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Abstract

In this paper, we derive a necessary condition for local asymptotic
stability of periodic orbits of nonlinear systems with time-varying
exogenous disturbance. This is an extension of our earlier work [7]
providing a necessary condition for the local asymptotic stability of
periodic orbits of nonlinear systems with constant parameters. We
illustrate our result with examples.

1. Introduction

In this paper, we extend our earlier work [7] on the local asymptotic
stability of periodic orbits of nonlinear systems with constant parameters.
We derive a new necessary condition for local asymptotic stability of
periodic orbits of nonlinear systems with time-varying exogenous
disturbance.
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In this paper, we consider a nonlinear system described by

( ) ( ),, xfxfx µµ= & (1)

where nx R∈  is the state, and kR∈µ  the parametric uncertainty or

exogenous disturbance for the nonlinear system (1). We assume that the

vector field f is 2C  in x, and jointly continuous in x and µ. We also assume

that Γ is an isolated periodic orbit of the system dynamics

( ).xfx
µ

=& (2)

The disturbance vector µ is assumed to satisfy the exosystem

dynamics defined by

( ),µ=µ s& (3)

where s is 1C  in µ in an open neighborhood V of .µ

We suppose also that the state x of the nonlinear system (1) takes

values in X, where X is an open neighborhood of the periodic orbit Γ, and

also that the parameter vector µ  takes values in the open neighborhood

V of .µ

We assume that the exosystem (3) is neutrally stable (recall that a

system is called neutrally stable if it is Lyapunov stable in both forward
and backward directions of time). Thus, the exogenous disturbance that
we consider in this paper includes the important special cases of constant
real-parametric uncertainty considered in our recent work [7] and
periodic signals.

In this paper, we investigate the problem of finding a necessary
condition for the asymptotic stability of the periodic orbits of nonlinear
systems with time-varying exogenous disturbance of the form (1) for the

value .µ  Explicitly, we are interested in finding a necessary condition

for the asymptotic stability of the periodic orbit Γ of the system (2).

The Poincaré map [5] for the periodic orbit Γ of the system (2) has the

form

( ) ( )( ) ( ) ( )( ),1 kkAkPk χφ+χ=χ=+χ
µµµ

(4)
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where χ  is defined in an open neighborhood of the origin of ,1−nR  
µ

A  is

an ( ) ( )11 −×− nn  matrix, and 
µ
φ  is a 2C  function that vanishes at the

origin of 1−nR  together with all its first partial derivatives.

If the periodic orbit Γ of the dynamics (2) is locally exponentially

stable, then it follows from Lyapunov stability theory for periodic orbits

that 
µ

A  is convergent [3], i.e., that all the eigenvalues of 
µ

A  lie in the

open unit disc of the complex plane. Then it follows immediately that the

matrix 
µ

− AI  is nonsingular. Thus, by the Inverse Function Theorem

[6], it follows that for all values of µ near ,µ  the equation

( ) ( ) ( ) yPPI =χ−χ=χ− µµ (5)

is solvable. In particular, taking the value 0=y  in (5), it follows that

there exists a periodic orbit of the dynamics (1) for all values of µ near

.µ

We contend that this is the case for locally asymptotically stable

periodic orbits as well. That is, if Γ is a locally asymptotically stable

periodic orbit of the dynamics (2), then we contend that for all values of µ

near ,µ  there exists a periodic orbit for the system (1).

We illustrate our claim with some examples of nonlinear systems
with time-varying neutrally stable exogenous disturbance.

Example 1. Consider the planar system

( ) [ ( ) ]22
1

2
121 11 −−µ−−−= rrxxx&

( ) [ ( ) ],11 22
1

2
212 −−µ−−= rrxxx& (6)

where 2
2

2
1

2 xxr +=  and 




µ
µ

=µ
2

1  is the exogenous disturbance

satisfying the dynamics

21 µ=µ&

 .12 µ−=µ& (7)
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The exosystem dynamics (7) is the vector form of the simple

pendulum, and it is clearly neutrally stable. In fact, the general solution
of the exosystem (7) is given by

( ) ttt sincos 0
2

0
11 µ+µ=µ   and   ( ) .cossin 0

2
0
12 ttt µ+µ−=µ

In polar coordinates, the plant equation (7) takes the form

( ) [ ( ) ]22
1

2 11 −−µ−−= rrrr&

.1=θ& (8)

When ,0=µ  the plant equation in (8) reduces to

( )321 rrr −=&

 .1=θ& (9)

It is easy to see that the zero-parameter plant dynamics (9) has a

periodic orbit Γ represented by

( ) .
sin
cos





=γ

t

t
t

From the dynamics (9), it is evident that the periodic orbit Γ is

asymptotically stable.

We note that for all values of ,2R∈µ  the system (8) has a

one-parameter family of periodic orbits represented by

( ) .
sin

cos












=γ

t

t
t

This example is a generalized form of a pitchfork bifurcation [5] at a

non-hyperbolic periodic orbit.

Example 2. Consider the planar system

[ ( ) ]22
1121 1−−µ−−= rxxx&

[ ( ) ],1 22
1212 −−µ−= rxxx& (10)
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where 2
2

2
1

2 xxr +=  and 




µ
µ

=µ
2

1  is the exogenous disturbance

satisfying the neutrally stable dynamics

 21 µ=µ&

.12 µ−=µ& (11)

In polar coordinates, the plant equation (10) takes the form

[ ( ) ]22
1 1−−µ−= rrr&

.1=θ& (12)

When ,0=µ  the plant dynamics (12) reduces to

( )22 1−= rrr&

 .1=θ& (13)

Note that the zero-parameter plant dynamics (13) has a periodic orbit

Γ represented by

( ) .
sin
cos





=γ

t

t
t

It is easy to see that the periodic orbit Γ is unstable for the

zero-parameter dynamics (13).

Note that for any value of µ for which ,01 <µ  there is no periodic

orbit for the system (12).

This example is a generalized form of a saddle-node bifurcation [5] at

a non-hyperbolic periodic orbit. 

2. Main Results

In this section, using degree theory, we derive a necessary condition

for Γ to be a locally asymptotically stable periodic orbit of the system

( ).xfx
µ

=&
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Our main result is a generalization of our earlier work [7] giving a
necessary condition for local asymptotic stability of a periodic orbits of
nonlinear systems with constant real parametric uncertainty. This new
result is also similar to the necessary condition [2] obtained for local
asymptotic stability of equilibria of nonlinear systems with constant real
parametric uncertainty. Our result asserts that any asymptotically stable

periodic orbit of a 2C  dynamical system persists as a periodic orbit in a

robust way.

Theorem 1. Consider a nonlinear system described by

( ) ( ) [ ],,, knxxfxfx RR ∈µ∈µ= µ& (14)

where the state x is defined in an open neighborhood of the periodic orbit Γ
of the dynamics

( ).xfx
µ

=& (15)

Suppose that the vector field f is 2C  in x, and jointly continuous in x and

µ. The disturbance vector µ is assumed to satisfy the exosystem dynamics

given by

( ),µ=µ s& (16)

where s is 1C  in µ in an open neighborhood V of µ  and ( ) .0=µs  A

necessary condition for Γ to be a locally asymptotically stable periodic

orbit of the system (15) is that for all values of µ near ,µ  there exists a

periodic orbit Γ of the dynamics (14).

Proof. It is given that Γ is a locally asymptotically stable periodic

orbit of the dynamics (15). Hence, by a necessary condition due to
Krasnoselski and Zabreiko [4], it follows that

( ) ( ) ,10,index =−=Γκ
µµ

PI

where 
µ

P  is the Poincaré map for the dynamics (15) and )
µ

κ  is the

index of the periodic orbit Γ for the dynamics (15).

Since the exosystem dynamics (16) is neutrally stable, for any given

neighborhood V of ,µ  we can choose a small neighborhood VV ⊂  so
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that all solutions ( )tµ  with ( ) V∈µ=µ 00  stay inside V for all values of

.0≥t  We note also that the index operator κ is robust with respect to

small variations in the parameter µ. Hence, it follows that for all values

of µ near ,µ  we have

( ) .00,index ≠− µPI

Now, we can apply the degree theory [1] to conclude that the map

µ− PI  is locally onto, i.e., the equation

( ) yP =χ−χ µ (17)

is locally solvable. In particular, taking 0=y  in (17), we conclude that

for all values of µ near ,µ  there exists a periodic orbit of the dynamics

(14). This completes the proof. 

The following example shows that the converse of Theorem 1 is not
true.

Example 3. Consider the planar system

( ) ( )2
1

2
121 11 rrxxx −µ+−−−=&

( ) ( ),11 2
1

2
212 rrxxx −µ+−−=& (18)

where 2
2

2
1

2 xxr +=  and 




µ
µ

=µ
2

1  is the exogenous disturbance

satisfying the neutrally stable dynamics

21 µ=µ&

.12 µ−=µ& (19)

In polar coordinates, the plant equation (18) takes the form

( ) ( )2
1

2 11 rrrr −µ+−−=&

.1=θ& (20)

Hence, it is clear that for all values of ,2R∈µ  the system (20) has a

one-parameter family of periodic orbits represented by
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( ) .
sin
cos





=γ

t

t
t

Setting ,0=µ  in the dynamics (20), we obtain the zero-parameter

dynamics as

( )221 rrr −−=&

1=θ& (21)

which has the periodic orbit Γ represented by the equation 1=r  and

described by the solution ( ).tγ  It is easy to see that the periodic orbit Γ is

unstable with respect to the dynamics (21).

This example is a generalized form of a transcritical bifurcation [5] at
a non-hyperbolic orbit, and demonstrates that the converse of Theorem 1

is not true.
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