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Abstract 

In this paper, we consider the ∞H  disturbance attenuation of Takagi-
Sugeno fuzzy systems with discrete and distributed delays. We employ a 
generalized Lyapunov functional to obtain delay-dependent conditions 
that guarantee the ∞H  disturbance attenuation of fuzzy systems with 
discrete and distributed delays. We introduce free matrices to such a 
Lyapunov functional in order to reduce the conservatism in ∞H  
disturbance attenuation conditions. These techniques lead to generalized 
and less conservative conditions. Applying the same techniques made on 
the ∞H  disturbance attenuation conditions, we obtain delay-dependent 

conditions for the robust ∞H  disturbance attenuation of uncertain fuzzy 
systems with discrete and distributed delays. Moreover, we consider the 
state feedback that achieves the ∞H  disturbance attenuation. Based on 

the ∞H  disturbance attenuation conditions on the closed-loop system, 
we give design methods of the state feedback controllers for the fuzzy 
time-delay systems. Finally, we give two examples to illustrate our 
results. 



JUN YONEYAMA 218

1. Introduction 

Recently, research on nonlinear time-delay systems described by 
fuzzy system representation is very active. Time-delay systems often 
appear in many industrial fields and mathematical formulations. Thus, it 
is important to analyze time-delay systems and design controllers for 
them. Recent research has investigated stability conditions for linear 
time-delay systems based on Linear Matrix Inequalities (LMIs). Both 
delay-independent and delay-dependent stability conditions for linear 
systems with discrete delays have been obtained in [6, 14, 19]. Delay-
independent conditions can be applied to systems with any size of time-
delays, whereas delay-dependent conditions are less conservative. 
Distributed time-delay counterpart has been given in [3, 5, 8, 20]. Theory 
has been extended to fuzzy time-delay systems. Stability conditions for 
fuzzy time-delay systems with discrete delays have been obtained in [1, 2, 
7, 22, 23, 25]. Robust stability analysis for uncertain fuzzy time-delay 
systems has also been investigated in [11, 12, 17, 21]. Also, the ∞H  

disturbance attenuation has been considered in [4, 9]. However, no result 
on fuzzy systems with distributed delays has appeared in the literature, 
except [24]. 

In this paper, we consider the ∞H  disturbance attenuation of Takagi-

Sugeno fuzzy systems with discrete and distributed time-delays. Here we 
extend the existing results to a class of fuzzy systems with discrete and 
distributed time-delays. The key technique to obtain delay-dependent 

∞H  disturbance attenuation conditions for such systems is to select an 

appropriate Lyapunov functional and to introduce free matrices to it. We 
select a more generalized Lyapunov functional than that of Yoneyama 
[24] to obtain less conservative stability conditions. We also consider the 
robust ∞H  disturbance attenuation of fuzzy time-delay systems with 

uncertain parameters. Moreover, the design methods of the state 
feedback that achieves the robust ∞H  disturbance attenuation for 

uncertain fuzzy systems with discrete and distributed time-delays are 
proposed. Finally, two examples are given to illustrate the effectiveness 
of our results. 
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2. Time-delay Systems 

In this section, we introduce Takagi-Sugeno fuzzy systems with 
discrete and distributed delays. Consider the Takagi-Sugeno fuzzy model 
with time-delay, described by the following IF-THEN rules: 

IF 

1ξ  is piM ξandand1 "  is ,ipM  

THEN 

( ) ( )( ) ( ) ( )( ) ( )τ−∆++∆+= txtAAtxtAAtx didiii�  

( )( ) ( ) ( ) ( )( ) ( ),21 tutBBtwBdssxtDD iii
t

t
ii ∆+++∆++ ∫ τ−

 

( ) ( ) ( ) ( ) ( ) ,,,1,1211 rituDtwDtxCtxCtz iidii …=++τ−+=  

( ) [ ],0,,0 τ−∈φ=φx  

where 0≥τ  is a time-delay, ( ) ntx ℜ∈  is the state, ( ) 1mtw ℜ∈  is the 

disturbance, ( ) 2mtu ℜ∈  is the control input and ( ) qtz ℜ∈  is the 

controlled output. The matrices iidiiiidii DDCCBBAA 1121 ,,,,,,,  and 

iD12  are of appropriate dimensions. r is the number of IF-THEN rules. 

ijM  are fuzzy sets and pξξ ,,1 …  are premise variables. 

We set [ ]Tpξξ=ξ "1  and ( )tξ  is assumed to be given or to be a 

measurable function. The uncertain matrices are of the form 

( ) ( ) ( ) ( )[ ] ( ) [ ],212 dibiiiiiiidii EEEEtFHtDtBtAtA =∆∆∆∆  

,,,1 ri …=∀  (1) 

where biiii EEEH ,,, 21  and diE  are known matrices of appropriate 

dimensions, and ( )tFi  are unknown real time varying matrices satisfying 

( ) ( ) .,,1, riItFtF i
T
i …=≤  
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The state and controlled output equations are defined as follows: 

( ) ( )( ) ( )( ) ( ) ( )( ) ( )


 τ−∆++∆+ξλ= ∑

=

txtAAtxtAAttx didiii

r

i
i

1

�  

( )( ) ( ) ( ) ( )( ) ( ) ,21




∆+++∆++ ∫ τ−
tutBBtwBdssxtDD iii

t

t
ii  

( ) ( )( ) ( ) ( ) ( ) ( ){ },
1

1211∑
=

++τ−+ξλ=
r

i
iidiii tuDtwDtxCtxCttz  (2) 

where 

( ) ( )

( )
( ) ( )∏

∑ =
=

ξ=ξβ
ξβ

ξβ
=ξλ

q

j
jijir

i i

i
i M

11

,  

and ( )⋅ijM  is the grade of the membership function of .ijM  We assume 

that 

( )( ) ( )( )∑
=

>ξβ=≥ξβ
r

i
ii trit

1
0,,,1,0 …  

for any ( ).tξ  Hence ( )( )ti ξλ  satisfy 

( )( ) ( )( )∑
=

=ξλ=≥ξλ
r

i
ii trit

1
1,,,1,0 …  

for any ( ).tξ  We say the system (2) achieves the robust ∞H  disturbance 

attenuation γ if it is robustly stable with ( ) 0=tw  and for a prescribed 

constant γ, it satisfies 

2
2

22
2 wz γ<  

for all ( ) 0≠tw  and all admissible uncertainties. 

When we consider the ∞H  disturbance attenuation γ of nominal fuzzy 

time-delay systems, we set riBDAA iidii ,,1,0,0,0,0 …=∀=∆=∆=∆=∆  
in (2). 
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3. ∞H  Disturbance Attenuation 

This section gives sufficient conditions that guarantee Takagi-Sugeno 
fuzzy time-delay systems to achieve the robust ∞H  disturbance 
attenuation. 

3.1. Nominal systems 

We first give delay-dependent ∞H  disturbance attenuation conditions 
for the nominal fuzzy system (2) without uncertainties. 

Theorem 3.1. Given a scalar 0≥τ  and a prescribed constant ,0>γ  
the nominal fuzzy time-delay system (2) with ( ) 0=tu  and no uncertainties 

achieves the ∞H  disturbance attenuation γ if there exist common matrices 

,0,0,0,0
2212

1211

2212

1211
≥












=≥≥>












=

WW

WW
WRQ

PP

PP
P TT  (3) 

and some matrices rjiNij ,,1,5,,1, …… ==  and ,5,,1, …=iTi  such 

that 

,0

66546362616

52245321

464544342414

36334332313

26224232212

16114131211

<































Φτ−ΦΦΦΦ

τ−τ−Φτ−τ−τ−

ΦΦΦΦΦΦ

Φτ−ΦΦΦΦ

Φτ−ΦΦΦΦ

Φτ−ΦΦΦΦ

=Φ

ii
T

i
T

i
T

i
T

i

T
i

T
i

T
i

T
i

T
i

iii
T

i
T

i
T

i

iiii
T

i
T

i

iiii
T

i

iiiiii

i

N

NWNNN

N

N

N

 

,,,1 ri …=∀  (4) 
where 

11
2

121211 WRQPP T
i τ+τ+++=Φ  

,1111 i
T
i

TT
ii

T
ii CCTAATNN +−−++  

,212121112
TT

i
T
ii TATNWP −++τ+=Φ  

,13311213 di
T
idi

TT
i

T
iii CCATTANNP +−−+−−=Φ  

,1442214 i
TT

i
T
ii DTTANP τ−τ−τ+τ=Φ  
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,11551116 i
T
i

T
i

TT
iii DCNTABT ++−−=Φ  

,222222
TTTW ++τ=Φ  

,23223 di
T

ii ATTN −+−=Φ  

,241224 i
T

i DTTP τ−τ+τ=Φ  

,51226
T

ii TBT +−=Φ  

,333333 di
T
di

TT
didi

T
iii CCTAATNNQ +−−−−−=Φ  

,3442234 i
TT

di
T
ii DTTANP τ−τ−τ−τ−=Φ  

,11551336 i
T
di

T
i

TT
diii DCNTABT +−−−=Φ  

,2
4

2
4

2
1144 RTDDTW TT

iii τ−τ−τ−τ−=Φ  

,4
2

1245 ii NW τ−τ−=Φ  

,51446
TT

iii TDBT τ−τ−=Φ  

.1111
2

511566 i
T

i
TT

iii DDITBBT +γ−−−=Φ  

Proof. We consider the following Lyapunov functional 

( ) ( ) ( ),21 tVtVtV +=  
where 

( ) ( ) ( ) ( ) ( )∫ τ−
+=

t

t
TT dssxPtxtxPtxtV 12111 2  

( ) ( ) ( ) ( )∫∫∫ τ−τ−τ−
+








+

t

t
Tt

t

Tt

t
dssQxsxdssxPdssx 22  

( ) ( ) ( ) ( )∫ ∫∫ ∫ τ− θ+τ− θ+
θ+θ+

0
12

0
11 2

t

t
Tt

t
T dsdsxWsxdsdsxWsx �  

( ) ( ) ,
0

22∫ ∫τ− θ+
θ+

t

t
T dsdsxWsx ��  
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( ) ( ) ( ) θ















= ∫ ∫∫τ− θθ

ddssxRdssxtV
t

t

tt T
2  

( ) ( ) ( )∫ ∫
τ

θ−
θθ+−+

0

t

t
T dsdsRxsxts  

and P is a positive definite matrix to be determined, and WRQ ,,  are 
positive semi-definite matrices to be determined. It follows from Leibniz-
Newton formula that the following equation holds for any matrices 

:,,1,5,,1, rikNki …… ==  

( )( ) ( ) ( ) ( )

 τ−++ξλ∑
=

i
T

i
T

i
T

r

i
NtxNtxNtxt 321

1
2 �  

( ) ( ) ( ) ( ) ( ) .054 =







τ−−−×




++ ∫∫ τ−τ−

t

t

t

t
i

T
i

T txdssxtxNtwNdssx �  (5) 

It is easy to see from the definition of the nominal system (2) with 
( ) 0=tu  and no uncertainties that the following equation also holds for 

any matrices :5,,1, …=iTi  

( ) ( ) ( ) ( ) ( ) 







++τ−++ ∫ τ−

t

t
TTTTT TtwTdssxTtxTtxTtx 543212 �  

( )( ) ( ) ( ) ( ) ( ) ( )∑ ∫
=

τ−
=








−−τ−−−ξλ×

r

i

t

t
iidiii twBdssxDtxAtxAtxt

1
1 .0�  (6) 

Note that 

( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫τ− τ−τ−
















−τ+−=

t

t

t

t
Tt

t
TT dssxRdssxdssRxtxtstVdt

d 22  

( ) ( ) ( ) ( ) ( )∫ τ−
τ+−−τ+

t

t
TT dssRxsxtstRxtx2

2
1  

( ) ( ) ( ) ( ) ( ) ( )∫∫ τ−τ−
τ+−+τ+−≤

t

t
Tt

t
T dssRxsxtsdstRxtxts  

( ) ( ) ( ) ( )tRxtxdssxRdssx Tt

t
Tt

t
T 2

2
1 τ+
















− ∫∫ τ−τ−
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( ) ( ) ( )∫ τ−
τ+−−

t

t
T dssRxsxts  

( ) ( ) ( ) ( ) ( )∫ τ−
τ+−+τ≤

t

t
TT dssRxsxtstRxtx2

2
1  

( ) ( ) 















− ∫∫ τ−τ−

t

t

t

t
T dssxRdssx  

( ) ( ) ( ) ( ) ( )∫ τ−
τ+−−τ+

t

t
TT dssRxsxtstRxtx2

2
1  

( ) ( ) ( ) ( ) .2
















−τ≤ ∫∫ τ−τ−

t

t

t

t
TT dssxRdssxtRxtx  

Thus, differentiation of ( )tV  with respect to t along the solution of (2) 

and addition of the above zero quantities (5) and (6) give 

( ) ( ) ( ) 222 twtztVdt
d γ−+  

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]τ−−++≤ ∫ τ−
txtxPtxdssxPtxtxPtx Tt

t
TT

121211 222 ��  

( ) ( )[ ] ( ) ( ) ( ) ( ) ( )τ−τ−−+τ−−+ ∫ τ−
tQxtxtQxtxdssxPtxtx TTt

t
T

222  

( ) ( ) ( ) ( )∫∫ τ−τ−
−+

t

t
Tt

t
T dssxWsxdstxWtx 1111  

( ) ( ) ( ) ( )∫∫ τ−τ−
−+

t

t
Tt

t
T dssxWsxdstxWtx �� 1212 22  

( ) ( ) ( ) ( )∫∫ τ−τ−
−+

t

t
Tt

t
T dssxWsxdstxWtx ���� 2222  

( ) ( ) ( ) ( ) 















−τ+ ∫∫ τ−τ−

t

t

t

t
TT dssxRdssxtRxtx2  

( )( ) ( ) ( ) ( )
 τ−++ξλ+ ∑

=
i

T
i

T
i

T
r

i
i NtxNtxNtxt 321

1
2 �  



ROBUST ∞H  CONTROLLER DESIGN OF UNCERTAIN … 225

( ) ( ) ( ) ( ) ( )







τ−−−




++ ∫∫ τ−τ−

t

t

t

t
i

T
i

T txdssxtxNtwNdssx �54  

( ) ( ) ( ) ( ) ( ) 







++τ−+++ ∫ τ−

t

t
TTTTT TtwTdssxTtxTtxTtx 543212 �  

( )( ) ( ) ( ) ( ) ( ) ( )∑ ∫
=

τ−








−−τ−−−ξλ⋅

r

i

t

t
iidi twBdssxDtxAtAxtxt

1
1�  

( ) ( ) 222 twtz γ−+  

( )( ) ( ) ( ) ,,,1

1
2 ∫ ∫∑ τ− τ−

=

θθζΦζξλ
τ

=
t

t

t

t
i

T
r

i
i dsdtstt  

where ( ) [ ( ) ( ) ( ) ( ) ( ) ( )]TTTTTTT twsxsxtxtxtxst �� τ−=ζ ,  and iΦ  are defined 

in (4). If ,0<Φi  then we obtain 

( ) ( ) ( ) ( ) 00 2
2

22
2 <γ−+−∞ twtzVV  

after integration from 0=t  to ,∞=t  because ( )( ) .0≥ξλ ti  Since ( ) 0>∞V  

and ( ) ,00 =V  we have ( ) ( ) .2
2

22
2 twtz γ<  

For the stability, we let ( ) 0=tw  and ( ) .0=tz  It can be shown that if 

0<Φi  holds, then ,0<Φi  where iΦ  is a submatrix resulting from Φ, 

from which the sixth row and column are eliminated. In this case, with 
the similar argument above, we have ( ) .0<tV�  Thus, the system (2) is 

stable if the conditions (3) and (4) hold. 

3.2. Uncertain systems 

Next we consider the robust ∞H  disturbance attenuation of fuzzy 

time-delay system (2). Theorem 3.1 can be extended to a class of 
uncertain fuzzy time-delay systems. Applying Theorem 3.1 to (2) and 
making some mathematical manipulation with lemmas in Appendices of 
[13] give the following theorem. Complete proof is similar to that of 
Theorem 3.2 in [25], and is thus omitted. 
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Theorem 3.2. Given a scalar 0≥τ  and a prescribed constant ,0>γ  
the uncertain fuzzy time-delay system (2) with ( ) 0=tu  achieves the robust 

∞H  disturbance attenuation γ, if there exist common matrices ,0>P  
0,0,0 ≥≥≥ WRQ  as in (3), some matrices ,,,1,5,,1, rikNki …… ==  

5,,1, …=iTi  and scalars ,,,1,0 rii …=>ε  such that 

=Πi  



































ε−−τ−−−−

−Φτ−ΦΦΦΦ

τ−τ−Φτ−τ−τ−

τ−ΦΦΠΠΦΠ

−Φτ−ΠΠΦΠ

−Φτ−ΦΦΦΦ

−Φτ−ΠΠΦΠ

ITHTHTHTHTH

HTN

NWNNN

HT

HTN

HTN

HTN

i
TT

i
TT

i
TT

i
TT

i
TT

i

iii
T

i
T

i
T

i
T

i

T
i

T
i

T
i

T
i

T
i

iiii
T

i
T

i
T

i

iiiii
T

i
T

i

iiiii
T

i

iiiiiii

54321

566546362616

52245321

4464544342414

336334332313

226224232212

116114131211

0

0

 

,,,1,0 ri …=∀<  

where Φ ’s are given in (4) and 

,111111 i
T
iiii EEε+Φ=Π  

,211313 i
T
iiii EEε+Φ=Π  

,11414 di
T
iiii EEτε+Φ=Π  

,223333 i
T
iiii EEε+Φ=Π  

,23434 di
T
iiii EEτε+Φ=Π  

.2
4444 di

T
diiii EEτε+Φ=Π  

4. State Feedback 

Here we consider the design of state feedback controllers that achieve 
the robust ∞H  disturbance attenuation of fuzzy time-delay systems. We 
assume that the following rules are given 

IF ( )t1ξ  is ( )tM pi ξandand1 "  is ,piM  

THEN ( ) ( ) ( ) ,,,1, ritxKtxKtu dii …=τ−+=  
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where iK  and diK  are matrices to be determined. Then the natural 
choice of a state feedback controller is the following [15], 

( ) ( )( ) ( ) ( ){ },
1
∑
=

τ−+ξλ=
r

i
diii txKtxKttu  (7) 

where the same weights ( )( )ti ξλ  as in (2) are used. The problem is to find 
state feedback gains iK  and diK  in the control law (7) that achieves the 
robust ∞H  disturbance attenuation of the system (2). 

4.1. Nominal systems 

We first consider the ∞H  disturbance attenuation problem for the 
nominal system (2) with no uncertainties. Applying Theorem 3.1 to the 
closed-loop system (2) and (7), we have the following result. 

Theorem 4.1. Given scalars 4,,1,,0 …=≥τ iti  and a prescribed 
constant ,0>γ  the ∞H  disturbance attenuation γ of the nominal fuzzy 
system (2) with no uncertainties is achievable by the control law (7), if 
there exist 0,0,0,0 ≥≥≥> WRQP  as in (3) and some matrices ,kijN  

Srjik ,,,1,,5,,1 …… ==  and ,,,1,, rjLL djj …=  such that 



































−ΞΞ

γ−τ−τ−Ξ−Ξ

τ−τ−Ξτ−τ−τ−

τ−ΞΞΞΞΞ

ΞΞτ−ΞΞΞΞ

−τ−ΞΞΞΞ

ΞΞτ−ΞΞΞΞ

=Ξ

ID

DINBtBt

NWNNN

Bt

N

BtN

N

i
T

ij
T

ij

T
iij

T
i

T
ij

T
i

T
ij

T
ij

T
ij

T
ij

T
ij

T
ij

iiji
T

ij
T

i
T

ij

ijijijijij
T

ij
T

ij

iijiij
T

ij

ijijijijijijij

ij

113717

11
2

514361216

52245321

144544342414

3736334332313

12224232212

1716114131211

000

0

0

0

 

,,,1,,0 rji …=∀<  (8) 

where Φ’s are given in (4) and 

i
T

ij NWRQPP 111
2

121211 +τ+τ+++=Ξ  

( ) ( ),21211 ji
T

i
T
i

T
j

T
i

T
i LBSAtBLSAtN +−+−+  
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( ) ,1222121112 StLBSAtNWP ji
T

i
T
iij ++−+τ+=Ξ  

( ) ( ),2123311213
T
i

T
dj

T
diji

T
i

T
iiij BLSAtLBSAtNNP +−+−+−−=Ξ  

( ),24412214 ji
T

i
T
i

T
iij LBSAtNSDtP +τ−τ+τ−τ=Ξ  

,11516 i
T
iij BtN −=Ξ  

,1217
T

i
T
j

T
iij DLSC +=Ξ  

( ),22222
TSStW ++τ=Ξ  

( ),223223
T
i

T
dj

T
di

T
iij BLSAtStN +−+−=Ξ  

,421224
TT

ii StSDtP τ+τ−τ=Ξ  

( ) ( ),23233333 dji
T

di
T
i

T
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T
di

T
iiij LBSAtBLSAtNNQ +−+−−−−=Ξ  

( ),24432234 dji
T

di
T
i

T
iij LBSAtNSDtP +τ−τ−τ−τ−=Ξ  

,13536 i
T
iij BtN −−=Ξ  

,1237
T

i
T
dj

T
diij DLSC +=Ξ  

( ) ,2
4

2
1144 RSDSDtW T

i
T
ii τ−+τ−τ−=Ξ  

.4
2

1245 ijij NW τ−τ−=Ξ  

In this case, feedback gains in (7) are given by 

.,,1,, riSLKSLK T
didi

T
ii …=== −−  (9) 

Proof. For nominal case, the closed-loop system (2) with (7) is given 
by 
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j
ji tttx

1 1
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( ) ( ) ( ) ( ) ( ) ,22

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

+τ−+++⋅ ∫ τ−

t

t
idjidijii dssxDtxKBAtxKBA  

( ) ( )( ) ( )( ) {( ) ( ) ( ) ( )txKDCtxKDCtttz djidi

r
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r

j
jiiji 12

1 1
12 +++ξλξλ= ∑∑

= =

 

( )}.11 twD i+  
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Then, we replace idii CAA ,,  and diC  in (4) with ,, 22 djidijii KBAKBA ++  

jii KDC 12+  and ,12 djidi KDC +  respectively, and let ,, 2211 StTStT ==  

StTStT 4433 , ==  and .05 =T  Furthermore, we make a congruent 

transformation with [ ]ISSSSSS 11111diag~ −−−−−=  to obtain =Ξij  

.~~ T
iSSΦ  For simplicity of notation, we denote ,, 12

1
11

1 TT SPSSPS −−−−  

,,,,,, 22
1

12
1

11
111

22
1 TTTTTT SWSSWSSWSRSSQSSSPS −−−−−−−−−−−−

rjNSiSNS j
T

ki ,,1,,5,,1, 5
11 …… == −−−  and 1−S  by ,,,, 221211 QPPP  

5,,1,,,,, 221211 …=kNWWWR kij  and S, respectively, and letting  
T

jj SKL =  and .T
djdj SKL =  Finally, by Schur complement, we obtain 

(8). If ,0<Ξij  then it follows that 22Ξ  must be negative definite, which 

leads to S being nonsingular. Hence a stabilizing state feedback controller 
is given by (7) with feedback gains (9). 

By using the techniques of relaxed conditions in [10], conditions in 
Theorem 4.1 can be relaxed as follows. 

Theorem 4.2. Given scalars 4,,1,,0 …=≥τ iti  and a prescribed 

constant ,0>γ  the ∞H  disturbance attenuation γ of the nominal fuzzy 

system (2) with no uncertainties is achievable by the control law (7), if 
there exist 0,0,0,0 ≥≥≥> WRQP  as in (3) and some matrices ,kijN  

Srjik ,,,1,,5,,1 …… ==  and ,,,1,, rjLL djj …=  such that 
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 (10) 

where ijΞ  are given in (8). In this case, feedback gains in (7) are given by 

(9). 

4.2. Uncertain systems 

Next, we consider the design of a robust ∞H  disturbance attenuation 
controller (7) for the system (2). Similar techniques used to obtain 
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Theorem 3.2 lead to Theorem 4.3. Complete proof follows similar lines of 
Theorem 4.3 in [25] and is thus omitted. 

Theorem 4.3. Given scalars 4,,1,,0 …=≥τ iti  and a prescribed 

constant ,0>γ  the robust ∞H  disturbance attenuation γ of the uncertain 

fuzzy system (2) is achievable by the control law (7), if there exist ,0>P  
0,0,0 ≥≥≥ WRQ  as in (3) and some matrices ,5,,1, …=kNkij  

Srji ,,,1, …=  and rjLL djj ,,1,, …=  and scalars ,0,0 21 >ε>ε ijij  

,,,1,,03 rjii …=>ε  such that 
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,0<  (11) 
where Ξ’s are defined in (8) and 

,11111 i
T
iijijij HHε+Ξ=Λ  

( ),1118
T
bi

T
j

T
iij ELSEt +=Λ  

( ),2119
T
bi

T
dj

T
iij ELSEt +=Λ  

( ),1228
T
bi

T
j

T
iij ELSEt +=Λ  

( ),2229
T
bi

T
dj

T
iij ELSEt +=Λ  

,23333 i
T
iijijij HHε+Ξ=Λ  

( ),1338
T
bi

T
j

T
iij ELSEt +=Λ  

( ),2339
T
bi

T
dj

T
iij ELSEt +=Λ  



ROBUST ∞H  CONTROLLER DESIGN OF UNCERTAIN … 231

,34444 i
T
iiii HHε+Ξ=Λ  

( ),1448
T
bi

T
j

T
iij ELSEt +τ=Λ  

( ).2449
T
bi

T
dj

T
iij ELSEt +τ=Λ  

In this case, feedback gains in (7) are given by (9). 

Similar to Theorem 4.2, conditions in Theorem 4.3 can also be relaxed 
as follows. 

Theorem 4.4. Given scalars 4,,1,,0 …=≥τ iti  and a prescribed 

constant ,0>γ  the robust ∞H  disturbance attenuation γ of the uncertain 

fuzzy system (2) is achievable by the control law (7), if there exist ,0>P  
0,0,0 ≥≥≥ WRQ  as in (3) and some matrices ,5,,1, …=kNkij  

Srji ,,,1, …=  and rjLL djj ,,1,, …=  and scalars ,0,0 21 >ε>ε ijij  

,,,1,,03 rjii …=>ε  such that 
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 (12) 

where ijΛ  are defined in (11). In this case, feedback gains in (7) are given 

by (9). 

Remark 4.1. Conditions (10) in Theorem 4.2 and conditions (12) in 
Theorem 4.4 are more relaxed ones than conditions (8) in Theorem 4.1 
and (11) in Theorem 4.3, respectively. Teixiera et al. [16, 18] have 
considered relaxed stability conditions for fuzzy systems. The techniques 
in [16, 18] can be applied to the stability analysis of fuzzy time-delay 
systems, and conditions (10) and (12) can be further relaxed. 

Remark 4.2. If a memoryless control law is preferred, then we let 
riLdi ,,1,0 …==  in Theorems 4.1 to 4.4. Then, we obtain the control 

law (7) with .,,1,0 riKdi …==  
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5. Examples 

The following two examples illustrate our results. The first one shows 
the robust ∞H  disturbance attenuation of fuzzy time-delay systems. The 

second one gives the design method of a state feedback controller for 
uncertain fuzzy time-delay systems. 

Example 5.1. Consider the robust ∞H  disturbance attenuation of 

the following uncertain fuzzy time-delay systems 

( ) ( )( ) ( ) ( ) ( ) ( )∑
= 




τ−∆++∆+λ=
r

i
didiiii txAAtxAAtxtx

2
1�  

( ) ( ) ,
0

0
1





+





δ
δ

+ ∫ τ−

t

t
i twBdssx  

( ) ( )( ) ( ),
2

11∑
=

λ=
r

i
ii txCtxtz  

where ( )( ) ( )( )( ) ( )( ) ( )( )txtxtxtx 111211 1,exp11 λ−=λ−+=λ  and 
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11
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02
,

9.00
02

121 





−−
−

=





−
−

=





−
−

= dAAA  

[ ],01,
1
0

,
5.11

01
121112112 ==



==





−−
−

= CCBBAd  

and iA∆  and diA∆  satisfy β≤∆ iA  and .β≤∆ diA  The uncertain 

matrices iA∆  and diA∆  are described by (1) with ., 21 IEEIH iii β===  

First, we compare our results with other results on stability and 
robust stability when .C,B ii 00 11 ==  Since there is no result on fuzzy 

systems with distributed delays except for Yoneyama [24], we let 0=δ  
for comparison. 
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Table I. Maximum upper bound τ for 0=δ  

β 0 0.3 

Cao & Frank [1] - N/A 

Chen & Liu [4] 0.6666 0.4785 

Guan & Chen [7] 1.1228 N/A 

Li et al. [12] 2.2615 0.8168 

Yoneyama [23] 2.3421 N/A 

Tian & Peng [17] 2.3675 1.0658 

Theorem 3.1/Theorem 3.2 2.3675 1.2636 

Table I compares our results with the results in the literature. For the 
nominal fuzzy system when ,0=β  Cao and Frank [1] do not guarantee 
the stability, whereas the others do guarantee the stability. Among them, 
Tian and Peng [17] and Theorem 3.1 give the maximum upper bound τ. 
For the robust stability of the uncertain fuzzy system when ,3.0=β  

Theorem 3.2 gives the maximum upper bound τ among Li et al. [12], 
Yoneyama [23] and Theorem 3.2, where the robust stability is guaranteed. 

Table II. Maximum upper bound τ for 1.0=β  

δ 0.1 0.3 0.5 0.7 

Yoneyama [24] 1.4641 1.3525 1.2390 1.1459 

Theorem 3.2 1.4822 1.4882 1.3904 1.2811 

Table II lists the maximum upper bound τ for 1.0=β  and different 

δ’s. Table II shows that Theorems 3.1 and 3.2 guarantee the higher 
maximum upper bound τ than that of Yoneyama [24]. 

Next, we consider the ∞H  disturbance attenuation for time-delay 
.6.0=τ  
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Table III. Minimum lower bound γ for 0=δ  

β 0 0.05 0.1 0.45 

Jiang & Han [9] 0.0404 - - - 

Chen & Liu [4] 0.0004 0.1561 - - 

Theorem 3.1/Theorem 3.2 0.0002 0.0431 0.0900 2.0269 

Table III shows the minimum lower bound γ for .0=δ  Jiang and Han [9] 
do not achieve the robust ∞H  disturbance attenuation for any .0≠β  
When ,1.0≥β  Chen and Liu [4] do not guarantee the robust ∞H  
disturbance attenuation for any large γ. Obviously, our theorems give a 
better result than recent papers. 

Example 5.2. Consider the state feedback controller design for 
following uncertain fuzzy time-delay systems 

( ) ( )( ) ( ) ( ) ( ) ( )∑
= 




τ−∆++∆+λ=
r

i
didiiii txAAtxAAtxtx

2
1�  
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

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1111∑
=
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i
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2

1 1,sin1,5.0 λ−=λ−=λ=τ  and 
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[ ] ,1.0,01,
2.00

02.0
1121112121 ====



== DDCCDD  

and dii AA ∆∆ ,  and iD∆  are described by (1) with iii EEIH 21, ==  

.2.0 IEdi ==  Theorem 4.3 gives the minimum lower bound 3040.0=γ  
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when .01.0,01.0,32.0,1 4321 =−=== tttt  In this case, state feedback 

gains in (7) are given by [ ] [ 8235.8,2931.132161.9 21 −=−−= KK  
]7064.13−  [ ]6245.04075.11 −=dK  and [ ]1051.14559.12 −=dK  If a 

memoryless feedback with 2,1,0 == iKdi  is employed, then we can 

find the minimum lower bound 3365.0=γ  by Theorem 4.3 when ,11 =t  

.01.0,01.0,33.0 432 −=== ttt  In this case, we have state feedback 

gains in (7) given by [ ]5859.214422.151 −−=K  and [ 8204.142 −=K  
].0289.22−  

6. Conclusion 

We have obtained delay-dependent conditions that guarantee the 
robust ∞H  disturbance attenuation for Takagi-Sugeno fuzzy systems with 
discrete and distributed delays. Based on such conditions, we have 
proposed design methods of ∞H  disturbance attenuation controllers for 

fuzzy time-delay systems as well as robust ∞H  controllers for uncertain 
fuzzy time-delay systems. Finally, we have shown examples to illustrate 
the effectiveness of our results. 
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