∗∗ J,A  is a model of .S

We denote by ( )SM  the category which has as objects precisely those

abstract logics ( )J,A  that are models of S  and as morphisms all

bilogical morphisms between abstract logics.

To define the full models of a sentential logic we state next the

concept of deductive filter of a sentential logic on an abstract logic.

Definition 2.19 (Cf. [5, p. 24]). Given a sentential logic S  and a

∑-algebra A, subset F of A is an S -deductive filter on A if, and only if, for

every { } ( )V∑⊆ϕΓ T∪  and every homomorphism f from ( )V∑T  to A, if

ϕΓ S  and [ ] ,Ff ⊆Γ  then ( ) .Ff ∈ϕ  We denote by ( )ASDF  the set of all

S -deductive filters on A.

Proposition 2.20 (Cf. [5, p. 25]). If f is a bilogical morphism from

( )( )AA SDF,  onto ( ),, CB  then ( ).DF BSC =  In particular, ( ) =∗ASDF

( ).DF ∗AS  Moreover, if two abstract logics ( )C,A  and ( )C ′′,A  are

isomorphic, then ( )ASC DF=  if, and only if, ( ).DF A′=′ SC

Font and Jansana in [5] associate with each sentential logic S  a class

of abstract logics called the full models of S  with the conviction that

(some of) the interesting metalogical properties of the sentential logic are

precisely those shared by its full models. Moreover, they also claim that

the concept of full model is a “right” notion of model of a sentential logic.

Since these statements are actually verified by the results contained in

[5], we should consequently allow a fundamental and privileged place to

full models in algebraic logic.



PARTIAL SUPERSATURATED FUNCTORS 13

Definition 2.21 (Cf. [5, p. 31]). An abstract logic ( )C,A  is a full

model of a sentential logic S  if, and only if, ( ) ( ( )).DF,, ∗∗∗∗ = AAA SC

We denote by ( )SfM  the set of all full models of .S

From Proposition 2.20 it follows immediately the following

Corollary 2.22 (Cf. [5, p. 32]). The set ( )SfM  is closed under

bilogical morphisms, i.e., if there is a bilogical morphism between two

abstract logics ( )C,A  and ( ),, KB  then ( )C,A  is a full model of S  if, and

only if, ( )K,B  is a full model of .S  In particular, an abstract logic ( )J,A

is a full model of S  if, and only if, its reduction ( )∗∗ J,A  is.

Therefore, ( )SfM  together with all bilogical morphisms between full

models of S  is a supersaturated subcategory of ( ),SM  hence a union of

connected components in ( ).SM  We denote by ( )SfM  the category which

has as objects precisely those abstract logics ( )J,A  that are full models

of S  and as morphisms all bilogical morphisms between abstract logics.

Full models are indeed models of the sentential logic under
consideration, however, by [5, pp. 99-100], it is not, generally, true that
every model is a full model.

We state next the concept of reduced full model of a sentential logic.

Definition 2.23 (Cf. [5, p. 31]). An abstract logic ( )C,A  is a reduced

full model of a sentential logic S  if, and only if, ( )C,A  is reduced and

full, i.e., if, and only if, ( )C,A  is reduced and ( ).DF ASC =

We denote by ( )SrfM  the category which has as objects the abstract

logics ( )J,A  that are reduced full models of S  and as morphisms all

bilogical morphisms between abstract logics. Observe that by allowing as

morphisms precisely the bilogical morphisms the category ( )SrfM  is a

groupoid, i.e., every morphism in it is an isomorphism.

After these lengthy logical preliminaries, we can finally provide the
following example of partial supersaturated functor which is
fundamental for the field of algebraic logic.
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Example 2.24. For a sentential logic ,S  the partial functor of

reduction SRd  from ( ),SM  the category of models of S  with all the

bilogical morphisms, to ( ),rf SM  the category of all reduced full models of

S  with all the bilogical morphisms, is supersaturated and has as domain
of definition precisely ( ),f SM  the category of all full models of S  with all

bilogical morphisms.

Remark. The concept of partial supersaturated functor can be seen
as a special case of at least two, generally, non-equivalent concepts of
partial homomorphism between partial many-sorted algebras of the same
type of similarity.

Let S be a set of sorts and ( ( ) )(( ) ) SSssss njjnjj ×∈∈∈
∑=∑ ,,  be an

S-sorted signature, where S  is the underlying set of the free monoid on

S. Then, given two partial many-sorted ( )∑,S -algebras ( ( ) )∈∑σσ= FA,A

and ( ( ) ),, ∈∑σσ= GBB  we could consider, at least, two classes of partial

homomorphism from A to B. On the one hand, the pairs ( )fX ,  which

satisfy the following (somewhat redundant) conditions:

(1) X is a subalgebra of A such that, for each σ in ( ) ,, ss njj ∈
∑  and each

a in ,
jsnj A∈∏  if ( ),Dom σ∈ Fa  then a in 

jsnj X∈∏  if, and only if,

( ) .sXaF ∈σ

(2) f is a homomorphism from X to B,

and, on the other hand, the pairs ( )fX ,  which satisfy the following

(somewhat redundant) conditions:

(1) X is a subalgebra of A such that, for each σ in ( ) ,, ss njj ∈
∑  and each

a in ,
jsnj A∈∏  if ( )σ∈ Fa Dom  and for some ,nj ∈  ,

jsj Xa ∈  then

( ) .sXaF ∈σ

(2) f is a homomorphism from X to B.

It is easy to see that for categories, which fall under the concept of partial
many-sorted algebra, both notions of partial homomorphism are
equivalent.
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Proposition 2.25. If DC:F  and ,: EDG  then FG  is a

partial supersaturated functor from C to E. Moreover, the composition of

partial supersaturated functors is associative, for every category C, ,IdC

the identity functor of C, is neutral with respect to composition. Therefore,

taking as objects the U -small categories and as morphisms the partial

supersaturated functors between U -small categories, we obtain a category

which we agree to denote by .pCat  Moreover, if Y is a supersaturated

subcategory of D, then [ ]Y1−F  is a supersaturated subcategory of C.

Proposition 2.26. The category pCat  has a unique zero object, the

empty category, and is not cartesian closed.

Proof. The first assertion is obvious. The second follows easily from

the fact that pCat  is a pointed category (because of the existence of the

zero object), and from the standard Yoneda-Grothendieck Lemma.

The category ,pSet  of U -small sets and partial mappings between

U -small sets, which is naturally embedded into the category ,pCat  by

Example 2.10, also has a unique zero object, the empty set, and is not

cartesian closed. Later on we will point out some other properties shared

by pSet  and ,pCat  as well as differences between them. These differences

derive, essentially, from the fact that sets are homogeneous, while

categories are heterogeneous entities.

Next, before investigating the structural properties of the category

,pCat  we show that just as in semigroup theory (see e.g., [3], [6], or [7]),

in category theory there is also one type of functor, a Rees functor, which

does correspond very closely to a supersaturated subcategory of the

source category of the functor. But in order to verify it we should

consider, instead of the ordinary congruences on a category which only

classify the morphisms of the category under consideration, congruences

which simultaneously and coherently classify both the objects and the

morphisms of the given category.

Definition 2.27. Let C be a category. Then we say that a pair

( ),, 10 ΦΦ=Φ  where 0Φ  is a binary relation on the set of objects of C
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and 1Φ  is a binary relation on the set of morphisms of C, is a congruence

on C if it satisfies the following axioms:

(1) 0Φ  is an equivalence relation on ( ).Ob C

(2) 1Φ  is an equivalence relation on ( ).Mor C

(3) For every f, ( ),Mor C∈g

( )
( ) ( ) ( )000

1
moddd

mod
Φ≡

Φ≡
gf

gf
 and 

( )
( ) ( ) ( ) .

moddd
mod

011

1
Φ≡

Φ≡
gf

gf

(4) For every x, ( ),Ob C∈y

( )
( ) .
modidid

mod

1

0
Φ≡

Φ≡

yx

yx

(5) For every ( ),, ff ′  ( ) ( ) ,Mor, 2C∈′ gg  if ,f ′  f as well as ,g ′  g are

composable, then

( ) ( )
( ) .
mod

modandmod

1

11
Φ′≡′

Φ′≡′Φ≡
ggff

gfgf

If ( )10 , ΦΦ=Φ  is a congruence on C, then we denote by ΦC  the

corresponding quotient category, which has as set of objects ( ) 0Ob ΦC

and as set of morphisms ( ) .Mor 1ΦC

Remark. Every ordinary congruence Φ on a category C is a

congruence on C, since Φ can, obviously, be identified to the congruence

( ( ) )Φ∆ ,Ob C  on C, where ( )COb∆  is the diagonal of ( ).Ob C  Moreover, the

set of all congruences on C is an algebraic lattice.

Proposition 2.28. If ( )MO,=X  is a nonempty supersaturated

subcategory of a category C, then the pair of equivalence relations

associated to the pair of partitions

{ } { } ( ){ }OxxO −∈| COb∪  and { } { } ( ){ },Mor MffM −∈| C∪

of ( )COb  and ( ),Mor C  respectively, denoted by ( ),R X  is a congruence on

C, the Rees congruence on C determined by X; and the canonical
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projection ( )XRPr  from C to the Rees quotient ( )XC R  is the Rees functor

determined by X.

Definition 2.29. A congruence Φ on a category C is a Rees

congruence on C if there exists a nonempty supersaturated subcategory X

of C such that ( ).R X=Φ  Moreover, a Rees functor from a category C to

another D is a functor DC →:F  such that ( ) ( ) ( )( )10 Ker,KerKer FFF =

is a Rees congruence.

As for semigroups we also have the following

Proposition 2.30. Let X be a nonempty supersaturated subcategory of

a category C. Then

(1) There is an inclusion-preserving bijection, determined by ( ),PrR X

from the set of all supersaturated subcategories of C which contain X onto

the set of all nonempty supersaturated subcategories of ( ).R XC

(2) If X′  is another supersaturated subcategory of C such that

,XX ′⊆  then

( )
( ) ( ) .

RR
R

X
C

XX
XC

′
≅

′

(3) If, however, X′  is simply a subcategory of C, then XX ′∪  is a

subcategory of C, X is a supersaturated subcategory of ,XX ′∪  XX ′∩  is

a supersaturated subcategory of X′  and

( ) ( ) .
RR XX

X
X
XX

′
′

≅
′

∩
∪

Corollary 2.31. Let ( )MO,=X  and ( )MO ′′=′ ,X  be two

supersaturated subcategories of a category C. If X′  is maximal in X and

,OOx ′−∈  then, denoting by [ ]Cx  the connected component of x in C,

[ ] ,XXC =′∪x  [ ] ( ),, ∅∅=′XC ∩x  and there is a partial supersaturated

functor from ( )XX ′R  to [ ]Cx  whose underlying partial mappings are

bijections, therefore we also obtain a Rees isomorphism between ( )XX ′R

and [ ] .1Cx
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Moreover, also as for ideal extensions in semigroup theory, we

show that a category C may be reconstructed from a supersaturated

subcategory X and its Rees quotient ( ).R XC  But before that we need to

state the following

Definition 2.32. A category C is an extension of a category X by a

category Q if X is a supersaturated subcategory of C and Q is isomorphic

to the Rees quotient of C by X.

Proposition 2.33. Let C and Q be categories. If C has a

supersaturated subcategory ( ),, MO=X  Q has a final supersaturated

subcategory { } { }( ) ( ),, 1Y ≅= mo  there is a partial supersaturated functor

CQ:F  such that ( ) ,Dom YQ −=F  and the unique ( )XCQ R:
~ →F

such that the following diagram commutes

is a functor, then ( ) ,XYQ −  denoted by ,QX F  is an extension of X

by Q through F.

Proposition 2.34. Let C be an extension of a category X by a category

Q, where, for simplicity, we identify Q with the Rees quotient ( ).R XC

Then

(1) There is a congruence Φ on C such that

(a) The restriction of ΦPr  to X is injective, hence .Φ≅ XX

(b) ΦX  is a supersaturated subcategory of .ΦC

(c) Φ∆C  is the only congruence on ΦC  such that the restriction of

the canonical projection to X is injective.
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(2) There is an ( ) ΦCXC R:F  such that

(a) ( ) ( ) { } { }( ).,RDom MOF −= XC

(b) ( ) ( ).,Im 10 ΦΦ−Φ= MOF C

(c) F has a unique extension ( ) ( ) ( )ΦΦ→ XCXC RR:
~
F  such

that the following diagram commutes

Moreover, ( ).R XCXC FΦ≅

We consider now the concept of partial natural transformation

between partial supersaturated functors, which will allow us to form,

from two categories C and D, the corresponding category ( )DCP ,  of

partial supersaturated functors and partial natural transformations.

From such a functorial category we will obtain another category ( )DCP ,0

that we will use to prove that pCat  is a closed category.

Definition 2.35. Given two partial supersaturated functors F and G

from a category C to another D such that ( ) ( ),DomDom GF =  a partial

natural transformation from F to G is a triple ( ),,, GF η  denoted by

,: GFη  such that ( ) ( ),MorOb: DCη  and subject to satisfy the

following axioms:

(1) ( ) ( ) ( )( ).DomDomDom 00 GF ==η

(2) For every C-object x in ( ),Dom η  ( ) ( ).: 00 xGxFx →η

(3) For every C-morphism ,: yxf →  if ( ) ( )( ),DomDom 11 GFf =∈

then

( ) ( ).11 fFfG yx η=η
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We agree that a diagram such as the following:

also indicates that .: GFη  Moreover, we denote by ( )GF ,N  the set

of all partial natural transformations from F to G.

As for ordinary natural transformations we also have the following

Proposition 2.36. If DC:, GF  are such that ( ) ( ),DomDom GF =

then there is an isomorphism from ( )GF ,N  to the set of all partial

supersaturated functors ,: →→ DCH  where ,→D  also written as ,2D  is

the category of arrows of D, such that the following diagram commutes

where DSc  and DTg  are the functors source and target, respectively, for

.→D

Proposition 2.37. If ,:,, DCHGF  ,: GFα  and ,: HGβ

then the vertical composition of α and β, denoted by ,αβ  defined, for each

( ),Dom 0Fx ∈  as ( ) ,xxx αβ=αβ  is a partial natural transformation

from F to H. Moreover, the vertical composition of partial natural

transformations is associative and has identities.

Definition 2.38. Given two categories C and D, ( )DCP ,  is the

category whose objects are the partial supersaturated functors from C to
D, and for two supersaturated functors D,C:, GF  ( )( ),,Hom , GFDCP

the set of morphisms from F to G is the set defined as:

( )( )
( ) ( ) ( )




∅

=
=

.otherwise,
;DomDomif,,N

,Hom ,
GFGF

GFDCP
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Once defined the concept of vertical composition of partial natural

transformations, we could take into account the concept of horizontal

composition of partial natural transformations, in order to, eventually,

obtain a 2-category, as for U -small categories, functors and natural

transformations. With regard to this we have the following

Proposition 2.39. Given partial supersaturated functors and partial

natural transformations as in the following diagram

if ( ) ( ) ( ),DomImIm 000 RGF ⊆∪  then

(1) ( ) ( ).DomDom GSFR =

(2) For every ( ),Dom α∈x  ( ).Dom 1Rx ∈α

(3) The following diagram commutes

Moreover, the horizontal composition of α and β

defined, for each (( ) ),Dom 0FRx ∈  as ( ) ( ) ( ),10 xxGx R αβ=α∗β  is a

partial natural transformation from FR  to .GS
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But the situation described by the diagram:

in case ( ) ( ),ObDom 0 C≠F  shows that we can not obtain a 2-category.

Notwithstanding, given

for ( ),InDom F  the partial supersaturated endofunctor of C whose domain

of definition is ( ),Dom F  we have that ( ) .id
DomIn α=∗α

F
 Moreover, the

partial supersaturated endofunctor ( )FDomIn  (a type of subidentity) is

maximal relative to such property. The existence and properties of these
partial functors could be taken as a starting point in order to build a
convenient generalization of the notion of 2-category, in which, among
others, categories, partial supersaturated functors and partial natural
transformations could live.

We return now to our principal task in this section, i.e., to show that

pCat  is a closed category. But before that we agree on the following

notation and terminology relative to a given partial supersaturated
functor :: DCA ×T

(1) The set of all first coordinates of ( )0Dom T  is denoted by

( )( ),DomFst 0T  and that of all first coordinates of ( )1Dom T  by

( )( ).DomFst 1T

(2) The set of all second coordinates of ( )0Dom T  is denoted by

( )( ),DomSnd 0T  and that of all second coordinates of ( )1Dom T  by

( )( ).DomSnd 1T

(3) ( )( ) ( )( ) ( )( )( ).DomFst,DomFstDomFst 10 TTT =
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(4) ( )( ) ( )( ) ( )( )( ).DomSnd,DomSndDomSnd 10 TTT =

Lemma 2.40. Let DCA ×:T  be a partial supersaturated functor.

Then

(1) For every ( )( ),DomFst, 0Tba ∈  if ( ) ( ) ,,Hom,Hom ∅≠abba AA ∪

then, for every C-object x, ( ) ( )0Dom, Txa ∈  if, and only if, ( ) ( ).Dom, 0Txb ∈

(2) For every ( )( ),DomSnd, 0Tyx ∈  if ( ) ( ) ,,Hom,Hom ∅≠xyyx CC ∪

then, for every A-object a, ( ) ( )0Dom, Txa ∈  if, and only if, ( ) ( ).Dom, 0Tya ∈

Proof. It is enough to take into account that ( )TDom  is a

supersaturated subcategory of .CA ×

Remark. The first assertion from Lemma 2.40 is equivalent to: For
every a, b in ( )( ),DomFst 0T  if ( ) ( ) ,,Hom,Hom ∅≠abba AA ∪  then, for

every C-morphism f, ( ) ( )1Dom,id Tfa ∈  if, and only if, ( ) ( ).Dom,id 1Tfb ∈

In the same way, the second assertion from Lemma 2.40 is equivalent to:
For every x, y in ( )( ),DomSnd 0T  if ( ) ( ) ,,Hom,Hom ∅≠xyyx CC ∪  then,

for every A-morphism t, ( ) ( )1Domid, Tt x ∈  if, and only if, ( ) ( ).Domid, 1Tt y ∈

Lemma 2.41. (1) If BA:F  and ,: DCG  then CA ×× :GF

.DB ×

(2) If ,: DCA ×T  then ( )( )TDomFst  is a supersaturated

subcategory of A and ( )( )TDomSnd  is a supersaturated subcategory of C.

Proposition 2.42. Let C and D be categories. Then there is a category
( )DCP ,0  and a partial supersaturated functor DC,Ev  from ( ) CDCP ×,0

to D, also denoted by Ev, such that, for every category A and every partial

supersaturated functor T from CA ×  to D, there is a unique partial

supersaturated functor #T  from A to ( )DCP ,0  such that the following

diagram commutes
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Proof. Let ( )DCP ,0  be the category which has as objects the non-zero

partial supersaturated functors from C to D, and as morphisms from F to
G the partial natural transformations from F to G.

Next, in order to define Ev, let, on the one hand, 0Ev  be the partial

mapping from ( )( )CDCP ×,Ob 0  to ( )DOb  whose domain of definition is

( ) ( ) ( )( ) ( ){ },Dom,Ob,EvDom 000 FxxF ∈|×∈= CDCP

and is such that, for ( ) ( ),EvDom, 0∈xF  ( ) ( ),,Ev 00 xFxF =  and, on the

other, let 1Ev  be the partial mapping from ( )( )CDCP ×,Mor 0  to ( )DMor

whose domain of definition is

( ) ( ) ( ) ( ) ( ) ( ) ( )( ),,,,HomEvDom ,0EvDom,,,1 0
yGxFyGxF CDCP ×∈= ∪

and is such that, for ( ) ( ) ( )yGxFf ,,:, →η  in ( ),EvDom 1  ( )f,Ev1 η  is

the diagonal of the commutative diagram

Thus defined it is readily seen that Ev is a partial supersaturated functor
from ( ) CDCP ×,0  to D.

Now, let A be a category and let us suppose that T is a non-zero
partial supersaturated functor from CA ×  to D (because the case of the

nowhere defined partial supersaturated functor is obvious). From this we

want to show that there is precisely one ( )DCPA ,: 0
#T  such that

( ) .IdEv # TT =× C

Next to define the two components #
0T  and #

1T  of #T  we proceed as

follows. Let #
0T  be the partial mapping from ( )AOb  to ( )( )DCP ,Ob 0

whose domain of definition is

( ) ( )( ),DomFstDom 0
#

0 TT =
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and is such that, for each ( ),Dom #
0Ta ∈  ( )aT #

0  is the partial

supersaturated functor from C to D that has as partial object mapping

the partial mapping ( )0
#

0 aT  from ( )COb  to ( )DOb  whose domain of

definition is

( ( ) ) ( ) ( ) ( ){ },Dom,ObDom 00
#

0 TxaxaT ∈|∈= C

and is such that, for each ( ( ) ),Dom 0
#

0 aTx ∈  ( ) ( ) ( ),,00
#

0 xaTxaT =  and as

partial morphism mapping the partial mapping ( )1
#

0 aT  from ( )CMor  to

( )DMor  whose domain of definition is:

( ( ) ) ( ) ( ) ( ){ },Dom,idMorDom 11
#

0 TffaT a ∈|∈= C

and is such that, for each f in ( ( ) ),Dom 1
#

0 aT  ( ) ( ) ( ).,id11
#

0 fTfaT a=

Before we define #
1T  we remark that, for each bat →:

( )( ),DomFst 1T∈  we have that ( ( )) ( ( )),DomDom #
0

#
0 bTaT =  by Lemma

2.40.

Let #
1T  be the partial mapping from ( )AMor  to ( )( )DCP ,Mor 0  whose

domain of definition is

( ) ( )( ),DomFstDom 1
#

1 TT =

and is such that, for each ( ),Dom: #
1Tbat ∈→  ( )tT #

1  is the partial

natural transformation from ( )aT #
0  to ( ),#

0 bT  whose domain of definition

is ( ( ) )0
#

0Dom aT  and is such that, for each x in ( ( )),Dom #
1 tT  ( )xtT #

1

( ).id,1 xtT=

Thus defined #T  preserves identities and compositions, moreover, by

Lemma 2.41, we have that ( )#Dom T  is a partial supersaturated

subcategory of A, hence #T  is a partial supersaturated functor. On the

other hand, also by Lemma 2.41, we have that CId# ×T  is a partial

supersaturated functor from CA ×  to ( ).,0 DCP
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Finally, it is obvious that ( )DCPA ,: 0
#T  is the unique partial

supersaturated functor such that ( ) .IdEv # TT =× C

Corollary 2.43. The category pCat  is closed.

Proof. It is enough to consider ,: ppp CatCatCat →××  the final

category 1, and to take into account that, for every U -small category C

the functor

( ) pp: CatCatC →×⋅

has, by Proposition 2.42, a right adjoint.

Before stating the following proposition we agree that, for two partial

supersaturated functors ,:, DCGF  GF ≤  means that ( )FDom

( )GDom⊆  and that, for every ( ),Dom 0Fx ∈  ( ) ( ),00 xGxF =  and, for every

( ),Dom 1Ff ∈  ( ) ( ).11 fGfF =  The binary relation ≤ on the set ( )DCP ,

will be accurately investigated in the following section where it will called

the extension order on ( )., DCP

Proposition 2.44. If SetCC ×op:T  is such that ,HomC≤T

then the partial supersaturated functor ( )SetCPC ,: 0
op#T  is a full

embedding.

We conclude this section by stating the Yoneda-Grothendieck Lemma

and defining the concept of partial adjunction, both for partial

supersaturated functors, and by providing an example of partial

adjunction from the field of algebraic logic.

Definition 2.45. Given SetC:F  and ( ),Dom: 1Fyxg ∈→  we

denote by ( )⋅,H xF  the partial supersaturated functor from C to Set

whose domain of definition is that of F and is defined in the same way as

is the ordinary covariant hom-functor at x; and by ( )⋅,H gF  the partial

natural transformation from ( )⋅,H yF  to ( )⋅,H xF  also defined as

classically.
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To state the Yoneda-Grothendieck Lemma we need to consider, in

addition to the partial supersaturated functor ( ) ,,:Ev 0 SetCSetCP ×

another partial supersaturated functor N between the same categories,

that we make explicit in the following

Definition 2.46. Let C be a category. Then we denote by N the

partial supersaturated functor from ( ) CSetCP ×,0  to Set which has as

partial object mapping the partial mapping 0N  from ( )( )CSetCP ×,Ob 0

to ( )SetOb  whose domain of definition is identical to that of ,Ev0  i.e., to

the set

( ) ( ) ( )( ) ( ){ },Dom,Ob,NDom 000 FxxF ∈|×∈= CSetCP

and is such that, for each ( ) ( ),NDom, 0∈xF  ( ) ( ( ) ),,,HN,N0 FxxF F ⋅=

and as partial morphism mapping the partial mapping 1N  from

( )( )CSetCP ×,Mor 0  to ( )SetMor  whose domain of definition is identical

to that of ,Ev1  i.e., to the set

( ) ( ) ( ) ( ) ( ) ( ) ( )( ),,,,HomNDom ,NDom,,,1 00
yGxFyGxF CSetCP ×∈= ∪

and is such that, for each ( ) ( ) ( )yGxFf ,,:, →η  in ( ),NDom 1  ( )f,N1 η

is the mapping from ( ( ) )FxF ,,HN ⋅  into ( ( ) )FyG ,,HN ⋅  that to

( ) FxF ⋅α ,H:   assigns ( ) ( ) .,H:,H Gyg GF ⋅⋅αη

Lemma 2.47 (Yoneda-Grothendieck). Let C be a category. Then there

is a partial natural isomorphism

Definition 2.48. Let XA:G  and AX:F  be partial

supersaturated functors. We say that G and F satisfy the Im-Dom

condition if ( ) ( )00 DomIm GF ⊆  and ( ) ( ).DomIm 00 FG ⊆
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Let us observe that if XA:G  and AX:F  satisfy the Im-Dom

condition, then ( ) ( )11 DomIm GF ⊆  and ( ) ( ).DomIm 11 FG ⊆

Proposition 2.49. Let XA:G  and AX:F  be partial

supersaturated functors such that G and F satisfy the Im-Dom condition.

Then we have that ( ) ( )GFG DomDom =  and ( ) ( ).DomDom FGF =

Therefore all functors ...,,,, GFGGFG  have as domain of definition

( ),Dom G  and all functors ...,,,, FGFFGF  have as domain of

definition ( ).Dom F

Definition 2.50. Let A and X be categories. A partial adjunction

from X to A is a quadruple ( ),,,, εηGF  where F and G are partial

supersaturated functors as in

which satisfy the Im-Dom condition, while η and ε are partial natural

transformations

( ) ( ),In:,In: DomDom GF GFFG εη

such that the following diagrams commute

As for ordinary adjunctions we also have that for a partial

supersaturated functor XA:G  and a subset O of ( )XOb  if, for every

,Ox ∈  ,x↓  ,Ox ⊆↑  ( ) OG ⊆0Im  and, for every ,Ox ∈  there is a

universal arrow ( )at,  from x to G, with ( )0Dom Ga ∈  and ( ),: 0 aFxt →

then there is a partial supersaturated functor AX:F  such that F
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and G satisfy the Im-Dom condition, ( ) OF =0Dom  and there are partial

natural transformations ( ) ,In: Dom FGFη  ( )GGF DomIn:ε

such that the quadruple ( )εη,,, GF  is a partial adjunction from X to A.

In this case we say that F is a partial left adjoint to G.

Example 2.51. As an example of the concept of partial adjunction we

have that, for a sentential logic ,S  the partial supersaturated functor of

reduction SRd  from ( )SM  to ( ),rf SM  which, we recall, has as domain of

definition precisely ( ),f SM  is a partial left adjoint to the inclusion of

( )SrfM  into ( ).SM  Moreover, SRd  cannot be extended to ( ).SM

Therefore we can think about ( )SfM  as representing a type of maximal

domain beyond which are obstructed some natural constructions arising

in algebraic logic.

3. Order and Additivity

Our first goal in this section is to show, for two categories C and D,

that the set of all partial supersaturated functors from C into D, when

ordered by extension, is an algebraic and coherent complete partial order,

exactly as for sets and partial functions. However, we will prove that the

concepts of finiteness and compactness, indistinguishable when applied to

partial mappings, are not equivalent for partial supersaturated functors.

For completeness we begin by recalling the concept of complete

partial order, and also those of algebraic and coherent complete partial

order.

Definition 3.1. (1) A complete partial order is a partial order ( )≤,A

which has a minimum and is such that every nonempty directed subset of

A has a join in ( )., ≤A

(2) If ( )≤,A  is a complete partial order, an element Aa ∈  is compact

in ( )≤,A  if for every nonempty directed subset X of A, if ,Xa ∨≤  then

xa ≤  for some .Xx ∈
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(3) An algebraic complete partial order is a complete partial order

( )≤,A  such that every element of A is the join of a nonempty directed

subset of compacts in ( )., ≤A

(4) A coherent complete partial order is a complete partial order

( )≤,A  such that every consistent subset of A has a join in ( ),, ≤A  where a

subset X of A is consistent if every finite nonempty subset of X has an

upper bound in ( )., ≤A

Definition 3.2. Let C and D be categories. Then the extension

ordering ≤ on ( )DC,P  is the relation defined as

GF ≤  if, and only if, 00 GF ≤  and .11 GF ≤

Proposition 3.3. Let C and D be categories. Then ( )( )≤,,P DC  is a

complete partial order. Moreover, given the situation described by the

diagram

if ,GF ≤  then HGHF ≤  and ,GKFK ≤  hence ( )( )≤,Id,,,P CCC

is a partially ordered monoid with zero (the nowhere defined partial

supersaturated endofunctor of C, denoted by ).Dθ  Moreover, there is a

one-to-one correspondence between the predecessors of CId  and the

supersaturated subcategories of C, and, for a supersaturated subcategory

X of C, we agree to denote by XIn  the corresponding predecessor of .IdC

Proposition 3.4. If ,:, DCGF  then F and G have an upper bound

in the complete partial order ( )( )≤,,P DC  if, and only if, the restrictions of

F and G to ( ) ( )GF DomDom ∩  are identical.

Proposition 3.5. Let ( ) Ii
iF ∈  be a consistent family of partial

supersaturated functors from C to D. Then there exists the join of ( ) Ii
iF ∈

in ( )( ).,,P ≤DC  Hence ( )( )≤,,P DC  is a coherent complete partial order.
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If ( ) Ii
iF ∈  is a nonempty directed family in ( )( ),,,P ≤DC  then, for

every j, ,Ik ∈  the restrictions of jF  and kF  to ( ) ( )kj FF DomDom ∩

are identical, i.e., ( ) Ii
iF ∈  is consistent; therefore the existence of the join

for nonempty directed subsets of ( )( )≤,,P DC  follows from the existence

of the join for consistent subsets of the same complete partial order.

Proposition 3.6. A partial supersaturated functor DC:F  is

compact in ( )( )≤,,P DC  if, and only if, there is a finite subset

( )COb⊆O  such that the supersaturated subcategory of C generated by

( ( ) ( ))baO
Oba

,Hom, 2, C∈
∪  is ( ).Dom F

Proof. If there is a finite subset O of ( )COb  such that the

supersaturated subcategory of C generated by ( ( ) ( ))baO
Oba

,Hom, 2, C∈
∪

is ( ),Dom F  and G is a nonempty directed subset of ( )( )≤,,P DC  such that

,G∨≤F  then ( ).Dom 0GO G G∈⊆ ∪  Hence, for every Ox ∈  there is a

G∈xG  such that ( ).Dom 0
xGx ∈  Now, because G is a directed subset, let

G∈G  be an upper bound for the family ( ).OxGx ∈|  It is obvious that

,GF ≤  therefore F is compact.

Reciprocally, if F is such that for every finite subset O of ( ),Ob C  the

supersaturated subcategory of C generated by ( ( ) ( ))baO
Oba

,Hom, 2, C∈
∪

is different of ( ),Dom F  then given a finite subset K of ( ),Dom 0F  let KG

be the partial supersaturated functor from C to D whose domain of

definition is the supersaturated subcategory of C generated by

( ( ))baK Kba ,Hom, , C∈∪  and is such that, for ( ),Dom 0
KGx ∈  ( ) =xG K

0

( ),0 xF  and for ( ),Dom 1
KGf ∈  ( ) ( ).11 fFfG K =  In this way we have

obtained a nonempty directed subset { ( )( )}0fin DomSub FKG K ∈|=G  of

( )( ),,,P ≤DC  such that G∨≤F  and for every ( )( ),DomSub 0fin FK ∈

,KGF ≤/  therefore F is not compact.
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Proposition 3.7. Let C and D be categories. Then ( )( )≤,,P DC  is an

algebraic complete partial order.

Proof. For DC:F  we have that F is the join of the nonempty

directed subset of compacts { ( )( )}0fin DomSub FKG K ∈|  in ( )( ).,,P ≤DC

If, as for partial mappings, we say that a partial supersaturated

functor F from C to D is finite precisely when ( )FDom  is finite, then,

obviously, every finite partial supersaturated is compact. However, for
the category determined by the additive monoid of the natural numbers,
the unique functor from such a category to the final category, is compact
but not finite.

Our next task is to state the concept of summability for families of

partial supersaturated functors that will allows us to show that pCat  is

an ordered partially additive category.

Definition 3.8. Let ( ) Ii
iF ∈  be a family of partial supersaturated

functors from C to D. Then we say that ( ) Ii
iF ∈  is summable in ( )DC,P

if ( )jFDom  and ( )kFDom  are disjoint for .kj ≠

Proposition 3.9. Let ( ) Ii
iF ∈  be a summable family in ( ).,P DC  Then

there exists the join of ( ) Ii
iF ∈  in ( )( ),,,P ≤DC  denoted, in this context by

( ) ., Ii
iF ∈∑ DC

Proposition 3.10. Let C and D be categories. Then ( ( ) )DCDC ,,,P ∑

is a generalized partially additive monoid, i.e., it satisfies the following

conditions:

(1) If ( ) Ii
iF ∈  is a family in ( )DC,P  and ( ) Λ∈λλI  is a partition of I

(where ∅=λI  is allowed for any number of λ), then ( ) Ii
iF ∈  is summable

if, and only if, ( )
λ∈Ii

iF  is summable for every Λ∈λ  and ( ( ) ) Λ∈λ∈ λ
∑ Ii

iFDC,

is summable, and then ( ) DCDC ,, ∑=∑ ∈Ii
iF  ( ( ) ) ., Λ∈λ∈ λ

∑ Ii
iFDC  This

condition is called the Partition-Associativity Axiom.
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(2) If ( ) Ii
iF ∈  is a one-term family in ( )DC,P  and { },iI =  then ( ) Ii

iF ∈

is summable and ( ) .,
i

Ii
i FF =∑ ∈DC  This condition is called the Unary

Sum Axiom.

(3) If ( ) Ii
iF ∈  is a family in ( )DC,P  and if for every finite subset J of I

the subfamily ( ) Jj
jF ∈  is summable, then ( ) Ii

iF ∈  is summable. This

condition is called the Limit Axiom.

Moreover, for all ,: CAG  BD:H  and for all summable families

( ) Ii
iF ∈  in ( ),,P DC  ( ) Ii

i GF ∈  and ( ) Ii
iFH ∈  are also summable and

(1) ( ( ) ) ( ) .,, Ii
i

Ii
i GFGF ∈∈ ∑=∑ DCDC

(2) ( ( ) ) ( ) .,, Ii
i

Ii
i FHFH ∈∈ ∑=∑ DCDC

Therefore the family ( )( ) ( ),pOb,, CatDCDC ∈∑  of partial operators, is a

generalized partially additive structure on .pCat

For partial supersaturated functors, as for partial mappings, the

Limit Axiom is true in a stronger form: If ( ) Ii
iF ∈  is a family in ( )DC,P

and if, for every Ikj ∈,  with ,kj ≠  kj FF +  exists, then ( ) Ii
iF ∈  is

summable.

We also point out that the restriction of ( )( ) ( )pOb,, CatDCDC ∈∑  to

countable families, can be used in order to consider constructs like those

occurring in programming, such as:

(1) If ( ) nii ∈X  is a nonempty n-indexed family of supersaturated

subcategories of C such that jX  and kX  are disjoint, for ,kj ≠  and

( ) ni
iF ∈  is a nonempty n-indexed family of partial supersaturated

functors from C into D, then

case ( ) nii ∈X  of ( ) ( ) .In, ni
i

ni
i

i
FF ∈∈ ∑= XDC
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(2) If X is a supersaturated subcategory of C and ,:, DCGF  then

if X, then F else .InIn XCX −+= GFG

(3) If X is a supersaturated subcategory of C and ,: CCF  then

while X do ( ( ) ) .InIn N, ∈−∑= n
nFF XXCCC

(4) If X is a supersaturated subcategory of C and ,: CCF  then

repeat F until ( ( ( ) ) ) .InIn N, FF n
n

∈−∑= XCXCCX

Now we state the connection between the extension ordering and the

partial binary sums.

Proposition 3.11. If F, ,: DCG  then GF ≤  if, and only if,

HFG +=  for some ,: DCH  i.e., the sum-ordering on ( )DC,P  is

exactly the extension ordering on the same set.

Corollary 3.12. Let C and D be categories. Then ( ( ) )DCDC ,,,P ∑  is a

generalized additive domain, i.e., it is a sum-ordered generalized partially

additive monoid, and moreover for every summable family ( ) Ii
iF ∈  and

every G in ( ),,P DC  if for each finite subset J of I, G is an upper bound for

( ) ,, Jj
jF ∈∑ DC  then G is also an upper bound for ( ) ., Ii

iF ∈∑ DC

Proposition 3.13. The category pCat  has coproducts.

Proposition 3.14. Let DC IiF ∈:  be a partial supersaturated

functor. Then the family ( ) Iii F ∈q  is summable, where, for every ,Ii ∈

the quasi-projection DDIii ∈:q  is the unique partial supersaturated

functor from DIi∈  to D such that, for every ,Jj ∈  the following

diagram commutes
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where, for every ,, Iji ∈  the partial supersaturated endofunctor j
iδ  at D

is defined as follows







≠θ

=
=δ

.,

;,Id

ijif

ijif
j
i

D

D

Proposition 3.15. If DC:, GF  are summable, then the partial

supersaturated functors F0InD  and DCD 2
1 :In ∈iF  are summable.

From this it follows immediately the following

Corollary 3.16. The category pCat  is an ordered partially additive

category. Moreover, it has an initial object and every partial

supersaturated functor pulls back summands.
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