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Abstract

A number of problems in science and engineering are modeled in terms
of a system of ordinary differential equations. In this paper, an
algorithm for solving a system of linear ordinary differential equations
(ODE) has been presented, which converts a system of linear ODE to a
system of linear algebraic equations. Some illustrative examples have
been presented to illustrate the implementation of the algorithm and to
see efficiency of the presented approach.
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1. Introduction

A number of problems in chemistry, physics and engineering are
modeled in terms of a system of ordinary differential equations (ODE).
Solving a system of ODE is a difficult problem. Various methods have
been developed to solve systems of ODE. Biazar et al. [2] have employed
the Adomian decomposition method to solve a system of ODE.
Daftardar-Gejji and Jafari [4] have solved a system of fractional
differential equations using Adomian decomposition. Taylor polynomial
method is widely used in literature to solve ODE [3, 5, 6, 8]. In this paper,
we present an algorithm for solving a system of ODE using Taylor
polynomials. We convert a system of ODE to a system of linear algebraic
equations and solve. Some illustrative examples are presented to
illustrate the method.

The paper has been organized as follows. In Section 2, an algorithm is
developed for solving a system of linear ordinary differential equations.
Some illustrative examples are given in Section 3 followed by the

discussion and conclusions presented in Section 4.
2. A Method for Solving a System of Linear ODEs

In the present paper, we consider the following system of linear

differential equations:
n m .
ZZaijk(x)yi(])(x) =fp(x), k=12, ..,n, (1)
i=1j=0
where a;;,(x)(j =1,2, ..., m,i=1,2,..,n) and fi(x)(k =1,2, .., n) are
C” functions.

Welook for a solution of (1), which is a Taylor polynomial of degree IV:

N
3 = Y LaQE -8, weel Nom, @

s=0

where ygs)(E)) (s =0,1, .., N) are the coefficients to be determined.



AN ALGORITHM FOR SOLVING A SYSTEM OF LINEAR ... 447

Differentiating (1), N times with respect to x, we get

[ZZaijk(x)yl(j)(x)] = f}gl)(x), 1=0,1,..,N, k=1,2,..,n (3)

i=1 j=0

Using Leibnitz’s rule, we express f,gl) (x) as

i n m (Z)
D) = ZZaijk(x)ygﬂ(x)]

Li=1 j=0
[ m W m o
=1 al,-koc)y{f)(x)] o [Z anjk<x>y,<f><x)]
Lj=0 Jj=0
n m [ )
-3 et e
i=1j p:O

[=1,2,.,N, k=12, ..,n (4

The system (4) can be written in the matrix form as

F =Wy, (5)
where Y = [y(o) yg), . y%N), ygo), .y ygN), . yﬁf’), . ygN)]T and F =
[FO, (O g0 N0 AT Note that

W=[W.], i,k=12 ..,n, (6)
is a matrix, where each W;;, is again a matrix having Ipth entry as wll’z :
n l
wlh = Z( ] al=PEm=8)(x) I, p=0,1,.., N. (7)
o\p —m+
i

J =0, where i, j
J

and r are integers. So we can convert (5) into an algebraic equation with

Note. For r < 0, agk):o and for j <0 andj>i,[

variables y;0, Y1, s ¥iNs L =1, 2, ..., n. After determining variables y;;

@=12,..,n,1=1,2, .. N),ie., theunknown Taylor coefficient, we can
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get the Taylor polynomials solutions of the system (1). In particular, if we

choose & = 0, then the solution of the system (1) becomes

N
3ie) = D L yi(0)x®. ®)

s=0

It is clear that for large values of IV, the complexity of solving the system
(5) can be very high in practice. So we can use mechanization algorithm

[7] or mathematics software such as Mathematica or Maple.
3. Illustrative Examples

To demonstrate the effectiveness of the method, we consider some

systems of linear ordinary differential equations.

(I) Consider the system of linear ordinary differential equations
i+ +yh —By3 = 2% +3x -8,
¥+ Yo + Y3 = 4x? + 3,
Y1 — Y2 + Y3+ 3 =5x+4. 9

The matrix equations of ODE are as follows: WY = F, where

1 01 00 1 0 O -3 0 0 O -8
o1 01 0 0 1 0 0 -3 0 0 3
001 0 0 0 0 1 0 0 -3 0 0
oo 010 0O 0 O O 0 0 -3 6
o 1.0 0 1 0 0 O O 1 0 0 3

w_|0 01 00 1 0 0 0 0 1 0 e 0|
o001 0 0 1 0 0 0 0 1 8
o0 000 O 0 1 0 0 0 0 0
o001 0 0 -1 0 0 1 1 0 0 4
o0 01 0 0 -1 0 0 1 1 0 5
o000 00 0O 0 -1 0 0 1 1 0
o o 0o 0 0 0O 0O O O 0 0 1| K
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Then we get the following system of algebraic equations:
Y10 + Y12 + Yo1 —3¥30 = —8, Y11 + Y13 + Yoo — 3¥31 = 3,
Y12 + Y23 —3y32 = 0, y13 —3y33 = 6,
Y11+ Y20 +¥31 =3, Y12 + Y21 + V32 =0,
(10)

Y13 + Y22 +¥33 =8, ¥a3 =0,

Y12 — Y21 + Y30 + ¥31 =4, Y13 — Y22 + ¥31 + Y32 = 5,

~Y23 + Y32 + ¥33 = 0, y33 = 0.
The solution of this system of algebraic equations is as follows:
Y={yo=1y1=-252=0,
Y13 =6, ¥90 =4, ya1 = 0,
Yo2 = 2, ¥23 = 0, ¥30 = 3,
y31 =1, y32 = 0, y33 = O}
Then in view of (8), the solution of the system of linear ODE is
yi(x) =23 —2x +1,
yo(x) = 22 + 4,
yg(x) = x + 3.

Note that this is an exact solution.

(IT) Consider the system of linear ordinary differential equations
2. ‘o 3 2
xXyp +x°y] — Y9 +xy5 = 3x° +4x” + 2x — 1,

xzyi —Xyg + Yy = x*+3x3 —x+6. (11
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In view of (7), we get

x 0 x2 0 0 1 x 0 0 0]
1 x 2x x? 0 0 0 x 0 0
0 2 x+ 2 4x x2 0 0 1 X 0
0 0 3 x+6  6x 0o 0 0 2 «x
S 0 9 x+12 0 0 O 0 3
0 2 0 0 0 % 0 o0 1 o]
0 2x x2 0 0 1 -x 0 0 1
0 2 4x x? 0 0 -2 -x 0 0
0 0 6 6x x? 0 0 -3 -x 0
0 0 0 12 8x 0 0 0 -4 -x]

and F =[3x% +4x2 + 2x -1, 9x% + 8x + 2,18x + 8,18, 0, —x* + 3x® — x + 6,
—4x% + 922 — 1, 18x — 12x2, 18 — 24x, —24]. Now we put x = 0 and solve
following system of linear algebraic equations

—Y20 = -1, y10 = 2, 2y11 + 2y12 + 22 = 8,

3y19 + 6¥13 + 2y93 =18, Oy13 +12y14 + 3y94 = 0,

(12)
Yo3 = 6, =y90 + You = -1, 2y;1 — 2y9; = O,

6y12 — 3yge =18, 12y3 — 4ys3 = —24.
The solution of this system of algebraic equations is as follows:
Y ={y0=251=352=2y3=034=0 99 =1
Y21 =3, Y22 = —2, Ya3 = 6, yg4 = O}
Using (8) the solution of the system of linear ODE turns out to be
yi(x)=x2+38x+2,
yo(x) = 2% —x? + 3x + 1,

which 1s an exact solution.
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(ITI) Consider the system of linear ordinary differential equations
y oty =X,

yicosx —ygsinx =1+ cosx,

¥2(0) = 1. (13)

In view of (7), we get

w

1 0 0 0 0 0 0o 0 1 0 0 0 0 0]

0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0o 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1
|0 0 0 0 0 0 1 0 0 0 0 0 0 0
“lo o0 0 0 0 0 0 1 0 0 0 0 0 o

0 C 0 0 0 0 0o o -S 0 0 0 0 0

0 -S C 0 0 0 0o 0 -C -S 0 0 0 0

0 -C -28 C 0 0 0 0 S -2C -S 0 0 0

0 S -3¢ -38 C 0 0 0 C 3 -3¢ -S 0 0

0o C 4S8 -6C 4S8 C 0 0 -S 4C 6S -4C -S 0

0 -S 5C 108 -10C 58 C 0 -C -55 10C 108 -5C -S|

and F =[x,1,0,0,0,0,0,1,1+C, =S, -C, S, C, -S]*, where S and C
denote sinx and cosx, respectively. Corresponding to (5), we get the
following system of algebraic equations at x = 0,
Yio + Y21 =0, y11 + y22 =1,
Y12 + y23 = 0, y13 + y24 =0,
Y14 + Y25 = 0, y15 + y26 = 0, y16 = 0,
Y20 =1, y11 =2, y12 — ¥21 = 0,

(14)
)11 + Y13 — 2y92 = -1,
—3¥12 + Y14 + Y21 — 3¥23 = 0,

Y11 — 6y13 + Y15 + 4Yas — 494 =1,

5y12 —10y14 — ¥21 +10y93 — 5y95 = 0.
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The solution of this equation is: Y = {y;0 =0, 11 = 2, y12 = 0, y13 = -1,

Y1a =0, 15 =1, ¥16 =0, y90 =1, ¥21 =0, ¥92 = -1, y93 = 0, y94 =1, ¥95
=0, y9g = —1}. Using (8), we get

3 5
X X
n(®) = 2 - p+ 5,
2 4 6
X X X
Y2(0) =1 - Gr+ G~ (15)

In fact, the exact solution of above system is y; = x + sinx, yg = cosx,

(15) gives approximate solutions which are the Taylor polynomials of
cosx and sin x of order 5 and 6, respectively.

Comment. If ygj), j=0,1,.., k(< m) are absent for some i, in the
system of ODE, then we need to supply the initial conditions yl(j )(0) = cﬁ-,
7=0,1,.. k(< m).

4. Discussion and Conclusions

In this paper, a method is described for solving linear systems of
ordinary differential equations, which converts a system of linear ODE
into a system of linear algebraic equations, solving which we obtain an
approximate solution of the system of linear ODE. The illustrative
examples explain the procedure. The method is simple and can provide

an approximate solution of desired accuracy.
Mathematica has been used for computations involved in the
illustrative examples.
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