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Abstract

In this work, we use factorization method to find explicit exact
particular travelling wave solutions for Cattaneo’s reaction diffusion for
Prisoner’s dilemma (PD) game. Using the particular solutions for these
equations we find the two-parameter solutions for the equation.

1. Introduction

It is known now that diffusion in many branches of sciences is better
modelled by Cattaneo’s equation (Telegraph reaction diffusion equation)
where memory effects are included [1-4, 6]. E. Ahmed and S. Z. Hassan,
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have found an implicit travelling wave solutions for HD and PD
Cattaneo’s reaction diffusion equations by transforming the equations
into first order equations and use a special choice for the wave speed.

Recently, factorization of second-order linear differential equations
became a well established technique to find solutions in an algebraic
manner [5, 7, 8]. Rosu and Cornejo find one particular solution once the
nonlinear equation is factorized with the use of two first order differential
operators [5, 8]. They use the method for equations of types:

( ) ,0=+′γ+′′ ufuu (1)

where γ is a constant and

( ) ( ) ,0=+′+′′ ufuugu (2)

where ′ means the derivative ,
dz
dD =  ( ),ug  ( )uf  are polynomials in u.

Now, equation (2) can be factorized as

( )[ ] ( )[ ] ,012 =ϕ−ϕ− uuDuD (3)

which leads to the equation
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Comparing (5) and (2) we find

( ) 





 ϕ

+ϕ+ϕ−= u
du
d

ug 1
21  and ( ) .21 uuf ϕϕ= (6)

If equation (2) can be factorized as in equation (3), then a first particular
solution can be easily found by solving

( )[ ] .01 =ϕ− uuD (7)



EXACT TRAVELLING WAVE SOLUTIONS … 397

2. Explicit Exact Travelling Wave Solutions for

Prisoner’s Dilemma Game

Prisoner’s dilemma is a 22 ×  symmetric game in which two possible

strategies cooperate ( )A  or defect ( ),B  with payoff matrix .
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Cattaneo’s reaction diffusion equation for Prisoner’s dilemma game is
given as [4]:
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where ,TSUR −−+=α SU −=γ  with ,SURT >>> .2 STR +>

Using the coordinate transformation ctxz −=  (c is the propagation

speed) in equation (8) we obtain the following nonlinear ordinary
differential equation
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Using operator notation, equation (9) takes the form

( ) ( )
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The factorization of (10) leads to

( )[ ] ( )[ ] ,012 =Ψ−Ψ− PPDPD (11)

and then
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Comparing (12) and (9) we obtain the conditions on 1Ψ  and 2Ψ  as:
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Now, we choose 1Ψ  and 2Ψ  such that
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From (15) and (13), we get

( ) ( ) ( ) 0111 222 =τ−γ+τγ−+τ− cacac (16)

which implies that
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and the compatible first order differential equation is
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By direct integration we get
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Now if we choose 1Ψ  and 2Ψ  such that
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then we can find that
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the compatible first order differential equation is
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3. Conclusions

In this paper, the efficient factorization method, proposed by H. C.
Rosu and O. Cornejo-Péerez [5, 8], has been applied to Cattaneo’s
Reaction Diffusion for Hawk-Dove Games. Exact particular solutions
have been obtained.
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