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Abstract

In this paper, we consider the H, disturbance attenuation of Takagi-
Sugeno fuzzy systems with discrete and distributed delays. We employ a
generalized Lyapunov functional to obtain delay-dependent conditions
that guarantee the H, disturbance attenuation of fuzzy systems with
discrete and distributed delays. We introduce free matrices to such a
Lyapunov functional in order to reduce the conservatism in H,
disturbance attenuation conditions. These techniques lead to generalized
and less conservative conditions. Applying the same techniques made on
the H, disturbance attenuation conditions, we obtain delay-dependent
conditions for the robust H,, disturbance attenuation of uncertain fuzzy
systems with discrete and distributed delays. Moreover, we consider the
state feedback that achieves the H,, disturbance attenuation. Based on
the H, disturbance attenuation conditions on the closed-loop system,

we give design methods of the state feedback controllers for the fuzzy
time-delay systems. Finally, we give two examples to illustrate our
results.
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1. Introduction

Recently, research on nonlinear time-delay systems described by
fuzzy system representation is very active. Time-delay systems often
appear in many industrial fields and mathematical formulations. Thus, it
is important to analyze time-delay systems and design controllers for
them. Recent research has investigated stability conditions for linear
time-delay systems based on Linear Matrix Inequalities (LMIs). Both
delay-independent and delay-dependent stability conditions for linear
systems with discrete delays have been obtained in [6, 14, 19]. Delay-
independent conditions can be applied to systems with any size of time-
delays, whereas delay-dependent conditions are less conservative.
Distributed time-delay counterpart has been given in [3, 5, 8, 20]. Theory
has been extended to fuzzy time-delay systems. Stability conditions for
fuzzy time-delay systems with discrete delays have been obtained in [1, 2,
7, 22, 23, 25]. Robust stability analysis for uncertain fuzzy time-delay
systems has also been investigated in [11, 12, 17, 21]. Also, the H_,

disturbance attenuation has been considered in [4, 9]. However, no result
on fuzzy systems with distributed delays has appeared in the literature,
except [24].

In this paper, we consider the H_ disturbance attenuation of Takagi-

Sugeno fuzzy systems with discrete and distributed time-delays. Here we
extend the existing results to a class of fuzzy systems with discrete and
distributed time-delays. The key technique to obtain delay-dependent

H_ disturbance attenuation conditions for such systems is to select an

appropriate Lyapunov functional and to introduce free matrices to it. We
select a more generalized Lyapunov functional than that of Yoneyama
[24] to obtain less conservative stability conditions. We also consider the

robust H_  disturbance attenuation of fuzzy time-delay systems with

uncertain parameters. Moreover, the design methods of the state

feedback that achieves the robust H_, disturbance attenuation for

uncertain fuzzy systems with discrete and distributed time-delays are
proposed. Finally, two examples are given to illustrate the effectiveness

of our results.
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2. Time-delay Systems

In this section, we introduce Takagi-Sugeno fuzzy systems with
discrete and distributed delays. Consider the Takagi-Sugeno fuzzy model
with time-delay, described by the following IF-THEN rules:

IF

él 1s Mil and --- and ép 1S Mip’

THEN

x(t) = (A; + AA;(0)x(t) + (Ag; + AAg;(2))x(t — 1)
# (D + D) 6)ds + Bywolt) + (Bai + ABO)u0),

z(t) = Cx(t) + Cgix(t — t) + Dy;w(t) + Digu(t), i=1,...,r,
x(¢) =0, ¢¢e [_T’ O]’

where 1> 0 is a time-delay, x(t) € R" is the state, w(t) e R™ is the

disturbance, u(t) € ®™2 is the control input and z(t) € R? is the
controlled output. The matrices A;, Ay;, By, By, C;, Cy;, D;, Di1; and
Dyy; are of appropriate dimensions. r is the number of IF-THEN rules.

M;; are fuzzy sets and &, ..., £, are premise variables.

We set & =[& - &, ¥ and ¢(t) is assumed to be given or to be a
measurable function. The uncertain matrices are of the form
[AA;(t) AAg(t) ABy(t) AD;(t)] = H;F;(t)[Ey; Eg Ep Egl
Vi=1,..,r, (1)

where H;, Ey;, Ey;, E,; and Ej are known matrices of appropriate

dimensions, and F;(¢) are unknown real time varying matrices satisfying

FTOF@)<I, i=1,..,r
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The state and controlled output equations are defined as follows:

50 = Y04+ AA)0) + (g + A4 () -
=1
+ (Dl + ADi(t))Jtt_T x(s)ds + Bliw(t) + (BQi + ABl (t))u(t)},

2(t) = D 1i(E@){Cix(t) + Cyx(t = ) + Dyyw(t) + Dygiul®)}, @)

1=1

where

q
0i(©) - =28 g - T M)
j=1

Z:zl Bi(8)

and M;;(-) is the grade of the membership function of M;;. We assume
that

BiEO) 20, i=1 .r D Bi(ER) > 0
i=1

for any (). Hence A;(E(2)) satisfy

MEE) 20, i=1, . Y M(EE) =1
i=1

for any &(¢). We say the system (2) achieves the robust H,, disturbance
attenuation y if it is robustly stable with w(¢) = 0 and for a prescribed
constant vy, it satisfies
2 2 2
Izl <7 lwl;
for all w(¢) # 0 and all admissible uncertainties.
When we consider the H,, disturbance attenuation y of nominal fuzzy

time-delay systems, we set AA; =0,AAy; =0,AD; =0,AB; =0,Vi=1,...,r
in (2).
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3. H, Disturbance Attenuation

This section gives sufficient conditions that guarantee Takagi-Sugeno
fuzzy time-delay systems to achieve the robust H, disturbance

attenuation.
3.1. Nominal systems

We first give delay-dependent H,, disturbance attenuation conditions

for the nominal fuzzy system (2) without uncertainties.

Theorem 3.1. Given a scalar t > 0 and a prescribed constant y > 0,
the nominal fuzzy time-delay system (2) with u(t) = 0 and no uncertainties

achieves the H,, disturbance attenuation vy if there exist common matrices

[ fiz >0,Q20,R20,W:FVH Wm}zo, )
Phy Py Wiy Way
and some matrices Nij, i=1..,5j=1..,rand T;,i=1,...,5, such
that
[ @1y D@y Dy Py Ny Dpg |
Dy; Qg Dgg;  Dgy; Ny Dog;
o Oy Dgy Dy Dy Ny Dag <0,
L oy Ly DL Dy Dy D 46
—rNi"; —’EN%; —rNg; (13251- —tWoe —'cNg;
| ol ®hy  Dig Plg  —tNy  Deg; |
Vi=1,..,r, (4
where

@y = Pig + Ph + Q + t°R + W,
+Ny; + NE —-1A; - ATTT + e,
®yg; = Py +tWig + Ng; + Ty - AT'TY,
®y3; = -Pp - Ny; + N3, - AT - Ty Ay + Cf Cy,

= 1Py +tNL — Al T] — T\ D;,

S
[y
'S
o

|
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T T AT
®y6; = -T1By; - A Ts + N5; + C; Dyy;,
3 T
@22 = TW22 +T2 + T2 ,
Dos; = —No; + T — ThAy;
231 20 3 24di»
(D24i = ’CP12 + ’ET4T — ’CTgDi,
Dog; = —TyBy; + TS
11 21 5
T Tl | AT
Ogs; = -Q — N3; — N3; —T3Ay — AgiTs + Cg;Cy;,
T T T
Ogy; = —tPy — Ny — 1Ay Ty — T3D;,
T T T AT
Ogq; = —T5By; — AgiTs — N5; + Cg;Dyy;,
(1)44i = —TVI/]_]_ - T2T4Di - TQDIEFTE - TzR,
2
Dy5; = —tWig — 1°Ny;,
TnT
Oy; = —1TyBy; — D} Ty
T 2 T
Oge; = —T5By; — Bi;T5 —v°1 + Diy;Dyy;.

Proof. We consider the following Lyapunov functional

V(t) = Vi) + Vo (),
where

V(0 = ¥ O Py) + 227 Oy | x()ds

T
+U | x(s)ds} P wlo)ds+ [ @@xto)as
b=t t-rt t—t
0 ¢t o 0t |
" J—r L+ex (s)Wr1x(s)dsdb + ZJ_T Iz+ex (s)Wy94(s)dsdB

0 t T
; j j 27 (5) Wiy () dsdb,
-1 Jt+0
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Vy(t) = j;_r { | eth(s)ds}R{ [ et x(s)ds}de

+ I; J.:_e (s —t + 0)x” (s) Rx(s)dsd0

and P is a positive definite matrix to be determined, and @, R, W are

positive semi-definite matrices to be determined. It follows from Leibniz-
Newton formula that the following equation holds for any matrices
Nki, k= 1, ceey 5, i = 1, ey 10

23 M) 47O Ny + 570Ny + 2 O
=1

+ J‘:T xT(s)dsNy; + wT(t)Nm} x {x(t) B J.:TX(s)ds e T)} o 6

It is easy to see from the definition of the nominal system (2) with
u(t) = 0 and no uncertainties that the following equation also holds for

any matrices T;,i =1, ..., 5

2[xT(t)T1 T OTy - Ty + | t

xT(s)dsT, + wT(t)T5}
-1

x Lzll A (8(2)) {x(t) - Apx(t) - Agix(t —7) - D; J‘ :T x(s)ds — Bliw(t)} = 0. (6)
Note that

% Vol(t) = 2Lt_T (s—t+1)x” (t)Rx(s)ds — U.:_JiT(S)dsj R(J‘:_fT(S)dSJ

¢ 2T ORe(0) - | ;T (s — t + a7 (s) Ru(s)ds

< jt (s—t+1)x’ (¢t)Rx(t)ds + J.t (s —t + 1)xT (s)Rx(s)ds
t—1

t—t

. ( [ :T <7 (s)dsJ R ( [ :1 xT(s)ds] + 22 (1) Ret)
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t
- J. (s —t+1t)x” (s)Rx(s)ds

t—

< LT O R0 + | :T (s — t + a7 (s) Ra(s)ds

_ ( [ :_TxT(s)dsj R [ [ :_1_ x(s)dsj

¢ 2T ORe(0) - | ;T (s — t + )T (s) Ru(s)ds

< 2T () Rx(t) - ( [ ;_T xT(s)dsj R ( [ :_T x(s)dsj.

Thus, differentiation of V(t) with respect to ¢ along the solution of (2)

and addition of the above zero quantities (5) and (6) give
d
VO 20 = w)|?

< 2x7 () Pyi(r) + 257 () Py | ;_T x(s)ds + 227 (¢) Pio[x(t) - x(t - 7]
+2[x(t) — x(t — 1)]F Py j ;ﬂ x(s)ds + xT () Qu(t) — x T (t — 7)Qx(t — 7)

+ It T ()W px(t)ds — jt xT (s)Wy1x(s)ds
t—1 t—1

vof tt O Wii)ds - 2 | :TxT (5)Wiyi(s)ds

+It xT(t)W22x(t)ds—It 7 () Wsit(s)ds
t—1

t—1

+ 2T () Ra(t) - U;TxT (s)dsj R ( [ :Tx(s)dsj

#2326t 57O Ny + 7OV + 376 - )Ny
i=1
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. Lt_T T (s)ds Ny, + wT(t)NE)i} {x(t) - Lt_T %(s)ds — x(t - T)}

. Z{xT(t)Tl e &7 @) Ty + 1Tt — )Ty + jt

xT(s)dsT, + wT(t)T5}

3 hitele) {x(m ) Agsle- - i st - Bh-wa)}
i=1 T
+| 2@) [ - 2| wt) P
1% t et
= T—zizz;ki(é(t))j‘t_r L_TCT(t’ $)®;((t, 0)dsdo,

where £(t, s)=[xT (£) &7 () xT (t - 1) 2T (s) &7 (s) wT (¢)]" and @, are defined
in (4). If ®; < 0, then we obtain

Vi) = V(0) + | 20) 5 - v w3 < 0
after integration from ¢ =0 to ¢ =, because A;(§(t))>0. Since V(x)>0
and V(0)=0, we have | z(t)||§ <vY w(t)||§

For the stability, we let w(t) = 0 and z(¢) = 0. It can be shown that if
®; < 0 holds, then ®; < 0, where ®; is a submatrix resulting from @,
from which the sixth row and column are eliminated. In this case, with
the similar argument above, we have V(t) < 0. Thus, the system (2) is

stable if the conditions (3) and (4) hold.
3.2. Uncertain systems

Next we consider the robust H, disturbance attenuation of fuzzy

time-delay system (2). Theorem 3.1 can be extended to a class of
uncertain fuzzy time-delay systems. Applying Theorem 3.1 to (2) and
making some mathematical manipulation with lemmas in Appendices of
[13] give the following theorem. Complete proof is similar to that of
Theorem 3.2 in [25], and is thus omitted.
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Theorem 3.2. Given a scalar t > 0 and a prescribed constant y > 0,
the uncertain fuzzy time-delay system (2) with u(t) = 0 achieves the robust
H_ disturbance attenuation v, if there exist common matrices P > 0,

Q=>20,R>0,W >0 asin(3), some matrices Np;, k=1,...,5,i=1,...,r,

T;,i=1,...,5 and scalars ¢; > 0,i =1, ..., r, such that
I, =

[ Ty D19 I3 Iy, -ty D16 -T1H; |
Dy Do g3, Doy; —tNy; Dog; —T2H;
I3 DY, 33 34 —tN3; D36 -T3H;
MMy ®F; M3y g4 D45 Oy  —tT4H;
—erqg —rN%; —rNgg (I)Z5i —tWoq —rNg; 0
Dl DL, Dl DY —tN55; Dgg; —T5H;

-t eIty —HI'T]  —HIT] 0 -HI'TY 1 |

<0,Vi=1,..,r,
where ®’s are given in (4) and
T
Iy = 1y + & Eq; By,
Moo = ®eas + . ELE..
131 13; T & L Lu9;,
My = Oy + e,1EL By
141 141 (T8 Ly
g5 = ®g3; + &; B Eo
33t 33t 121 =21
Mgy = Ogy; + e,1E0 Ey;
341 34; T &Thg; Ly,

2T
Myy; = Oyq; + €77 Eg; Eg;.
4. State Feedback

Here we consider the design of state feedback controllers that achieve
the robust H,, disturbance attenuation of fuzzy time-delay systems. We

assume that the following rules are given
IF & (t) is My; and --- and &,(t) is M,

THEN u(t) = K;x(t) + Kgix(t —t), i=1,...,r,
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where K; and K; are matrices to be determined. Then the natural

choice of a state feedback controller is the following [15],
r
ult) = )" ni(E0) (Kix(t) + Kgix(t - o)}, )
=1

where the same weights 2;(£(¢)) as in (2) are used. The problem is to find
state feedback gains K; and K ; in the control law (7) that achieves the

robust H,, disturbance attenuation of the system (2).

4.1. Nominal systems

We first consider the H, disturbance attenuation problem for the
nominal system (2) with no uncertainties. Applying Theorem 3.1 to the
closed-loop system (2) and (7), we have the following result.

Theorem 4.1. Given scalars 1> 0,t;,i=1,...,4 and a prescribed
constant y > 0, the H,, disturbance attenuation y of the nominal fuzzy

system (2) with no uncertainties is achievable by the control law (7), if
there exist P >0, >0, R >0, W >0 as in (3) and some matrices Nkij,

k=1 ..,51j=1,...,r, S and LJ-, Ldj, j=1,...,r, suchthat

E114j E19ij E13ij B145j ™y Eiej Ei17g
=T — — —
Eigij Eoo Eo3ij Eo4i —tNg;;  —taBy; 0
=T =T - - - -
Eisij E23ij E33;j Eg4ij N3 Esze;j  Eavij
- =T =T T - -
2 = =14y =240 =34 =440 =45 —TtyBy; 0
T T T =T T
—tNy;  —tNg;  —tN3;  Egsy —tWag —tNj; 0
=T T T T 2 T
Eie;j  —teBi;  Ezej  —t4Bi; -WN5; v L  Diy
=T =T
| Ei7ij 0 E37;j 0 0 Dy y; -1 |
<0,Vi,j=1,..,r ®)

where ®’s are given in (4) and
Zi15i = Po + P + @ + PR + tWy; + Ny;
=113 = 112 12 T T 1i

T T T pT T
+N1i _tl(SAi +LjBZi)_t1(AiS +BZiLj)’
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Eygij = Py + tWig + N3 — to(A;ST + ByLj) + 4,8,
Eysij = ~Pig — Ny + N3 — t3(A;8T + By;L;) - ,(SAT; + L B),
Ey4ij = Py — w;SDT + N — 1wty (A;ST + ByLj),
16 = N& - 1By,
Ei7y = SCf + LI Dy,
Egp = Wy +15(S + ST),
Easij = —No; + 1387 —15(SAg; + LyB3;),
Eo4; = P9 - rtQSDiT + 12,87,
Egsy = —Q — Na; — N3; — t3(SAJ; + LiiBg;) - t3(AgiS” + Ba;Lyy),
Ea4ij = —tPag — 13SD] — N - tt4(Ag;ST + Bo;Lgy),
Es6ij = —Nag; — 3By,
Eg7; = SC; + LE: DL,
Egai = Wiy — 14 (SD] + D;ST) - °R,
5 = ~TWhg — TNy,
In this case, feedback gains in (7) are given by
K, =LST, Ky =LyzST, i=1,...,r )

Proof. For nominal case, the closed-loop system (2) with (7) is given
by

) = D) ME)EW)

i-1 j=1
t
. {(Ai + By, K j)x(t) + (Ag; + Bg;j Kgj)x(t — ) + D; L_ x(s)ds},

2(6) = D1 EO);EON(C; + DigiKj)x(t) + (Cg; + DyoiKp)x(t)

i=1 j=1

+ Dyqw(t)}.
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Then, we replace 4;, Ay;, C; and Cy; in (4) with A; + By, K, Ag; + By K g,
C; + D1g;K; and Cy; + Dyg;Kg;, respectively, and let T =4S, Ty = £35S,
T3 =t3S,T, =t4S and T5 = 0. Furthermore, we make a congruent
transformation with S = diag[S™' S7* S S71 S7I] to obtain Ejj =
§<Di§T. For simplicity of notation, we denote S_lPll.S'_T, S_1P12S_T,
S7PuS™T, 8718, SRS, ST 'W ST, STW,STT, ST Wae ST,
STNST,i=1,..,58"Ns;,j=1..r and S by Py, Py, Pyy, @,
R, W1, Wi, W22,Nkij, k=1,...,5 and S, respectively, and letting
L;=K jST and Ly = deST. Finally, by Schur complement, we obtain
(8). If E;; < 0, then it follows that =55 must be negative definite, which
leads to S being nonsingular. Hence a stabilizing state feedback controller
is given by (7) with feedback gains (9).
By using the techniques of relaxed conditions in [10], conditions in
Theorem 4.1 can be relaxed as follows.
Theorem 4.2. Given scalars 1> 0,t;,i=1,...,4 and a prescribed
constant y > 0, the H,, disturbance attenuation y of the nominal fuzzy

system (2) with no uncertainties is achievable by the control law (7), if
there exist P >0, >0, R>0,W >0 as in (3) and some matrices Nkij’

k=1,...,5,i,j=1,...,r, S and L;, Lgj,j=1,...,m, such that

=11 =12 =1r
=T = =
=12 =22 —=2r
<0, (10)
':'T ':'T =
=1r —=2r =rr

where Z;; are given in (8). In this case, feedback gains in (7) are given by
9).
4.2. Uncertain systems

Next, we consider the design of a robust H., disturbance attenuation

controller (7) for the system (2). Similar techniques used to obtain
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Theorem 3.2 lead to Theorem 4.3. Complete proof follows similar lines of
Theorem 4.3 in [25] and is thus omitted.

Theorem 4.3. Given scalars 1> 0,t;,i=1,...,4 and a prescribed
constant y > 0, the robust H, disturbance attenuation y of the uncertain
fuzzy system (2) is achievable by the control law (7), if there exist P > 0,
Q=>0,R>0,W=>=0 as in (3) and some matrices Nkij, k=1,..,5,
i,j=1,...,r, S and Lj, Ldj, j=1,...,r and scalars e1;j > 0, g95 > 0,

eg; > 0,1, j=1,..., 1, suchthat

A =
)

_ _ _ _ _ _ o
Aqyjj E1g; E13ij E14if —tNy;  Eie Eiry Mg Mgy thSEg;
T - - - T
Elgij Eg2 Eosij Eo4i —tNg;  —taBy; 0 Aggii  Aggij  tSEy;
T =T - - - T
B3 E23ij Agsjj Ea4ij —tN3;;  Esgj  Earj  Ass;  Asgy  3SEg
=Hy =E) =8 Aggi Eusij 4By 0 Aggij  Aggy  T,SEL;

T T T =T T
_TNlij _TNQij _TNSij ':‘45ij _TWZZ _TN{—)ij 0 0 0 0
=T T T T 2 T
Ei6ij ~tBy; E36ij —ttyBy; -tNs;  —y"I  Diy; 0 0 0
T =T
=t 0 = 0 0 Dy - 0 0 0
T T T T
A18ij AZSij A38ij A48ij 0 0 0 ‘Slijl 0 0
T T T T
A19ij A29ij A39ij A49ij 0 0 0 0 _Szijl 0
|t E;ST  —ttoEy ST ttaEg ST Pt,EyST 0 0 0 0 0 —eq 1
<0, (11)

—
—

where Z’s are defined in (8) and

- T
Avyj = By + e H;,

T | Tl

Aigij = t(SEy; + Lj Ep;),
T . T T

Mgy = t(SEg; + LgiEy;),

T . Tl
Aggij = to(SEj; + Lj Ep;),
T . T T
Aggij = ta(SEg; + LgiEy;),
Agssi = Eggii + oo HEH,
33ij —=33ij 27447 i
T . Tl
Asgij = t3(SEq; + Lj Ep;),

T | 4T T
Asgij = t3(SEg; + LgiEp; ),
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Agg; = Eqq; + e HI H;
447 Sg44; T €34T A
T . 7T T
Aygij = 4 (SEq; + Lj Ep;),
T . T T
Aggij = t4(SE3; + LgiEp;).

In this case, feedback gains in (7) are given by (9).

Similar to Theorem 4.2, conditions in Theorem 4.3 can also be relaxed
as follows.

Theorem 4.4. Given scalars 1> 0,t;,i=1,...,4 and a prescribed
constant y > 0, the robust H, disturbance attenuation y of the uncertain
fuzzy system (2) is achievable by the control law (7), if there exist P > 0,
Q=>0,R>20,W=0 as in (3) and some matrices Ny, k=1, ..., 5,
i,j=1,...,r, S and Lj, Ldj, j=1,...,r and scalars €155 > 0, €9;j > 0,

eg; > 0,1, j=1,..., 1, suchthat

A1 Mg o Ay
T
Alg Agg - Ay,
<0, (12)
T T
Alr AZr Arr

where A;; are defined in (11). In this case, feedback gains in (7) are given
by (9).

Remark 4.1. Conditions (10) in Theorem 4.2 and conditions (12) in
Theorem 4.4 are more relaxed ones than conditions (8) in Theorem 4.1
and (11) in Theorem 4.3, respectively. Teixiera et al. [16, 18] have
considered relaxed stability conditions for fuzzy systems. The techniques
in [16, 18] can be applied to the stability analysis of fuzzy time-delay

systems, and conditions (10) and (12) can be further relaxed.

Remark 4.2. If a memoryless control law is preferred, then we let

Ly =0,i=1,...,r in Theorems 4.1 to 4.4. Then, we obtain the control
law (7) with K4, =0,i =1, ..., r.
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5. Examples

The following two examples illustrate our results. The first one shows

the robust H,, disturbance attenuation of fuzzy time-delay systems. The

second one gives the design method of a state feedback controller for

uncertain fuzzy time-delay systems.

Example 5.1. Consider the robust H, disturbance attenuation of

the following uncertain fuzzy time-delay systems

#(0) = 1 (1) {(Ai + AA)(l) + (Ag; + AAg)x(t )

1=2

. E’) g} J ;T x(s)ds + Bh-w(t)},

2() = D 3l (6) Coxe(e),
=2

where A(x1(£)) = 1/(1 + exp(-x1(t)), A2(x1(£)) = 1 = 21 (x1(¢)) and

2 0 2 0 1 0
A = s Ay = 5 A = )
! [ 0 —0.9} 2 [ 0 —1.4} dl L -1}

-1 0

0
By =By =| | C1=Cg=[1 0],
] _1‘5} 11 12 [J 11 =Cig = ]

Ags :{

and AA; and AAy satisfy |AA4; | < B and | AAg | < B. The uncertain
matrices AA; and AAy; are describedby (1) with H; = I, E}; = Eg; = Bl.

First, we compare our results with other results on stability and
robust stability when B;; = 0, C;; = 0. Since there is no result on fuzzy
systems with distributed delays except for Yoneyama [24], we let 3 = 0

for comparison.
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Table I. Maximum upper bound t for § = 0

B 0 0.3
Cao & Frank [1] - N/A
Chen & Liu [4] 0.6666 0.4785
Guan & Chen [7] 1.1228 N/A
Li et al. [12] 2.2615 0.8168
Yoneyama [23] 2.3421 N/A
Tian & Peng [17] 2.3675 1.0658
Theorem 3.1/Theorem 3.2 2.3675 1.2636

Table I compares our results with the results in the literature. For the

nominal fuzzy system when B = 0, Cao and Frank [1] do not guarantee

the stability, whereas the others do guarantee the stability. Among them,
Tian and Peng [17] and Theorem 3.1 give the maximum upper bound t.

For the robust stability of the uncertain fuzzy system when B = 0.3,

Theorem 3.2 gives the maximum upper bound t among Li et al. [12],

Yoneyama [23] and Theorem 3.2, where the robust stability is guaranteed.

Table II. Maximum upper bound t for § = 0.1

5 0.1 0.3 0.5 0.7
Yoneyama [24] 1.4641 1.3525 1.2390 1.1459
Theorem 3.2 1.4822 1.4882 1.3904 1.2811

Table II lists the maximum upper bound t for B = 0.1 and different
8’s. Table II shows that Theorems 3.1 and 3.2 guarantee the higher

maximum upper bound t than that of Yoneyama [24].

Next, we consider the H, disturbance attenuation for time-delay

t = 0.6.
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Table III. Minimum lower bound y for & = 0

B 0 0.05 0.1 0.45
Jiang & Han [9] 0.0404
Chen & Liu [4] 0.0004 | 0.1561

Theorem 3.1/Theorem 3.2 0.0002 0.0431 0.0900 2.0269

Table ITI shows the minimum lower bound y for 8 = 0. Jiang and Han [9]

do not achieve the robust H, disturbance attenuation for any f = O.
When B > 0.1, Chen and Liu [4] do not guarantee the robust H,

disturbance attenuation for any large y. Obviously, our theorems give a
better result than recent papers.

Example 5.2. Consider the state feedback controller design for
following uncertain fuzzy time-delay systems

50 = Y aalaa(0) (A + ADS) + (A + 543 - )

i=2

t
+(D; +AD) | | x(e)ds + B(t) + Bziu(t)},

20) = Y 1l 0) 1Cyxlt) + Diyiao(e)},
1=2

where t = 0.5, Mx;(t)) = 1 — sin® x1(¢), ho(x1(t)) = 1 — A1 (x;(¢)) and

0 0 0 0 2 05
A = Ay =  Ag = ,
1 {0 J 2 [0 1.5} dl [0 1 }

-2 -0.5 0
A = 5 B = B = B = B = N
2 {0 _1‘5} 11 = Big = By = By [J
0.2 0
D, =D, = [ o 0 2}, C =Cy =[1 0], Djy; = Dyy9 = 0.1,

and AA;, AAy;; and AD; are described by (1) with H; = I, Ej; = Ey;
= E4 = 0.21. Theorem 4.3 gives the minimum lower bound y = 0.3040



ROBUST H,, CONTROLLER DESIGN OF UNCERTAIN ... 235

when ¢; =1, tg = 0.32, t3 = -0.01, {4 = 0.01. In this case, state feedback
gains in (7) are given by K; =[-9.2161 -13.2931], Ko = [-8.8235
-13.7064] K4 =[-1.4075 0.6245] and Kg9 = [-1.4559 1.1051] If a
memoryless feedback with Kj; =0,i =1, 2 is employed, then we can
find the minimum lower bound y = 0.3365 by Theorem 4.3 when ¢; =1,
tg = 0.33,t3 = 0.01, ¢4 = —0.01. In this case, we have state feedback
gains in (7) given by K; =[-15.4422 —21.5859] and K, = [-14.8204
-22.0289].

6. Conclusion

We have obtained delay-dependent conditions that guarantee the

robust H,, disturbance attenuation for Takagi-Sugeno fuzzy systems with

discrete and distributed delays. Based on such conditions, we have

proposed design methods of H, disturbance attenuation controllers for
fuzzy time-delay systems as well as robust H, controllers for uncertain

fuzzy time-delay systems. Finally, we have shown examples to illustrate
the effectiveness of our results.
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