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Abstract 

In this paper, a nonlinear Schrödinger equation is solved approximately 

under variable group velocity dissipation in a limited time interval. 

Complex initial conditions and zero Neumann conditions are considered. 

The perturbation method together with the eigenfunction expansion and 

variation of parameters method are used to introduce an approximate 

solution for the perturbative nonlinear case for which a power series 

solution is proved to exist. Using Mathematica, the solution algorithm is 

tested through computing the only possible first order approximation for 

some variations of the variable group velocity. The method of solution is 

illustrated through case studies and figures. 
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1. Introduction 

In the last two decades, the nonlinear Schrödinger equation (NLS) got 
the interests of many scientists in engineering, applied and theoretical 

sciences, see [1-4, 9] for examples. There are a lot of NLS problems 
depending on additive or multiplicative noise in the random case [5, 6] or 

a lot of solution methodologies in the deterministic case [14-18]. By using 
coupled amplitude phase formulation, Parsezian and Kalithasan [11] 
constructed the quartic anharmonic oscillator equation from the coupled 

higher order NLS. Two-dimensional grey solitons to the NLS were 
numerically analyzed by Sakaguchi and Higashiuchi [13]. The 

generalized derivative NLS was studied by Huang et al. [10] introducing 
a new auxiliary equation expansion method. El-Tawil and El-Hazmy [7] 

used the perturbation method to introduce an approximate solution to a 
perturbative cubic NLS equation.  

In this paper, a straightforward solution algorithm is introduced 

using the transformation from a complex solution to a coupled equations 
in two real solutions, eliminating one of the solutions to get separate 

independent and higher order equations, and finally introducing a 
perturbative approximate solution to the system. 

2. The NLS Equation 

Consider the homogeneous non-linear Schrödinger equation: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),,0,0,,0,,,,, 2
2

2
∞×∈=γ+ε+

∂

∂β+
∂

∂ Tztztuiztuztu
t

ztut
z

ztui  (1) 

where ( )ztu ,  is a complex valued function which is subjected to: 

( ) ( ) ( ),0,:I.C. 21 tiftftu +=  a complex valued function, 

( ) ,0,0:B.C. =zuz  ( ) ,0, =zTuz  and ( )tβ  is a variable group velocity 

dissipation. 

Lemma. The solution of equation (1) with its associated constraints is 

a power series in ε, if exists. 

Proof. At ,0=ε  the following linear equation is got: 
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which has the solution 

( ) ( ) ( )( ),,,, 000 ztiztztu φ+ψ=  

where, Appendix-A, 
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Following Pickard approximation, equation (1) can be rewritten as 
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∂
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At ,1=n  the iterative equation takes the following form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ),,,,,
,,
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2
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2
1 zthztuztuztui
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ztu
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z
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i ε=ε−=γ+
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∂

 

which can be solved as a linear case with zero initial and boundary 

conditions. The following general solution can be obtained: 

( ) ( )∑
∞

=

γ− 





 π

ε+=ψ
0

101 ,sin,
n

nn
z t

T
n

TTezt  



MAGDY A. EL-TAWIL and MAHA A. EL-HAZMY 418

( ) ( )∑
∞

=
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ετ+τ=φ
0

101 ,sin,
n
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z t

T
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ezt  

( ) ( ) ( )( )ztiztztu ,,, 111 φ+ψ=  

( ) ( ).1
1

0
1 uu ε+=   

At ,2=n  the following equation is obtained: 

( ) ( ) ( ) ( ) ( ) ( ) ( ),,,,,
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which can be solved as a linear case with zero initial and boundary 

conditions. The following general solution can be obtained: 

( ) ( ) ( ) ( ) ( ) ( )., 4
2

43
2

32
2

21
2

0
22 uuuuuztu ε+ε+ε+ε+=  

Continuing like this, one can get 

( ) ( ) ( ) ( ) ( ) ( ) ( )., 332210 mn
n

mn
nnnnn uuuuuztu ++ε++ε+ε+ε+= L   

As ,∞→n  the solution (if exists) can be reached as ( ) ( ).,lim, ztuztu nn ∞→
=  

Accordingly, the solution is a power series in ε. � 

According to the previous Lemma, one can assume the solution of 
equation (1) as the following: 

 ( ) ∑
∞

=

ε=
0

.,
n

n
nuztu  (2) 

Let ( ) ( ) ( ),,,, ztiztztu φ+ψ=  ψ, φ: real valued functions. The following 

coupled equations are got: 

 
( ) ( ) ( ) ( ) ,

,, 22
2

2
γφ−ψφ+ψε+

∂

ψ∂
β=

∂
φ∂

t

zt
t

z
zt

 (3) 

 
( ) ( ) ( ) ( ) ,

,, 22
2

2
γψ−φφ+ψε−

∂

φ∂
β−=

∂
ψ∂

t

zt
t

z
zt

 (4) 

where ( ) ( ),0, 1 tft =ψ  ( ) ( ),0, 2 tft =φ  and all corresponding other I.C. and 

B.C. are zeros. 
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As a perturbation solution, one can assume that 

 ( ) ,, 2
2

10 L+ψε+εψ+ψ=ψ zt  (5) 

 ( ) ,, 2
2

10 L+φε+εφ+φ=φ zt  (6) 

where ( ) ( ),0, 10 tft =ψ  ( ) ( ),0, 20 tft =φ  and all corresponding other I.C. 

and B.C. are zeros. 

Substituting from equations (5) and (6) into equations (3) and (4) and 

then equating the equal powers of ε, one can get the following set of 

coupled equations: 

( ) ( ) ( )
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,,
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and so on. The prototype equations to be solved are: 

 
( ) ( ) ( ) ( ) ,1,

,, 1
2

2
≥+

∂
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z
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i
ii  (14) 

where ( ) ( ),0, 10, tft ii δ=ψ  ( ) ( )tft ii 20,0, δ=φ  and all other corresponding 

conditions are zeros. ( ),1
iG  ( )2

iG  are functions to be computed from 

previous steps. 
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Following the solution algorithm described in Appendix-A, the linear 

coupled equations can always be solved using eigenfunction expansion [8] 
and variable parameters method [12]. 

2.1. The zero order approximation 

In this case, 

 ( )( ) ( ),, 00
0 φ+ψ= iztu  (15) 

where 

 ( ) ( )∑
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=


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in which 
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The absolute value of the zero order approximation is 

 ( )( ) ., 2
0

2
0

20 φ+ψ=ztu  (21) 

2.2. The first order approximation 

 ( )( ) ( ) ( ),, 11
01 φ+ψε+= iuztu  (22) 

where 
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∞
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in which 

 ( ) ( ) ( ) ( )( ) ( ),cossin 1112111 zzBCzzAzT nnn Γ++Γ=  (25) 

 ( ) ( ) ( ) ( ( )) ( ),cos
~

sin 1212121 zzBCzzAz nnn Γ++Γ=τ  (26) 

where the constants and variables ( ),11 zA  ,12C  ( ),11 zB  ( ),12 zA  12
~
C  and 

( )zB12  can be evaluated in a similar manner as the corresponding ones in 

the linear case, Appendix-A. 

The absolute value of the first order approximation can be got using: 

 ( )( ) ( )( ) ( ) ( ).2,, 2
1

2
1

2
1010

2021 φ+ψε+φφ+ψψε+= ztuztu  (27) 

2.3. The second order approximation 

 ( )( ) ( )( ) ( ),,, 22
212 φ+ψε+= iztuztu  (28) 

where 

 ( ) ( )∑
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=



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
 π
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 ( ) ( )∑
∞

=





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 π

τ=φ
0

22 ,sin,
n

n t
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in which 

 ( ) ( ) ( ) ( )( ) ( ),cossin 2122212 zzBCzzAzT nnn Γ++Γ=  (31) 

 ( ) ( ) ( ) ( ( )) ( ),cos
~

sin 2222222 zzBCzzAz nnn Γ++Γ=τ  (32) 

where the constants and variables ( ),21 zA  ,22C  ( ),21 zB  ( ),22 zA  22
~
C  and 

( )zB22  can be evaluated in a similar manner as the previous case. 

The absolute value of the second order approximation can be got 

using: 
( )( ) 22 , ztu  
( )( ) ( ) ( ) ( ).22, 2

2
2
2

4
2121

3
2020

221 φ+ψε+φφ+ψψε+φφ+ψψε+= ztu  (33) 

3. Case Studies 

To examine the proposed solution algorithm, see Appendix-B, two 

case studies are illustrated. 
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3.1. Case study-1 

Taking ( ) ,11 ρ=tf  ( ) ,22 ρ=tf  ,0=γ  1=β  and following the solution 

algorithm, the following selective results for the first order approximation 
are got: 

 
Figure 1. The first order approximation of ( )1u  at ,0=ε  ,1, 21 =ρρ  

,10=T  ,0=γ  1=β  with considering only ten terms in the series 

( ).10=M  

One can notice that it is an identical result with that in [12, Figure 1]. 

 
Figure 2. The first order approximation of ( )1u  at ,0=ε  ,1, 21 =ρρ  

,10=T  ,0=γ  t=β  with considering only ten terms in the series 

( ).10=M  



PERTURBATIVE NONLINEAR SCHRÖDINGER EQUATIONS … 423

One can notice the increase of oscillation due to the variability of β. 

 
Figure 3. The first order approximation of ( )1u  at ,0=ε  ,1, 21 =ρρ  

,10=T  ,05.=γ  t=β  with considering only ten terms in the series 

( ).10=M  

One can notice the high regression effect of γ. 

 
Figure 4. The first order approximation of ( )1u  at 2.=ε  and ,1, 21 =ρρ  

,10=T  ,0=γ  1=β  with considering only one term in the series 

( ).1=M  

One can notice that the results are identical with the case 0=γ  in 

[12, Figure 2]. 
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3.2. Case study-2 

Taking the case of ( ) ,11 ρ=tf  ( ) ,sin22 t
T

m
tf 






 π

ρ=  the following final 

results for the first order approximation are obtained: 

 
Figure 5. The first order approximation of ( )1u  at ,0=ε  ,1, 21 =ρρ  

,10=T  ,0=γ  1=β  with considering only one term in the series 

( ).1=M  

One can notice that the results are identical with the case 0=γ  in 
[12, Figure 6]. 

 
Figure 6. The first order approximation of ( )1u  at ,0=ε  ,1, 21 =ρρ  

,10=T  ,0=γ  t=β  with considering only one term in the series 

( ).1=M  
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Figure 7. The first order approximation of ( )1u  at ,0=ε  ,1, 21 =ρρ  

,10=T  ,05.=γ  t=β  with considering only ten terms in the series 

( ).10=M  

One can notice the high regression effect of γ. 

Conclusions 

The perturbation technique together with the eigenfunction 

expansion and variation of parameters method introduce an approximate 

solution to the cubic NLS equation under variable group velocity 

dissipation for a finite time interval. The difficult and huge first order 

computations were achieved using Mathematica-5. To get more improved 

orders, it is expected to face a problem of computation. In general, the 

solution oscillations are increased with the variability of β. The increase 

of γ causes a high regression in the solution level. 
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Appendix-A. The Homogeneous Linear Case 

Consider the nonhomogeneous linear Schrödinger equation: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ),,0,0,,0,,,
2

2
∞×∈=γ+

∂

∂β+
∂

∂ Tztztui
t

ztut
z

ztui  (A-1) 

where ( )ztu ,  is a complex valued function which is subjected to: 

( ) ( ) ( ),0,:I.C. 21 tiftftu +=  a complex valued function, (A-2) 

( ) ( ) .0,,0,0:B.C. == zTuzu zz  (A-3) 

Let ( ) ( ) ( ),,,, ztiztztu φ+ψ=  ψ, φ: real valued functions. The 

following coupled equations are got as follows: 

 ( ) ( ) ( ) ,,,
2

2
γφ−

∂

ψ∂β=
∂

φ∂

t

ztt
z

zt  (A-4) 

 ( ) ( ) ( ) ,,,
2
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γψ−

∂

φ∂β−=
∂

ψ∂

t

ztt
z
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where ( ) ( ),0, 1 tft =ψ  ( ) ( ),0, 2 tft =φ  and all corresponding other I.C. and 

B.C. are zeros. 

Let the loss terms in equations (4, 5), ,we zγ−=ψ  ,ν=φ γ− ze  be 

eliminated. 

Eliminating one of the variables in the resultant equations, one can 

get the following independent equations: 

 ( ) ( ) ( ) ,0,,,
2

2
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4
2

2

2
=

∂

∂β′′β+
∂

∂β+
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 ( ) ( ) ( ) .0,,,
2

2

4

4
2

2

2
=
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∂
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∂

∂

t

ztw

t

ztw

z

ztw  (A-7) 

Using the eigenfunction expansion technique [8], the following 

solution expressions are obtained: 
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γ− 




 π=ψ
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 ( ) ( )∑
∞
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γ− 

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
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,sin,,
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n
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T
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where ( )ztTn ,  and ( )ztn ,τ  can be got through the applications of initial 

conditions and then solving the resultant second order differential 

equations. The final expressions can be got as the following: 

 ( ) ( ),cos1 zCzT nn Γ=  (A-10) 

 ( ) ( ),cos2 zCz nn Γ=τ  (A-11) 
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Appendix-B. The Non-homogeneous Linear Case 

Consider the non-homogeneous couple equations; 
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2
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z

zt +γφ−
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 ( ) ( ) ( ) ,,,
22

2
g

t

ztt
z
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∂
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where ( ) ,00, =ψ t  ( ) ,00, =φ t  and all corresponding other I.C. and B.C. 

are also zeros.   

Let the loss terms in equations (B-1, B-2), ,we zγ−=ψ  ,ν=φ γ− ze  be 

eliminated. 

Eliminating one of the variables in the resultant equations, one can 
get the following independent equations: 
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where 
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in which 

., 2211 geGgeG zz γγ ==  

Using the eigenfunction expansion technique [8], the following 

solution expressions are obtained: 
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where ( )ztTn ,  and ( )ztn ,τ  can be got through the applications of initial 

conditions and then solving the resultant second order differential 

equations using the method of the variational parameter [12]. The final 
expressions can be got as the following: 

 ( ) ( ) ( ) ( )( ) ( ),cossin 121 zzBCzzAzT nnn Γ++Γ=  (B-9) 

 ( ) ( ) ( ) ( )( ) ( ),cossin 232 zzBCzzAz nnn Γ++Γ=τ  (B-10) 

where 
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in which 
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The following conditions should also be satisfied: 

( ),012 BC −=  (B-18) 

( ).023 BC −=  (B-19) 


