A CONGRUENCE RELATION ON A HECKE MODULE ASSOCIATED WITH A QUATERNION ALGEBRA

S. TAKAHASHI
Department of Mathematics
University of North Dakota
Grand Forks, ND 58202-8376, U. S. A.
e-mail: shuzo.takahashi@und.nodak.edu

Abstract

A congruence relation on the space of weight-2 cusp forms has been intensively studied. In this paper, we introduce a congruence relation on a Hecke module associated with a definite quaternion algebra and investigate a relationship between the two congruence relations.

1. Introduction

It is well known that there is a close connection between the theory of cusp forms and the arithmetic theory of quaternion algebras. In this paper, we study a connection between a congruence relation defined on the space of weight- 2 cusp forms of prime level and a congruence relation defined on a Hecke module associated with a rational definite quaternion algebra of prime discriminant.

A congruence relation on the space of cusp forms has been studied by Doi, Hida, Ohta, Ribet, Zagier, and others (see, for example, in [1, 5, 9]).

2000 Mathematics Subject Classification: 11F11, 11F33, 11R52.
Keywords and phrases: quaternion algebras, modular forms, congruences, Hecke algebras.

Communicated by Roger C. Alperin
Received April 23, 2007

Let p be a prime number and \mathcal{S} be the space of weight- 2 cusp forms on $\Gamma_{0}(p)$ with integral Fourier coefficients. The space \mathcal{S} is a free \mathbb{Z}-module. Let \mathbb{T} be the Hecke ring acting on \mathcal{S} and $\langle,\rangle_{\mathcal{S}}$ be the Peterson inner product on \mathcal{S}. Thus, \mathcal{S} is a \mathbb{T}-module with a pairing. Given a positive integer ℓ, two cusp forms f and g in \mathcal{S} are said to be congruent modulo ℓ if the n-th Fourier coefficient of f is congruent to the n-th Fourier coefficient of g modulo ℓ for all positive integers n. Then, given a Hecke eigenform f in \mathcal{S} whose first Fourier coefficient is equal to 1 , a positive integer r is defined as the largest positive integer such that there is a g in \mathcal{S} that satisfies the following conditions: f and g are congruent modulo r, and $\langle f, g\rangle_{\mathcal{S}}=0$.

Let X be the group of degree- 0 divisors on the set of left ideal classes of a fixed maximal order in a rational definite quaternion algebra of discriminant p. It is known that the rank of X as a free \mathbb{Z}-module is the same as the rank of \mathcal{S}. The Hecke ring \mathbb{T} acts on X and a pairing can be defined on X. Thus, we have another \mathbb{T}-module with a pairing. (This module has been studied in various contexts, for example, [2, 3], and will be described in more detail in the next section.) We say two elements x and y in X are congruent modulo ℓ if the corresponding multiplicities of x and y (being considered as divisors) are congruent modulo ℓ. A positive integer s is defined in a manner similar to the way r was defined, using the Hecke eigenform in X corresponding to f in \mathcal{S}. (The integer s will be defined more precisely later.)

We prove that r and s are equal. The proof is a rather simple consequence of some results from [4, 8, 9], but the statement that r and s are equal is not trivial in the sense that the proof depends on a deep result of Ribet [6] in an essential way, as explained after the proof.

2. Description of a \mathbb{T}-Module X

We describe a \mathbb{T}-module X with a pairing. Let H be a definite quaternion algebra defined over \mathbb{Q}. Suppose that the discriminant of H is
p, that is, H is ramified at the two places p and ∞. Let R be a fixed maximal order in H. The set of left ideal classes of R is finite of order $d+1$ for a positive integer d. Let $\left\{I_{0}, \ldots, I_{d}\right\}$ be a set of left ideals representing the distinct ideal classes, with $I_{0}=R$, and denote the ideal classes by $\left[I_{0}\right], \ldots,\left[I_{d}\right]$. Let R_{i} be the right order of the ideal I_{i}, and let w_{i} be a half of the number of the units in R_{i}. The number w_{i} is independent of the representative I_{i}. Let \mathcal{D} be the group of divisors on the set $\left\{\left[I_{0}\right], \ldots,\left[I_{d}\right]\right\}$. Define a pairing $\left\langle\langle,\rangle_{\mathcal{D}}\right.$ on \mathcal{D} with values in \mathbb{Z} by setting

$$
\left\langle\left[I_{i}\right],\left[I_{j}\right]\right\rangle_{\mathcal{D}}=w_{i} \delta_{i j}
$$

and extending bilinearly to \mathcal{D}. Let \mathcal{X} be the subgroup of degree- 0 divisors of \mathcal{D}. The space X is a free \mathbb{Z}-module of rank d. The pairing \langle,\rangle_{X} is defined to be the restriction of $\langle,\rangle_{\mathcal{D}}$ to X. It is well known that X is isomorphic to the character group of the toric part of the $\bmod p$ reduction of the Néron model of the Jacobian $J_{0}(p)$ of the modular curve $X_{0}(p)$. In the proof of our result, the description of X as the character group is essential. From now on, we identify X with this character group. Then, the pairing \langle,\rangle_{X} is the monodromy pairing on X. An action of the Hecke ring \mathbb{T} on X is carefully described in Section 3 of [6]. (The action of \mathbb{T} on X can also be concretely described in terms of Brandt matrices; for example, see [2].) Thus, we have a \mathbb{T}-module X with a pairing.

3. Congruence Relations on \mathcal{S} and x

We have two \mathbb{T}-modules \mathcal{S} and X with respective pairings $\langle,\rangle_{\mathcal{S}}$ and \langle,\rangle_{X}. A congruence relation \equiv on \mathcal{S} is defined as follows: for $f(\tau)=$ $\sum_{n \geq 1} a_{n} e^{2 \pi i n \tau}, g(\tau)=\sum_{n \geq 1} b_{n} e^{2 \pi i n \tau}$ in \mathcal{S} and a positive integer $\ell, f \equiv g$ $\bmod \ell$ if $a_{n} \equiv b_{n} \bmod \ell$ for all positive integers n. Let $f(\tau)=\sum_{n \geq 1} a_{n} e^{2 \pi i n \tau}$ be a Hecke eigenform in \mathcal{S} with $a_{1}=1$. Define r to be the largest positive integer such that there is a cusp form g in S that satisfies the following
conditions:

$$
f \equiv g \bmod r \text { and }\langle f, g\rangle_{S}=0 .
$$

On the other hand, a congruence relation \equiv on x is defined as follows: for $x=\sum_{i=0}^{d} x_{i} \cdot\left[I_{i}\right], y=\sum_{i=0}^{d} y_{i} \cdot\left[I_{i}\right]$ in x and a positive integer $\ell, x \equiv y \bmod \ell$ if $x_{i} \equiv y_{i} \bmod \ell$ for $i=0,1, \ldots, d$. Consider an eigenspace $\mathcal{L}=\left\{x \in \mathcal{X} \mid T_{n} x=a_{n} x\right.$ for all T_{n} in $\left.\mathbb{T}\right\}$ of X. The rank of \mathcal{L} is 1 . Let v be a generator of \mathcal{L}. (The eigenspace \mathcal{L} and the eigenvector v have been studied, for example, in [2, 7].) Define s to be the largest positive integer such that there is a y in x that satisfies the following conditions:

$$
v \equiv y \bmod s \text { and }\langle v, y\rangle_{x}=0 .
$$

Theorem. We have the equality $r=s$.
To prove the theorem, we first express s with v and \langle,\rangle_{x}.
Lemma. Let x be an element in X such that $\langle v, x\rangle_{X}$ is the smallest positive integer expressible in this way. Then, $\langle v, x\rangle_{X}$ divides $\langle v, v\rangle_{X}$ and we have the following equality:

$$
s=\frac{\langle v, v\rangle_{x}}{\langle v, x\rangle_{x}} .
$$

Proof. Note that considering X as a free \mathbb{Z}-module, \langle,\rangle_{X} is a bilinear pairing on X with integral values. Let x be an element in X such that $\langle v, x\rangle_{X}$ is the smallest positive integer expressible in this way. Let $I=\left\{\langle v, z\rangle_{x} \mid z \in X\right\}$. Then, I is an ideal of \mathbb{Z}. Thus, $\langle v, x\rangle_{X}$ is a generator of I. Hence, $\langle v, x\rangle_{X}$ divides $\langle v, z\rangle_{X}$ for any z in X. In particular, $\langle v, x\rangle_{X}$ divides $\langle v, v\rangle_{x}$. Let t be the integer $\langle v, v\rangle_{x} /\langle v, x\rangle_{x}$. (We have to show that $s=t$.) By the definition of s, there is a y in X such that $v \equiv y \bmod s$ and $\langle v, y\rangle_{X}=0$. Then, $v-y=s z$ for some z in X. Thus, we have
$\langle v, y\rangle_{X}=\langle v, v-s z\rangle_{X}=0$. Hence, $\langle v, v\rangle_{X}=s\langle v, z\rangle_{X}$. Dividing both sides of the equation by $\langle v, x\rangle_{X}$, we have $t=s\left(\langle v, z\rangle_{X} /\langle v, x\rangle_{X}\right)$. Hence, we have $s \mid t$. Also, from the definition of t, we have $\langle v, v-t x\rangle_{X}=0$. Since $v \equiv v-t x \bmod t$, by the definition of s, we have $s=t$.

Proof of Theorem. Let E be the elliptic curve associated with the cusp form f. Consider the parametrization $\xi: X_{0}(p) \rightarrow E$. We assume that ξ is optimal in the sense that the induced map $\xi: J_{0}(p) \rightarrow E$ on Jacobians has the connected kernel. Let δ be the degree of $\xi: X_{0}(p) \rightarrow E$. Theorem 3 in [9] states that $r=\delta$. Thus, by the lemma, it is sufficient to show that $\delta=\langle v, v\rangle_{X} /\langle v, x\rangle_{X}$. Let $\Phi\left(J_{0}(p)\right)$ and $\Phi(E)$ be the groups of connected components of $\bmod p$ reductions of Néron models of $J_{0}(p)$ and E, respectively. Consider the map $\xi_{*}: \Phi\left(J_{0}(p)\right) \rightarrow \Phi(E)$ which is induced from $\xi: J_{0}(p) \rightarrow E$. Let j be the order of the cokernel of the map ξ_{*}. Theorem 2.3 together with Lemma 2.2 in [8] implies that $\delta=\left(\langle v, v\rangle_{X} /\langle v, x\rangle_{X}\right) \cdot j$. (We are using the theorem and the lemma for the case that $D=1$ and $M=p$. Moreover, notationally, we have that $g_{r}=v, h_{r}=\langle v, v\rangle_{X}, i_{r}=\langle v, x\rangle_{X}, j_{r}=j$, and $u_{J}($,$\left.) is \langle,\rangle_{X}.\right)$ Corollary 3 of Theorem 2 in [4] states that the $\operatorname{map} \xi: \Phi\left(J_{0}(p)\right) \rightarrow \Phi(E)$ is surjective, i.e., $j=1$. Hence, we have $\delta=\langle v, v\rangle_{X} /\langle v, x\rangle_{X}$.

The statement $r=s$ of the theorem is not trivial. In the above proof, the only place where we need the level-lowering theorem of Ribet [6] is in the proof of Corollary 3 of [4]. On the other hand, from the proof, we see that the equality $r=s$ is equivalent to the equality $j=1$ without using the level-lowering theorem. Moreover, the equality $j=1$, together with the fact that the group $\Phi\left(J_{0}(p)\right)$ is Eisenstein (see Theorem 3.12 in [6]), implies the following form of the level-lowering theorem concerning the elliptic curve E : for every prime ℓ, if the representation ρ_{ℓ} of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ giving the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on the group $E[\ell]$ of ℓ-division points of E
is irreducible, then the representation ρ_{ℓ} is ramified at p. Thus, the statement of the theorem is as strong as this last non-trivial result.

References

[1] K. Doi and M. Ohta, On some congruences between cusp forms on $\Gamma_{0}(N)$, Modular functions of one variable V, Lecture Notes in Math. Vol. 601, Springer-Verlag, Berlin, Heidelberg, New York, 1977, pp. 91-105.
[2] B. H. Gross, Heights and the special values of L-series, Conference Proceedings, Canadian Mathematical Society 7 (1987), 115-187.
[3] D. Kohel, Hecke module structure of quaternions, Class Field Theory - Its Centenary and Prospect, K. Miyake, ed., Vol. 30, The Advanced Studies in Pure Mathematics Series, Math. Soc. Japan, Tokyo, 2001, pp. 177-196.
[4] J.-F. Mestre and J. Oesterlé, Courbes de Weil semi-stables de discriminant une puissance m-ième, J. reine angew. Math. 400 (1989), 173-184.
[5] K. Ribet, Mod p Hecke operators and congruences between modular forms, Invent. Math. 71 (1983), 193-205.
[6] K. Ribet, On modular representations of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ arising from modular forms, Invent. Math. 100 (1990), 431-476.
[7] K. Ribet and S. Takahashi, Parametrizations of elliptic curves by Shimura curves and by classical modular curves, Proc. Natl. Acad. Sci. 94 (1997), 11110-11114.
[8] S. Takahashi, Degrees of parametrizations of elliptic curves by Shimura curves, J. Number Theory 90 (2001), 74-88.
[9] D. Zagier, Modular parametrizations of elliptic curves, Canad. Math. Bull. 28 (1985), 372-384.

