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Abstract 

Three-dimensional numerical computation of natural convection in an 
enclosure of an incompressible Newtonian fluid was carried out by a 
preconditioning Gauss-Seidel iterative method using the SIMPLE  
(Semi-Implicit Method for Pressure-Linked Equations) algorithm. 
Preconditioners adopted consist of entries of an original coefficient 
matrix, and these preconditioners can be obtained without any 
calculations. The iteration number to solve the linear system of 
equations of the pressure-correction was reduced to about 42-72% of  
that without preconditioning. The effect of preconditioning was almost 
independent of grid number in the present computations. 

1. Introduction 

The SIMPLE algorithm [6] has been an effective scheme for 
computational fluid dynamics. This is based on the semi-implicit scheme, 
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and it consists of solving the linear systems of guessed velocity 
components, pressure-correction and temperature (in non-isothermal 
problem). Consequently, the most part of computational time is spent on 
solving linear systems of equations, and the efficiency of solution is 
crucial. Some variations [1] of the SIMPLE method has been proposed to 
reduce the total run time from the view point of the computational 
algorithm. On the other hand, in the present study, the enhancement of 
computation of fluid flow is investigated on from the view point of solving 
a linear system of equations. Accordingly, the obtained results could be 
applicable to other variations of the SIMPLE method. 

Paying attention to the solution of a linear system of equations, a set 
of solution can be obtained with a definite number of operations by the 
direct solution method (the Gaussian elimination). However, this requires 
enormous computational memory and time especially in the problem of a 
large number of grid points such as three-dimensional problem. From this 
reason, an iterative method is usually adopted. As the acceleration 
technique of the iterative methods, a positive parameter such as in the 
SOR (Successive Over-Relaxation) iterative methods and preconditioning 
can be considered. However, the optimal value of the parameter cannot be 
estimated before the computation in most of the actual problems such as 
fluid problems. Accordingly, in the present study, attention is focused on 
the preconditioning. The preconditioning can be applied to the Krylov 
subspace methods, and these are essentially different from classical 
iterative methods in the meaning that the solutions during iterations by 
use of the Krylov subspace methods are not guaranteed to approach the 
true solution even if the solution can be finally obtained. On the other 
hand, transient solutions by classical iterative methods are assured to be 
asymptotic to the solution. From the above reason, though there are some 
studies on the application of the Krylov subspace methods [7] at the 
computation of fluid flow with the SIMPLE algorithm, in the present 
study, classical iterative methods are adopted and the effect of 
preconditioning is investigated. Some studies investigated on the 
application of preconditioning iterative methods to two-dimensional fluid 
flow [4, 5], and they illustrated that the preconditioners adopted in the 
present study are effective to reduce the number of iterations. 
Accordingly, in the present study, the Gauss-Seidel iterative method is 
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adopted, and the effect of preconditioning is studied at calculation of 
three-dimensional fluid flow problem. 

Preconditioning, which can change the degree of diagonal dominance 
or the condition number of an original linear system of equations, can be 
considered as an essential strategy to reduce the iteration number. ILU 
(incomplete LU decomposition) has been widely used as a preconditioner 
in solving a linear system of equations with Krylov subspace methods [7]. 
However, certain amount of calculations is required to obtain this type of 
preconditioner. On the other hand, any calculations do not need to get 
preconditioners adopted in the present study [2, 4, 5, 8]. 

The goal of this study is to investigate on the efficiency of the above 
mentioned preconditioning at the solution of the pressure-correction 
equation in the SIMPLE algorithm in the three-dimensional fluid 
flow. Though preconditioners adopted in this study were applied to               
two-dimensional problem using vorticity equation [4] and the SIMPLE 
algorithm [5], the present study would be considered valuable in the sense 
that the degree of diagonal dominance and the spectral radius of a 
coefficient matrix to solve a three-dimensional problem with the SIMPLE 
algorithm could be considered different from those of the two-dimensional 
one. 

2. Preconditioning 

The following linear system of equations is considered: 

.bxA =  (1) 

[ ]jiaA ,=  is an nn ×  real matrix. Suppose A is an irreducibly diagonally 

dominant Z-matrix in the present study. Further, A can be split into 
FEIA −−=  without loss of generality. Here, I is the identity matrix, 

and E and F are the strictly lower and strictly upper parts of ,A−  

respectively. x  and b  are unknown and given n-dimensional column 
vectors with components ix  and ( ),...,,2,1 nibi =  respectively. With a 
preconditioner C, which is also an nn ×  real matrix, the preconditioned 
linear system of equations can be written as follows: 

.bCxCA =  (2) 
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In the present study, SI +  [2] and FI +  [8] are adopted as 
preconditioner C. Here, S consists of the codiagonal entries of ,A−  and 
can be written as follows: 
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3. Iterative Formulas 

Though the Gauss-Seidel iterative method is adopted in the present 
study, for generality, the iterative formulas of the SOR iterative methods 
are given as follows: 

( ) ( ) ( ){ } ( ) ( ) .0,1 111 ≥ω−ω+ω+ω−ω−= −−+ kbEIxFIEIx kk  (4) 

Here, ω is the relaxation factor. Selecting 1=ω  shows that this iterative 
method reduces exactly to the Gauss-Seidel iterative method. 

Using the preconditioner ,SIC +=  the iterative formula of the 
preconditioning SOR iterative method can be obtained as follows: 

( ) ( ) ( ){ } ( ) ( ) ( ){ } ( )kk xSFSFDIEEDIx +−ω+−ω−+ω−−= −+
1

1
11

1 1  

( ) ( ){ } ( ) .0,1
11 ≥++ω−−ω+ − kbSIEEDI  (5) 

With the preconditioner ,FIC +=  the iterative formula of the 
preconditioning SOR iterative method can be derived as follows: 

( ) ( ) ( ){ } ( ) ( ) ( ){ } ( )kk xFFFDIEEDIx +ω+−ω−+ω−−= −+
22

1
22

1 1  

( ) ( ){ } ( ) .0,1
22 ≥++ω−−ω+ − kbFIEEDI  (6) 

Here, 1D  and 2D  are the diagonal matrices of SE and FE, respectively. 

1E  and 2E  are the strictly lower triangular matrices of SE and FE, 
respectively. 2F  is the strictly upper triangular matrix of FE. 

As mentioned above, in the present study, ω was set at unity, and 
preconditioning Gauss-Seidel iterative methods are used. 
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4. Numerical Calculation of Fluid Flow 

4.1. Governing equations 

In the present study, the preconditioning Gauss-Seidel iterative 
methods described above were applied to the three-dimensional 
numerical computation of the natural convection in an enclosure. An 
incompressible Newtonian fluid is assumed, and the governing equations 
considered are the equations of continuity, motion and energy. These 
equations can be written as follows in dimensionless form: 

,in0 Ω=⋅∇ V  (7) 

( ) ( ) ,in01,0,GrPrPr 22 ΩΘ+∇+−∇=∇⋅+
∂
∂ TVPVVT
V  (8) 

.in2 ΩΘ∇=Θ
DT
D  (9) 

Here, 3R⊂Ω  is a rectangular domain. Γ  is the boundary of a cube 
shown in Figure 1, and is defined as .654321 ΓΓΓΓΓΓ=Γ ∪∪∪∪∪  
( )zyx ,,  are the Cartesian coordinates, and ( )wvu ,,  are the Cartesian 
components of the velocity vector ptv ,.  and θ are the time, pressure and 
temperature, respectively. A variable in capitals denotes a dimensionless 
variable of the corresponding lowercase. A dimensional variable with the 
superscript “∗” denotes a reference variable for non-dimensionalization. g 
is the gravitational acceleration. 

Dimensionless variables were defined as follows: 
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Here, the reference variables can be derived as follows [3]: 
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νβα ,,  and ρ are the thermal diffusivity, volumetric expansion 

coefficient, kinematic viscosity and density, respectively. The subscripts 
of “h” and “c” denote the hot and cold walls as in Figure 1, respectively. 
Gr and Pr  are Grashof and Prandtl numbers, respectively, and are 
defined as follows: 

( ) .Pr,Gr 2

3

α
ν=

ν

θ−θβ
=

Lg ch  (10) 

V2∇  is calculated from the following equation: 

( ) [ [ ]].2 VVV ×∇×∇−⋅∇∇=∇  

4.2. Computational conditions 

Using the dimensionless variables, the computational domain Ω 
becomes the unit cube: 

( ) ( ){ }.1,,0:,, ≤≤=Ω ZYXZYX  

In the present study, the following uniform cubical grid system is 
imposed on the unit cube: 

( ) ( ){ }....,,2,1,0,,,1:,,,, NkjiNhkhjhihZYX kji ===  

Here, h is the uniform grid spacing, and the total grid number is equal to 

.3N  The calculations were carried out for 40,30,20,10=N  and 50. 

The following conditions are adopted: 
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4.3. SIMPLE algorithm 

Let the values at n time level be known, and the fields at the next 
1+n  time level be calculated implicitly by the following equation: 

{( ) }.121111 +++++ ∇−∇+∇⋅∆−= nnnnnn VPVVTVV  (11) 

Above governing equations were solved by the SIMPLE algorithm. This 
algorithm is composed of the following steps: 

• Using the guessed pressure field ,∗P  calculate the guessed velocity 
∗V  by the following equation implicitly. The pressure at the former time 

level is used as ∗P  in the present study. 

{( ) }.2 ∗∗∗∗ ∇−∇+∇⋅∆−= VPVVTVV nn  (12) 

• Calculate the velocity-correction ∗+ −=′ VVV n 1  from the following 
equation by neglecting some terms 

( ).~ 11 ∗+∗+ −∇∆−−− PPTVV nn  (13) 

• Consequently, the pressure-correction ∗+ −=′ PPP n 1  can be 
obtained by the following equation implicitly, since .01 =⋅∇ +nV  

.2
T
VP

∆
⋅∇=′∇

∗
 (14) 

P ′  which is necessary to correct the guessed velocity ∗V  from (13) is set 
at zero on all boundaries, since the non-slip condition is imposed and the 
velocities should not be corrected on these points in the present 
computation. However, since the staggered grid system is adopted in the 
SIMPLE algorithm, the velocity on boundaries is corrected with the 
normal derivative of .P ′  Further, the problem of the relativity of pressure 
should be considered. In the present study, only the Newmann condition 
for P ′  was imposed on boundaries, and P ′  was allowed to seek its own 
level for faster convergence. 

In actual computations, the velocity, pressure and temperature fields 
are underrelaxed with respect to the previous time level. In the present 
computation, 0.1, 0.3 and 0.5 are used for this underrelaxation 
parameters of the pressure-correction, guessed velocity components and 
temperature, respectively. 
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5. Result and Discussion 

Calculations were carried out for the transient system of 71.0Pr =  

and .10Gr 6=  

Table 1 is the comparison of the iteration number to solve the linear 
system of equations of the pressure-correction. T∆  was set at 0.005, and 
200 time steps were advanced, and the calculation was continued till 

.1=T  In the SIMPLE algorithm, the linear systems of equations of the 
guessed velocity components and temperature are also to be calculated. 
However, generally, the solution of these equations requires the less 
number of iterations in comparison with that of the pressure-correction. 
This is because the linear system of equations of the pressure-correction 
from (14) is Poisson equation and the coefficient matrix becomes 
irreducibly weakly diagonally dominant Z-matrix. On the other hand, the 
coefficient matrix of the guessed velocity components and temperature 
becomes irreducibly strongly diagonally dominant Z-matrix in the 
transient problem, since each diagonal entry contains the inverse of time 
step. The iteration number by the preconditioning Gauss-Seidel iterative 
method with SI +  is reduced to about 66-72% of that without 
preconditioning. Further, using FI +  as preconditioner, the iteration 
number decreases to about 42-44% of that without preconditioning. The 
effect of preconditioning seems independent of grid system in the present 
computations. 

Figure 2 shows the transient response of root mean squared velocity 
components and temperature with the grid system of .50=N  Figure 2 
illustrates that the flow field becomes almost steady at ,1=T  and 
computation was carried out till 1=T  in the present study. 

6. Conclusion 

The effect of preconditioning in the numerical computation of the 
three-dimensional natural convection in an enclosure by the Gauss-Seidel 
iterative method with the SIMPLE algorithm is investigated. 

The iteration number to solve the linear system of the pressure-
correction by the preconditioning Gauss-Seidel iterative method with 

SI +  is reduced to about 66-72% of that without preconditioning. 
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Using FI +  as preconditioner, the iteration number decreases to 
about 42-44% of that without preconditioning. 

The effect of preconditioning is independent of grid system and 
dimension in the present computations. 
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Figure 1. Problem schematic. 

 

Figure 2. Transient response of root mean square values of the velocity 

components and temperature at 71.0Pr =  and .10Gr 6=  
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Table 1. Comparison of total iteration number to solve the linear 
system of equations of the pressure-correction with 005.0=∆T  and 
200 time steps for the three-dimensional system at 71.0Pr =  and 

610Gr =  

Grid Number GS GS with SI +  GS with FI +  

310  32797(1) 21592(0.658) 13955(0.425) 

320  123189(1) 85866(0.697) 53850(0.437) 

330  258319(1) 182332(0.706) 114348(0.443) 

340  392199(1) 273120(0.696) 172925(0.441) 

350  515383(1) 369065(0.716) 228867(0.444) 

The value in brackets is the ratio calculated by dividing the number of 
iterations by that with the Gauss-Seidel iterative method for each grid 
system. 

Stopping criteria are as follows: 

( ) 610−<− bxAb  for the Gauss-Seidel iterative method, and 

( ) 610−<− bCxCAbC  for the preconditioning Gauss-Seidel iterative 
method. 
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