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Abstract 

A number of problems in science and engineering are modeled in terms 
of a system of ordinary differential equations. In this paper, an 
algorithm for solving a system of linear ordinary differential equations 
(ODE) has been presented, which converts a system of linear ODE to a 
system of linear algebraic equations. Some illustrative examples have 
been presented to illustrate the implementation of the algorithm and to 
see efficiency of the presented approach. 
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1. Introduction 

A number of problems in chemistry, physics and engineering are 
modeled in terms of a system of ordinary differential equations (ODE). 
Solving a system of ODE is a difficult problem. Various methods have 
been developed to solve systems of ODE. Biazar et al. [2] have employed 
the Adomian decomposition method to solve a system of ODE. 
Daftardar-Gejji and Jafari [4] have solved a system of fractional 
differential equations using Adomian decomposition. Taylor polynomial 
method is widely used in literature to solve ODE [3, 5, 6, 8]. In this paper, 
we present an algorithm for solving a system of ODE using Taylor 
polynomials. We convert a system of ODE to a system of linear algebraic 
equations and solve. Some illustrative examples are presented to 
illustrate the method. 

The paper has been organized as follows. In Section 2, an algorithm is 
developed for solving a system of linear ordinary differential equations. 
Some illustrative examples are given in Section 3 followed by the 
discussion and conclusions presented in Section 4. 

2. A Method for Solving a System of Linear ODEs 

In the present paper, we consider the following system of linear 
differential equations: 
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where ( ) ( )nimjxaijk ...,,2,1,...,,2,1 ==  and ( ) ( )nkxfk ...,,2,1=  are 
∞C  functions. 

We look for a solution of (1), which is a Taylor polynomial of degree N: 
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where ( )( ) ( )Nsy s
i ...,,1,0=ξ  are the coefficients to be determined. 
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Differentiating (1), N times with respect to x, we get 
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Using Leibnitz’s rule, we express ( )( )xf l
k  as 
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The system (4) can be written in the matrix form as 

,WYF =  (5) 
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is a matrix, where each ikW  is again a matrix having lpth entry as :lp
ikw  
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Note. For ( ) 0,0 =< r
ijkar  and for 0<j  and ,0, =
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and r are integers. So we can convert (5) into an algebraic equation with 
variables ....,,2,1,...,,, 10 niyyy iNii =  After determining variables ily  
( ),...,,2,1,...,,2,1 Nlni ==  i.e., the unknown Taylor coefficient, we can 
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get the Taylor polynomials solutions of the system (1). In particular, if we 
choose ,0=ξ  then the solution of the system (1) becomes 

( ) ( )∑
=

=
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isi xysxy
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.0!

1  (8) 

It is clear that for large values of N, the complexity of solving the system 
(5) can be very high in practice. So we can use mechanization algorithm 
[7] or mathematics software such as Mathematica or Maple. 

3. Illustrative Examples 

To demonstrate the effectiveness of the method, we consider some 
systems of linear ordinary differential equations. 

(I) Consider the system of linear ordinary differential equations 

,833 3
3211 −+=−′+′′+ xxyyyy  

,34 2
321 +=′++′ xyyy  

.453321 +=′++′−′′ xyyyy  (9) 

The matrix equations of ODE are as follows: ,FWY =  where 
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Then we get the following system of algebraic equations: 
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 (10) 

The solution of this system of algebraic equations is as follows: 

{ ,0,2,1 121110 =−=== yyyY  

,0,4,6 212013 === yyy  

,3,0,2 302322 === yyy  

}.0,0,1 333231 === yyy  

Then in view of (8), the solution of the system of linear ODE is 

( ) ,123
1 +−= xxxy  

( ) ,42
2 += xxy  

( ) .33 += xxy  

Note that this is an exact solution. 

(II) Consider the system of linear ordinary differential equations 

,1243 23
221

2
1 −++=′+−′′+ xxxyxyyxxy  

.63 34
221

2 +−+−=′′′+−′ xxxyxyyx  (11) 
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In view of (7), we get 
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and [ ,63,0,18,818,289,1243 34223 +−+−+++−++= xxxxxxxxxF  

] .24,2418,1218,194 223 txxxxx −−−−+−  Now we put 0=x  and solve 

following system of linear algebraic equations 
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The solution of this system of algebraic equations is as follows: 

{ ,1,0,0,2,3,2 201413121110 ======= yyyyyyY  

}.0,6,2,3 24232221 ==−== yyyy  

Using (8) the solution of the system of linear ODE turns out to be 

( ) ,232
1 ++= xxxy  

( ) ,1323
2 ++−= xxxxy  

which is an exact solution. 
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(III) Consider the system of linear ordinary differential equations 

,21 xyy =′+  
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( ) .102 =y  (13) 

In view of (7), we get 
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and [ ] ,,,,,,1,1,0,0,0,0,0,1, TSCSCSCxF −−−+=  where S and C 

denote xsin  and ,cos x  respectively. Corresponding to (5), we get the 
following system of algebraic equations at ,0=x  
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The solution of this equation is: { ,1,0,2,0 13121110 −===== yyyyY  

252423222120161514 ,1,0,1,0,1,0,1,0 yyyyyyyyy ==−======  

}.1,0 26 −== y  Using (8), we get 

( ) ,!5!32
53

1
xxxxy +−=  

( ) .!6!4!21
642

2
xxxxy −+−=  (15) 

In fact, the exact solution of above system is ,cos,sin 21 xyxxy =+=  

(15) gives approximate solutions which are the Taylor polynomials of 
xcos  and xsin  of order 5 and 6, respectively. 

Comment. If ( ) ( )mkjy j
i <= ...,,1,0,  are absent for some i, in the 

system of ODE, then we need to supply the initial conditions ( )( ) ,0 i
j

j
i cy =  

( )....,,1,0 mkj <=  

4. Discussion and Conclusions 

In this paper, a method is described for solving linear systems of 
ordinary differential equations, which converts a system of linear ODE 
into a system of linear algebraic equations, solving which we obtain an 
approximate solution of the system of linear ODE. The illustrative 
examples explain the procedure. The method is simple and can provide 
an approximate solution of desired accuracy. 

Mathematica has been used for computations involved in the 
illustrative examples. 
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