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Abstract 

In this paper, we propose a Bayesian testing procedure for    

independence in Marshall and Olkin’s bivariate exponential model   

based on Bayes factor. We use a noninformative prior such as an 

improper prior for the parameters so that such prior is defined only up   

to arbitrary constant which affects the values of Bayes factors. So we 

compute the fractional Bayes factor (FBF) proposed by O’Hagan [6] to 

compensate for that arbitrariness. We compute FBF’s and calculate the 

posterior probabilities for the hypotheses, respectively. We illustrate   

our procedure through a numerical example. 

1. Introduction 

Bayesian testing depends rather strongly on the prior distributions. 
But subjective elicitation can easily result in poor prior distribution and 
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statistical analysis is often required to appear objective. So, the research 
on noninformative priors has grown enormously over recent years. 
However, noninformative priors are typically improper so that such 
priors are defined only up to arbitrary constants which affect the values 
of Bayes factors. So, San Martini and Spezzaferri [7] and O’Hagan [6] 
have made efforts to compensate for that arbitrariness. Also Berger and 
Pericchi [1] introduced a new model selection and hypotheses testing 

criterion, called the Intrinsic Bayes Factors. Cho and Cha [3] suggested 

Bayesian testing procedure for the ratio of the failure rates in two 
independent exponential model based on FBF. And Cho et al. [4] and Cho 
[2] proposed multiple comparisons procedure based on FBF for geometric 
and negative binomial populations, respectively. 

In this paper, we propose a Bayesian testing procedure for 

independence of bivariate exponential model by Marshall and Olkin [5]. 

We use an improper prior for the parameters which are defined only up 

to arbitrary constants. Also, we obtain FBF to compensate for that 

arbitrariness. Further, we compute posterior probability for the 

hypotheses and select hypothesis which has the largest posterior 

probability. Finally, we illustrate our procedure through a numerical 

example. 

2. Preliminaries 

Let ( )YX ,  be random variables of Marshall and Olkin’s bivariate 

exponential model with parameters ( ).,, 321 λλλ=θ  Then the joint 

probability density function is given as 
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where .0,, 321 >λλλ  It is well known that ( )3213 λ+λ+λλ  is the 

correlation coefficient between X and Y and is also ( ),YXP =  the 

probability of simultaneous failure of both the components. The 

parameter 03 =λ  is equivalent to independence of two components. 
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Suppose that there are n two components units under study and ith 

pair of the components has lifetime ( )., ii yx  Let ( ) (( ),,, 11 yxyx =  

( ))nn yx ,...,  be observation of sample size n. 

Let ( )i
N
i θπ  be an improper prior distribution under 2,1, =iHi  

usually written as ( ) ( ),iii
N
i h θ∝θπ  where ih  is a function whose integral 

over the parameter space under iH  diverges. Formally, we can write 

( ) ( ),iiii
N
i hc θ=θπ  although the normalizing constant ic  does not exist, 

but treating it as an unspecified constant. The posterior probability that 

iH  is true is given as 
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where ip  is the prior probability of iH  being true and ,N
jiB  the Bayes 

factor of jH  to ,iH  is defined by 
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where ( )iyxf θ|,  is the density under .2,1, =iHi  The posterior 

probabilities in (2) are then used to select the most plausible hypothesis. 

Hence, the corresponding Bayes factor N
jiB  is indeterminate. To solve 

this problem, O’Hagan [6] proposed the FBF for Bayesian testing 

problem as follow. The FBF of model jH  to model iH  is 
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,
,,  and b specifies a fraction of 

likelihood which is to be used as a prior density. 
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3. Bayesian Hypothesis Test 

The goal here is to propose a Bayesian testing procedure for 

independence based on FBF. In this paper, we assume ( )oλ≡λ=λ 21  so 

that the lifetimes of two components are equal failure rates. We set the 

hypothesis 0: 31 =λH  v.s. .not: 12 HH  Here, let oλ=θ1  and 

( )., 32 λλ=θ o  

In this paper, we set the noninformative priors for 0: 31 =λH  v.s. 

12 not: HH  as follows: 
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To test the hypothesis of independence based on FBF, we need to 

compute (4). The likelihood function under 0: 31 =λH  is 
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Then ( )yxbq ,,1  under 0: 31 =λH  is given by 
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On the other side, the likelihood function under 12 not: HH  is 
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Therefore, the FBF of 2H  to 1H  is given by 
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Using FBF by (8) and (10), the posterior probability for hypothesis 

2,1, =iHi  is given by ( ) .,
12

1

−

=










=| ∑

j

F
ji

i

j
i B

p

p
yxHP  Thus, we can select 

the hypothesis with the highest posterior probability based on FBF by (2). 
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4. A Numerical Example 

In this section, we present a numerical example to illustrate for the 

proposed Bayesian procedure for independence testing 0: 31 =λH  v.s. 

12 not: HH  based on FBF. We take the prior probability of iH  being 

true, .2,1,5.0 == ipi  

The samples of size 15 are simulated from Marshall and Olkin’s 

bivariate exponential model with the parameters 0.3=λo  and .0.23 =λ  

Then we note that the true hypothesis may be .2H  

The generated Marshall and Olkin’s bivariate exponential data is 
given as: (0.2875, 0.1651), (0.0026, 0.0026), (0.0975, 0.0194), (0.1924, 
0.1924), (0.0256, 0.0256), (0.4248, 0.1275), (0.1421, 0.5548), (0.0289, 
0.0474), (0.3159, 0.1303), (0.1506, 0.1800), (0.0603, 0.0603), (0.0053, 
0.0053), (0.0283, 0.3573), (0.0091, 0.0400), (0.0297, 0.0297). 

For above generated data, we can compute the FBF 2619.921 =FB  by 

(11). Also we can obtain the posterior probability ( ) 9025.0,2 =| yxHP  

by (2). That is, there is strong evidence for 2H  in terms of the posterior 

probabilities based on FBF. 

Until now, we have considered the problem of developing a Bayesian 
testing for independence of Marshall and Olkin’s bivariate exponential 
model based on FBF. In conclusion, FBF methodology can also be applied 
in general when the samples come from any distribution. An extension of 
the method to Bayesian testing problems for the another models would be 
accomplished straightforwardly. The research topics pertaining to the 
examination of its performance are worthy to study and are left as a 
future subject of research. 
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