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Abstract 

The model built allows to calculate optimal orders of a mechanical 
system in movement for variable regimes and succession of its moment 
of commutation. For example, in the case of management of the train, 
the used method puts in an obvious way the dependence between energy 
consumed E, the mass M, the slope Q, and the power of the engine u. 

1. Introduction 

In this section, we introduce the optimal control problem. In the 
construction of an optimal functioning plan of a dynamic object, the 
placement in an obvious way influence the necessary perturbations. 
These different perturbations change real situations of the object. They 
can be put back to have decisions. This is why, it is necessary to have 
methods allowing to introduce in calculations, random factors and to 
anticipate possible changes in the plan.  

In Section 2, we present the model 17 of the consumption of energy of 
a dynamic object. 

In Section 3, we present results of optimal management of the train. 
Conclusions and perspectives of works are presented in Section 4. 
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2. Consumption Energy of a Dynamic Object: Model 17 

Provoking the principle of maximum of Pontriaguine [1], we build the 
model 17 of consumption of energy of a dynamic object under the 
influence of which perturbations with characteristics are approximated 
by theoretical distributions: 

 ( ) ( )( ) ( )( ) ( )tutxftxgtx =++ &&&  (17) 

 [ ] ( )( )∫++=
fx

x
PC dxxygEEuJ

0
,  (18) 

where the vector ( )nuuuu ...,,, 21=  describes an influence controlled by 

this dynamic object;   

1Cu ∈  (class of admissible functions); 

( )nxxxx ...,,, 21=  describes a state of the object with: 

( ) ( ) ....,,1;;0; 0 nixTxxxyx f
iiii ====&  

Conditions above justify the dirigibility of the object 0x  as compared to 

.fx  We denote by 

( ) :fxU  the totality of dirigibility; 

:CE  kinetic energy and :PE  potential energy; 

( )( ) :
0

∫= fx

xg dxxygE  a functional objective. 

During optimal management, we pose the problem to minimize the 

functional economic [ ]∗uJ  with 

 [ ] [ ] ( )( ) .minmin
0
∫==∗ fx

x
dxxyguJuJ  (19) 

We show that if ( )tu∗  is an optimal order, then 

 [ ] [ ],uJuJ ≤∗  (20) 

where :1Cu ∈  under totality of admissible orders. 
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Indeed, ( )yg  is the objective function verifying conditions 

 ( )( ) ( )( ) ( )( ) .0;0;0 ≥′′>′> xygxygxyg  (21) 

Is 1+  or 1−  the commutation allowing to increase or decrease the 

consumption of energy (that is, the entire first of the power consumed) in 
function of conditions of the movement? 

We suppose that an area where all have admissible paths, we have 

 ( ) ( )
( ) ( )




<−−−
>−−+

.01
01

ygxf
ygxf  (22) 

The conditions above will be sufficient for optimality of the path. 

By making the development limited to the vicinity of ,0y  we obtain 

( ) ( ) ( ) ( ) ( ) ( ),
2

2
0

000 cg
yy

ygyyygyg ′′−
+′−+=   

where ] [,, 10 yyc ∈  c being fixed. 

On integration of the relationship above, we obtain 

( )( ) ( )( ) ( ) ( )( ) ( ) .
0 0 0

000∫ ∫ ∫ ′⋅−+≥
f f fx

x

x

x

x

x
dxygxyxydxxygdxxyg  

It is necessary to justify the condition of optimality 

( )( ) ( )( )( ) .0
0

0∫ ≥−
fx

x
dxxygxyg  

According to relationship (20), we have ( )( ) ( )( ) .0>′⋅ xygxyg  Two 

possibilities: 

(a) ( ) ( ) ( ) ( ) .2
1010 KxyxyKxyxy ≤⋅⇒=≤  

(b) ( ) ( ) ( ) ( ) .2
1010 KxyxyKxyxy ≥⋅⇒=>  

Now, we consider the first possibility:  

If ] [,,2 fxxx ∈  then 

( ) ( ) ( ) ( ) 2
1010 KxyxyKxyxy ≤⋅⇒=≤  



R. BILOMBO and V. A. DOLIATOVSKI 404

and we obtain 

( )( ) ( )( )( ) ( ) ( )( ) ( )( )∫ ∫ ′−≥−
f fx

x

x

x
dxxygxyxydxxygxyg

2 2
000  

( )( ) ( ) ( )
( ) ( )∫ 








−⋅′=

fx

x
dx

xyxy
xyxyxyg

2 0
00

11
 

( ) ( ) ( )∫ =



 −′≥

fx

x
dx

xyxy
KKg

2
011

0

2
11  

( )( ) ( )( )( ) .0
2

0∫ ≥−⇒
fx

x
dxxygxyg  

Using the same reasoning on ] [,, 10 xx  we obtain the following 

result:  

( )( ) ( )( )( ) .0
0

0∫ ≥−
fx

x
dxxygxyg  

Next, we consider the second possibility:  

If ] [ ] [;,, 2121 xxxx ⊂∗∗  ] [,, 21
∗∗∈∀ xxx  then we have 

( ) ( ) ( ) ( ) 2
1010 KxyxyKxyxy ≥⋅⇒=>  

and, moreover, 
( ) ( )

,0
11

0
>−

xyxy
 and hence 

( )( ) ( )( )( ) ( ) ( )( ) ( )( )∫ ∫ ′−≥−
*
2

*
1

*
2

*
1

000
x

x

x

x
dxxygxyxydxxygxyg  

( )( ) ( ) ( ) ( ) ( )∫ 



 −⋅′=

*
2

*
1

11
0

00
x

x
dx

xyxy
xyxyxyg  

( ) ( ) ( )∫ 



 −′≥

*
2

*
1

11
0

2
11

x

x
dx

xyxy
KKg  

( ) .0
2

1

2

10

2
11 =








−′= ∫ ∫

x

x

x

x y
dx

y
dx

KKg  

Consequently, 

 ( )( ) ( )( )( ) .0
2

1
0∫ ≥−

x

x
dxxygxyg  
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Therefore, we conclude 

( )( ) ( )( )( ) ( ) ( ) ( )∫ ∫ 



 −′≥−

f fx

x

x

x
dx

xyxy
KKgdxxygxyg

0 0

11

0

2
110  

( ) .0
2

1

2

10

2
11 =








−′= ∫ ∫

x

x

x

x y
dx

y
dxKKg  

( )( ) ( )( )( )∫ ≥−⇒
fx

x
dxxygxyg

0
.00  

We thus obtain the necessary and sufficient condition of optimality. 

If ( )tu∗  is an optimal order, for all 1Cu ∈  (under totality of 

admissible orders), then  

 [ ] [ ].uJuJ ≤∗  (20) 

The behaviour of this object with variable parameters and under 

influence of perturbations is a consequence of variation of the 
consumption of energy and the constant of optimality of the optimal 

control .∗u   

Indeed, consider an admissible control 1u  defined by: 

( ) ( ) ( )tututu ∂+= ∗
1  on .0 Tt ≤≤   

According to the principle of the maximum, there exists 1x  corresponding 

to 1u  such that 

( ) ( ) ( )txtxtx ∂+= ∗
1  

 
( )

( ) ( ) [ ]



Ω∈==
=

∗ ,,;0;,0
,

2Cuxfxxni

uxfx

i

ii&  (23) 

( ) ( ( ) ( )),, tutxftx ii
∗∗∗ =&  

( ( ) ( )) ( ( ) ( ) ( ) ( ))tututxtxftxtx
dt
d

iii ∂+∂+=∂+ ∗∗∗ ,  

 ( ) ( ) ( ) ( ( ) ( ))tutxftwtxtw iiil
∗∗∗∗∗ ⋅=⋅ ,&&&  (24)  
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and 

( ( ) ( ))( ( ) ( )) [ ( ( ) ( ) ( ) ( ))][ ( ) ( )]., twtwtututxtxftxtxtwtw iiiiii ∂+∂+∂+=∂+∂+ ∗∗∗∗∗  (25) 

By (25)-(24), we obtain 

( ( ) ( )) ( ( ) ( ) ( ) ( )) ( ) ( ) ( ( ) ( )),, twtwtxtwtututxtx
dt

twtwd
iiii

i ∂+=⋅−∂+∂+
∂+ ∗∗∗∗∗

∗
&&  

( ( ) ( ) ( ) ( )) ( ) ( )txtwtututxtxf iii && ∗∗∗ −∂+∂+ ,  

( ( ) ( )) ( ( ) ( )) ( ) ( ),∑ ∗∗∗∗ −∂+∂+=
i

iiii txtwtxtxtwtw &&&&  

( ) ( ) ( ) ( ) ( ) ( )∫ ∑ ∫ ∑ ∫ ∑ ∂∂+∂+∂ ∗∗
T

i

T

i

T

i
iiiii dttxtwdttxtwdttxtw

0 0 0
&&&  

( ) ( ).,,,, ∗∗∗∗∗∗ −∂+∂+∂+= uwxHuuwwxxH  

Integrating by parts of the first term, we have 

( ) ( ) ( ) ( )∫ ∑∑ ∂−











∂⋅= ∗∗

T

i
ii

T

i
ii dttxtwtxtwI

0
0

1 &  

( )( ) ( ) ( )∑ ∫ ∑ 







∂

∂
+∂

∂
∂−=

∗∗∗

i

T

i
i

i
i

i
dtx

x
uwxH

tx
x
txQ

0

,,  

with initial conditions ( ) ( )( )
.,1, ni

x
TxQ

tw
i

i =
∂

∂
−=∗  According to 

Hamilton, 

( ) ( )
,

,∑ ∂
∂

−=
∂
∂−=

i i

k
k

i
i x

uxf
tw

x
Hw&  

( ) ( ) ( ) ,,,
0 0

2 ∫ ∑ ∫ ∑ 







∂

∂
∂=∂=

∗∗∗
∗

T

i

T

i
i

i
ii dtw

w
uwxH

dttxtwI &  

where  

( ),, uxf
w
Hx i
i

i =
∂
∂=&  
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( ) ( ) ( ) ,
2
1,,

2
1

0 0
43 ∫ ∑ ∫ ∑ +








∂

∂
∂=∂=

∗∗∗
∗

T

i

T

i
i

i
ii Idtw

w
uwxH

dttxtwI &  

( ) ( ) ( ) ( ) ,
0

0

4 ∫ ∑∑ ∂∂−











∂⋅∂= ∗

T

i
ii

T

i
ii dttxtwtxtwI &  

where 
i

i w
H

x
∂
∂

=&  and .
i

i x
H

w
∂
∂

−=&  

This gives 

321 III ++  

( )( ) ( ) ( )∑ ∫ ∑∫ 







∂

∂
+∂

∂
∂−=∂=

∗∗∗

i

T

i
i

i
i

i

T
dtx

x
uwxH

tx
x
TxQ

Hdt
00

,,
 

( ) ( )∫ ∫ ∑∑ 















∂

∂
∂∂+










∂

∂
∂+

∗∗∗∗T T

i
i

ii
i

i
dtw

w
uwxH

dttw
w
H

0 0

,,
2
1  

∫ ∑ 









∂






∂
∂∂+

T

i
i

i
dtx

x
H

02
1  

∫ ∂=
T
Hdt

0
 

( )∑ ∫ ∫ ∫ ∑∑ 









∂






∂
∂∂+










∂

∂
∂+∂−=∂

∂
∂=

∗

i

T T T

i
i

ii
i

i
i

i
dty

y
Hdty

y
HHdtx

x
xQ

dQ
0 0 0

 

with ( )....,,,,...,,, 2121 nn wwwxxxy =  

[ ( ) ( )]∫ ∫ ∗∗∗∗ −∂+∂+=∂
T T

dtuyHuuyyHHdt
0 0

,,  

[ ( ) ( )]∫ ∗∗∗∗ −∂+=
T

dtuyHuuyH
0

,,  

[ ( ) ( )]∫ ∂+−∂+∂++ ∗∗∗∗
T

dtuuyHuuyyH
0

,,  
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( )∫ ∫ ∑ 












∂−

∂
∂

+∂=
=

∗∗T T n

i
i

i
dty

y
uyH

Hdt
0 0

2

1

,
 

( )∫ ∑∑
= =

∗∗
∂∂

∂∂
∂+∂+∂

+
T n

i

n

j
ji

ji
dtyy

yy
uuyyH

0

2

1

2

1

,2
2
1

 

( ( ))∑ ∂
∂

∂
=

∗

i
i

i
x

x
TxQ

dQ  

( ) ( )∫ ∫ ∑ 










∂













∂
∂−

∂
∂+∂+∂+∂−=

=

∗∗∗∗T T

i

n

i ii
dty

y
uyH

y
uuyyH

Hudt
0 0

2

1

,,
2
1  

( ) ( )∫ ∑ 










∂













∂
∂−

∂
∂+∂+

=

∗∗∗∗T

i

n

i ii
dty

y
uyH

y
uuyH

0

2

1

,,
2
1  

( )∫ ∑∑ 












∂∂











∂∂
∂+∂+∂

−=
= =

∗∗T n

i

n

j
ji

ji
dtyy

yy
uuyyH

0

2

1

2

1

,2
2
1

 

( ) ( )∫ ∑∫ 










∂










∂
∂

−
∂

∂+∂
+∂−=

=

∗∗∗∗T

i

n

i ii
dty

y
uyH

y
uuyH

HudtdQ
0

2

1

,,
2
1

 

( )∫ ∑∑ 












∂∂









∂∂
θ∂

+
= =

T n

i

n

j
ji

ji
dtyy

yy
H

0

2

1

2

1

12
2
1

 

( )∫ ∑∑ 












∂∂









∂∂
θ∂

−
= =

T n

i

n

j
ji

ji
dtyy

yy
H

0

2

1

2

1

22
2
1

 

( ) ( ) ( ) ( ) ( ) .0with
0∫ =⇒==⇔+=
t ΑtBetxBxAxtxdssxABtx &  

( ( )) .
0∑ ∫ +∂−=∂

∂
∂=

∗

i

T

i
i

LHdtx
x
TxQ

dQ  

To show that L is small enough, it will suffice to appreciate iy∂  that is to 

say, ., ii wx ∂∂  
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( ) ( ( ) ( )),, tutxftx ii
∗∗∗ =&  

( ( ) ( )) ( ( ) ( ) ( ) ( )),, tututxtxftxtx
dt
d

iii ∂+∂+=∂+ ∗∗∗  

 
( ( ) ( ) ) ( ( ) ( ))

( )





=∂=

−∂+∂+=∂ ∗∗∗∗∗

.00,1

,,

xni

tutxfutuxtxfx iii&  (26) 

Lemma [2], [3] 

For all ,0>ε  there exists ( ) 0>εη  such that ( ) ( )εη≤∂ tu  

( ) ε<∂⇒ txi  for all [ ].,0 Tt ∈  

Justifications 

Suppose that [ ].,01 TCfi ∈  Then, by (26)  

[ ( ) ( ) ( )]∫ ∗∗∗∗∗ −∂+±∂+∂+
T

iii dtuxfuxxfuuxxf
0

,,,  

( ) [ ( ) ( )∫ ∂+−∂+∂+≤∂ ∗∗∗
Y

iii uxxfuuxxftx
0

,,  

( ) ( ) ] ,,, dtuxxfuxf ii
∗∗∗∗ ∂+−+  

( ) ( ) ( ) ,
0 1 1
∫ ∑ ∑ 











∂+∂≤∂

= =

T m

j

n

j
kji dssxsuMtx  

( ) ( ) ,,1;
1
∑
=

=∂=
n

i
i nitxtx  

( ) ( ) ( ) ,0
0 1
∫ ∑ 











+∂⋅≤≤

=

T m

j
j dssxsunMtx  

( ) ( ) ( ) ( )∫ ∫∑ ∫ +=













⋅+∂⋅≤≤

=

T tm

j

t

j sxABdssxMnsunMtx
0 0

1
0

0  

with ( )∫ ∑
=

∂⋅=
T m

j
j dssunMB

0
1

 and ,MnA ⋅=  
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 ( ) ( ) .0
0∫+≤≤
t

dstxABtx  (27) 

From (27), it follows that ( ) .AteBtx ⋅≤   

If ( ) Asedsx ⋅= , then d is continuous on [ ].,0 t  

Consider the interval [ ]t,0  such that ( ) ( )sdsd max=∗  with 

[ ].,0 Ts ∈  

If ,∗= st  then by the replacement in (27), we obtain 

( ) ( ) ( )∫
∗ ∗

∗





⋅+≤⋅+≤⋅ ∗∗

s t
AsAsAs e

A
sAdBdsesdABesd

0 0

1
 

( ) [ ] ( ) ( )∗∗∗ −⋅+=−+
∗∗

sdesdBesdB AsAs 1  

( ) ( ) ( ) ( ) ( ) .AtAtAt eBtxeBetdBsdtdBsd ⋅≤⇒⋅≤⋅⇒≤≤⇒≤⇒ ∗∗  

Therefore 

( ) ( ) ,0
0 1
∫ ∑ 











∂⋅≤≤

=

T m

j
j

At dssunMetx  

( ) ( ) .
1Li tuCtx ∂≤∂  

Therefore for all ,0>ε  taking ,cε=η  

( ) ( ) ,
1

ε=η⋅≤∂⇒η≤∂ ctxtu iL  

( ) ( )
( )







=
∂

∂
⋅−= ∑

.,1

,

ni
x

uxf
twtw

i

j
ji&  

( ) ( ) ( ) ( ) ,
0

1
1 ∫ ∑ 













∂⋅≤∂⇒∂≤∂⇒

=

T m

j
jiLi dttuCtytuCtx  

( ) ( )
,

,,
2
1

0

2

1
1 ∫ ∑ 











∂










∂
∂

−
∂

∂+∂
=

=

∗∗∗∗T

i

n

i ii
dty

y
uyH

y
uuyH

N  
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( ) ( )∫ ∑ ∫ ∑ ∑
= = =














∂⋅∂≤

T m

j

T n

k

m

k
kj dttuMdttuCN

0 1 0

2

1 1
1 2

1  

( ) PdttunMC
T n

j
j =




























∂⋅⋅= ∫ ∑

=

2

0
1

2
2
1

 

( )∫ ≤











∂∂

∂∂
θ∂

=
T

ji
ji

Pdtyy
yy

H
0

1
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2
1

 

( )∫ ≤











∂∂

∂∂
θ∂

=
T

ji
ji

bPdtyy
yy

H
0

2
2

2
1

 

( ) ,

2

0
1

1 


























∂≤ ∫ ∑

=

T n

j
j dttuDN  

with ( ) ( ).1 tuutu =∂+∗  If ( )tu∗  is an optimal control, then we have 

[ ( ( ) ( ) ) ( ( ) ( ) ( ))]∫ ∫ +α−≤+−−= ∗∗∗∗2

1

2

1
,,,,

t

t

t

t
NdtNdttutwtxHutwtxHdQ  

( ) ( ) ( ) ,

2

1
12

2

1

2

1
dttutttDdt

t

t

t

t

m

j
jj∫ ∫ ∑ 













−ν−+α−≤

=

 

( ) ( ) .0<−= ∗uQuQdQ  

This insures the contradiction that ∗u  and 1u  are optimal controls. 

The model built allows us to calculate optimal orders for variable 
regimes and succession of its moment by an algorithm. 

Under constraints of environment conditions, we choose moments of 

commutations ...,,, 21 tt  the power of the engine, angles ...,,, 21 αα  that 

allow to minimize (18). 

3. Results of Calculation [2], [3] 

First, we have analysis profiles of the road; the calculation of slopes; 
the representative part distinction for the optimal order calculation: 
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maximum slopes, minimum average. We have then undertaken a 

distribution of potential energy and kinetic energy in dependence of the 
profile of the road. 

Table 1. Distribution of energies in dependence of the profile of the road. 

( ) 310⋅mDk  kP  ( )[ ]2smxF k  ( ) 310⋅mDk  kP  ( )[ ]2smxF k  

0-40 +0.0030 +0.00300 295-350 0.0000 0.00000 

78-145 +0.0059 +0.05879 400-780 –0.0024 –0.023544 

148-155 +0.0036 +0.035316 145-148 –0.0250 –0.245250 

155-167 +0.0125 +0.122625 155-165 –0.0055 –0.053955 

220-295 +0.0007 +0.006867 167-220 –0.0038 –0.037964 

350-365 +0.0083 +0.081423 365-375 –0.0025 –0.024525 

375-384 +0.0083 +0.817173 395-415 –0.0015 –0.014715 

384-395 +0.0086 +0.084758 420-480 –0.0025 –0.024525 

415-420 +0.0020 +0.01962 500-508 –0.0100 –0.09810 

480-500 +0.0005 +0.004905    

The comparison of the consumption of energy for usual management 
and optimal management has given us 60% to 80% of the gain of energy 

according to the typical CC (1750 kw) or the type 4B (2600 kw). This 
comparison has allowed us to make the analysis of the economic efficiency 

of optimal management of the train. 

 

Figure 7. Dependence between the slope j and the mass [2]. 
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Figure 8. Dependence between energy and mass (a) and between power 

and mass (b). 

 

Figure 9. Partial result of the model [2]. 

Table 2. Consumption of energy by journey 

Optimal strategy (m)  41008.3 166178.4 479357.7 

Type CC (7L/km)  997686.600 4042937.500 11662241 

Type 4B(8L/km)  1140213.300 4620500.100 13323276 

101 =M  779158 3157391.5 9107798 Optimal strategy 

Variable mass 122 =M  934989.600 3788869.500 10929358 

Comparison consumption of energy usual management and optimal management 

101 =M  +218528 
(76%) 

+885546 
(78%) 

+25544443 
(78%) 

122 =M  +62696  

(93%) 

+254068 

(93%) 

+732883 

(93%) 

 

Type CC  
(1750 kw) 

Optimal 
management 

153 =M  –171050 –693149 –1999457 
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101 =M  +361055 

(68%) 

+1463108 

(68%) 

+4220478 

(68%) 

122 =M  +205223 

(82%) 

+831630 

(82%) 

+2398918 

(82%) 

Type 4B 
(2600 kw) 

Optimal 
management 

153 =M  –28523 –115586 –333422 

4. Conclusion and Perspective Manner of Works 

The problem of the minimization of the consumption of energy by a 

dynamic object is posed on the basis of the analysis of the existing state. 
The procedure for the optimal function of the commutation is formalized. 
Algorithm for optimal order calculation taking into account the influence 

of perturbations is determined on the basis of the detailed analysis of real 
conditions of the train journey.  

Methods asymptotic in problems of optimal order can be approached 

by the utilization of finished elements. The quality of the approximation 
by functions regular enough is surely an interesting question, especially 

by comparing them with usual methods in optimal order. 
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