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Abstract 

We introduce a novel method to analyse near infrared (NIR) spectra 
collected in a repeated measures experiment. Using an adaptive discrete 
wavelet transform, our method initially extracts features from the 
spectra that correlate with the design of the experiment. Then the 
extracted features are then mapped onto a five-dimensional hyperplane 
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using penalised discriminate mapping (PDM) to form PDM scores. The 
PDM scores are analysed using a multivariate mixed model (MMM) to 
determine if the experimental design affects the NIR spectra. 
Illustration of the method is given by a case study from the viticulture 
industry, where NIR reflectance measurements (400, 402, ..., 2500nm) 
were taken from red grape homogenates sampled from a nested repeated 
measures experimental design consisting of the following factors: 
various growing regions, vineyards, grape varieties and storage 
durations. Analyses of the viticulture example using our proposed 
method identified all main effects and two-way interactions between 
regions, grape variety and, most importantly, storage duration to all be 

significant ( ).001.0P <  By visualization and univariate analysis of the 

PDM scores, we identified regions in the NIR spectrum associated with 
the storage duration, variety and interaction effects. 

1. Introduction 

Repeated measures experimental designs using a large number of 
system variables, such as hundreds of wavelengths from the near 
infrared (NIR) spectrum, with relatively small sample sizes poses a 
number of technical difficulties; particularly: degradation of power for 
statistical analysis [3, 21], and numerical instability [18]. The purpose of 
this paper is to provide a practical means, circumventing the pre-
mentioned difficulties, to analyse repeated measures experimental 
designs where the sample to variable size ratio is small for NIR spectra. 

Complications involved with the analysis of repeated measures or 
more generally in multivariate mixed models (MMM), with NIR spectra 
are: firstly the number of variables (sampled wavelengths) excessively 
exceeds the number of samples, and secondly the variables are highly 
correlated. The former concern results in a lack of degrees of freedom 
while the latter results in numerical instability of the MMM. Both of 
these complications result in a degradation of the power of statistical 
analysis [12, 18, 21]. To overcome these issues of high variable correlation 
and low variable to sample ratios, we need to employ a method of feature 
extraction and/or data compression. 

Principal component analysis (PCA) and parallel factor analysis 
(PARFAC) [2] are the most commonly used methods in chemometrics for 
feature extraction and data compression. PCA or similar bi-linear models, 
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such as multivariate curve resolution [19], extract features which 
describe global variability and compress the spectral data in relatively 
few latent factors. While PARAFAC and similar tri-linear models are an 
improvement to the bi-linear cases since the data is known to consist of a 
time varying component [2]. However, both PCA and PARAFAC do not 
utilize the group structure (experimental design) which is known a priori 
in compressing the data. Furthermore, in the case of the PARAFAC 
model; it is assumed that the time varying experimental unit is the NIR 
sample [8, 9], which is not necessarily the case as illustrated within the 
given case study provided. 

The goal for the feature extraction process is then to extract 
information from the spectra that expresses the variation in the spectra 
resulting from the experimental design. To achieve this, we propose using 
the wavelet transforms in conjunction with a penalised discriminate 
mapping (PDM) [13]. Here the wavelets used are trained to extract 
features and dimension reduction resulting in a high group separation as 
defined by a Fishers discriminant ratio as well as performing dimension 
reduction. Further dimension reduction is achieved with the use of the 
penalised discriminate mapping. 

The rational for integrating the wavelet transform (WT) with PDM 
are based on the philosophy that information contained within the NIR 
spectrum exists in two general frameworks (i) juxtapositional information 
within localized wavelengths and (ii) interactions between juxtapositional 
groupings. The wavelet transform is used to extract juxtapositional 
information while PDM is used to relate the information between 
juxtapositional groupings succinctly. The choice of the wavelet transform 
is of some importance as different wavelets can lead to heteromorphic 
features [22]. 

In most NIR WT applications to date, the wavelet used is selected 
from one of eight standard types of wavelets [16] mainly as a matter of 
convenience. However, it is possible to develop wavelets specifically for a 
particular application. These application specific wavelets iteratively 
adapt themselves towards a user defined criteria and are generally 
termed adaptive wavelets [10]. It has been demonstrated in supervised 
settings that adaptive wavelets–ones characteristic to the modelling 
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process, result in higher classification rates [4, 5, 14] and more accurate 
regression models [6]. 

Initially we describe the methods used: repeated measures analysis, 
adaptive wavelet transforms, and penalised discriminant analysis. Then 
we describe the method using of the adaptive wavelet transform in 
conjunction with a penalised discriminant mapping to analyse a repeated 
measures experimental design. Finally, we illustrate the method using a 
case study borrowed from the viticulture industry. 

2. Theory 

2.1. Analysis of repeated multivariate measures 

Measurements on a set of p variables made at several occasions on 
the same experimental unit leads to repeated multivariate measures or 
longitudinal data. Analysis of these data needs special care since 
measurements made on the same units are likely to be correlated in time. 

A typical set of repeated measures is usually taken on ,1 gnnn ++=  

individuals in g groups over t time points. The problems of interest are to 

test for the (i) time effect (ii) group effect, and (iii) the effect of interaction 

between time and group. Several approaches to analyse these data exists 
in the literature. A brief review follows. 

Let ,ijky  where ;...,,1 tk =  ;...,,1 inj =  ;...,,1 gi =  be a 1×p  

vector of measurements on the jth individual measurement in the ith 

group on the kth time point and ( ) ....,,1
′′′= ijtijij yyy  Then ijy  is 1×pt  

random observation vector corresponding to the jth individual in the ith 

group. Let ( ) ,cov Ω=ijy  for ;...,,1 inj =  ,...,,1 gi =  where Ω is a 

positive definite matrix. Using a multivariate linear model of the form 

,EXBY +=  where the ptn ×  matrix Y is the observation matrix by 

taking each ijy′  in a row, X is the kn ×  design matrix, B is the ptk ×  

matrix of unknown parameters and, assuming rows of E independently 
follow multivariate normal distribution with a zero mean vector and 

covariance matrix Ω, any linear hypothesis about the effect of time, 

groups or interactions can be formulated in the form of a general linear 
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hypothesis ,:0 0LBM =H  for known full rank matrices L and M. This 

approach for analysing the repeated multivariate measures, known as 
doubly multivariate measures (DMM) analysis, is commonly adopted in 
practice [12]. 

An alternative approach taken to analyse the repeated multivariate 
measures data is the multivariate mixed model (MMM) analysis, the path 
taken in this paper. Consider a mixed effects MANOVA model with the 
effects of the subjects (experimental units) within a group being random. 
Then the MANOVA table can be given as in Table 1. 

Table 1. MANOVA table for mixed effects model 

Source D.O.F SS&CP Distribution under 0H  

Between Groups    

Groups 1−g  1Q  ( )Ω,1−gWp  

Individuals gn −  
2Q  ( )Ω,gnWp −  

Within Groups    

Time 1−t  3Q  ( )Ω,1−tWp  

Time∗Groups ( ) ( )11 −− tg  4Q  ( ) ( )( )Ω,11 −− gtWp  

Error ( ) ( )gnt −− 1  5Q  ( ) ( )( )Ω,1 gntWp −−  

Total 1−nt  
YJIY ′






 − ntnt nt

1   

Here Ω is the variance covariance matrix of Y. The matrix quadratic 

forms 51 ...,, QQ  are 

( ) ( )∑
=

′=′−−=
g

i
iiint

1
1..........1 YAYyyyyQ  

( ) ( )∑∑
= =

′=′−−=
g

i

n

j
iijiij

i

t
1 1

2......2 YAYyyyyQ  

( ) ( )∑
=

′=′−−=
t

k
kktn

1
3..........3 YAYyyyyQ  
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with the appropriate choice of symmetric matrices 51 ...,, AA  of order 

ntnt ×  and with the usual notations for the sample averages. The 

matrices 51 ...,, AA  are derived from the known design matrix X [7]. The 

matrix quadratic forms 51 ...,, QQ  are independent of each other and 

under the appropriate null hypothesis each has a scale multiple of a 

Wishart distribution, ( ),, ΩdfWp  with a shape parameter Ω and an 

appropriate degrees of freedom [15]. For both DMM and MMM, the 

covariance matrix Ω can be estimated using a variety of methods. 

The simplest method of estimating Ω is the general covariance 

structure, whose only constrains are positive definiteness and symmetry. 

This method can reliably be applied when n is large, which is often not 

the case. Typically, Ω is parameterized into simpler structures. The most 

common of these are the (i) multivariate compound symmetric structure, 
(ii) auto-regressive and exponential multivariate compound symmetric 
structure, and (iii) general Kronecker product [17, 20]. 

Of these three types of parameterizations of Ω, we discuss the 

Kronecker product since it has the greatest flexibility with respect to the 
time sampling component (the other two models generally require 
regularly sampled time intervals). 

The structure of the Kronecker product for Ω is given as: 

 ,ΣΩ ⊗= V  (1) 

where V and Σ  are tt ×  and pp ×  are positive definite, symmetric 

matrices, respectively. This parameterization separates Ω into a time and 

variables partition. This structure has several advantages over the 
general covariance structure. First, it is well known that the correlation 
structure of the repeated measures usually has a simpler structure as 
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opposed to the general structure [17]. Secondly, the number of unknown 
parameters of the covariance matrix for the Kronecker product is much 

less, ( ) ( )[ ]2121 +++ pptt  as compared ( )[ ]21+ptpt  for the general 

case. 

Given these advantages, the use of the Kronecker product structure 
would seem to be the logical choice for DMM and MMM. However, before 
using this separated structure, the likelihood ratio test for separability 
[17] is used to verify the validity of equation (1). 

2.2. Penalised discriminant mapping (PDM) 

Penalised discriminant mapping [24] is an extension of Fisher’s linear 
discriminant analysis (LDA) which aims to find linear combinations of 

the variables, b, that best separate the g different groups within the 
dataset such that the between group variability is maximised as much as 
possible relative to the within group variability. LDA assumes that the 

data, X, are drawn from g groups with proportions Gππ ...,,1  that have K 

dimensional mean vectors, ,jx  gj ...,,1=  and a common within group 

covariance, .wΩ  Specifically, LDA finds Kℜ∈b  with 1=bb w
TΩ  such 

that ( )∑ =
−π=

G
j

T
j

T
jf

1
2xx bb  is maximised. Here ∑ π=

j jjxx  is the 

overall population mean vector. Maximising f is identical to maximising 

the ratio bbbb w
T

B
Tg ΩΩ=  under the constraint .1=bb w

TΩ  

Differentiation leads to the eigensystem: .1 bb gBw =− ΩΩ  In this way we 

can see that the eigenvectors of Bw ΩΩ 1−  lead to the discriminant space, 

where BΩ  is the between group covariance matrix. 

In many NIR spectra situations, wΩ  is near singular due to the high 

correlations between adjacent wavelengths (variables), thus the 

eigenvalues of Bw ΩΩ 1−  cannot easily be computed. To overcome this near 

singularity, wΩ  is replaced with ,K+=′ ww ΩΩ  where K is a K by K 

matrix such that bb KT  is large for undesirable b. This K is the central 

idea in PDM, where K penalises the b’s. We refer the reader to [24] for a 

detailed description of K. 
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2.3. Discrete wavelet transform (DWT) 

The discrete wavelet transform (DWT) [23] like the Fourier 
transform, can be used to reformulate a spectrum into an alternative 
“feature space”, by mapping the spectrum onto an analysing function. In 
Fourier analysis, the analysing functions are the set of sine functions 
(spectra are mapped onto “frequency space”), where as for the DWT 
wavelets are the analysing functions (spectra are mapped onto a “wavelet 
space”). The DWT is given by: 

 ( ) ,
1

2

0
,,∑∑

= =

ψ=
l

j k
kjkj

l

ctx  (2) 

where 0,0ψ  is the father wavelet, from which all the other wavelets kj,ψ  

are derived, ( )tx  is the spectrum and kjc ,  is the wavelet coefficient 

calculated by the inner product between ( )tx  and ., kjψ  

 ( ) .,, kjkj txc ψ|=  (3) 

Unlike Fourier analysis, there are many types of analysis functions 
(wavelets) that can be used for the DWT-each resulting in different 
wavelet coefficients (mapped features), where typical (standard) wavelets 
used are Daubechies, Symlets or Coiflets. Since we do not know which 
wavelets will result in the best feature extraction a priori for 
classification, this paper will use Pollen’s adaptive wavelets [11, 23] to 
extract features. 

An advantage of the Pollen adaptive wavelets, is that the wavelet can 

be parameterized into 1+q  normalized vectors quuu ...,,, 21  and v; 

where +∈ Zq  is a smoothness parameter for the resulting wavelet. This 

means that we can assess the “fitness” of the wavelet as a function of the 
normalized vectors, which can then be iteratively updated to achieve a 
high “fitness”. In this study, we define the fitness as the ability to 
discriminate between the various homogenizers, varieties and storage 
combinations. To achieve this, we introduce a fitness function based on 
the wavelet coefficients from the DWT and the experimental design. 
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The fitness function is defined as: 

 ( ) .,...,, 11
wB

Buuf
ΩΩ

Ω
+

=ν  (4) 

The Pollen adaptive wavelets can be summarized in the following 
steps: 

(1) Define the integer values for m and q. 

(2) Initialize the normalized vectors quuu ...,,, 21  and v. 

(3) Perform the DWT and evaluate the performance of the wavelet 
with equation (4). 

(4) Iteratively update quuu ...,,, 21  and v until a convergence 

criterion is met. 

In this study, quuu ...,,, 21  and v are initially assigned elements 

from the uniform distribution, which in previous supervised studies [4, 

14] as shown to converge (tolerance of ( ) )10,...,, 6
11

−≤νuuf  for fitness 

functions similar to that used in this study (equation (4)). For a 
comprehensive account of the theory of the Pollen Factorization, the 
reader is referred to [11]. 

3. Experimental Design 

3.1. Data 

The data comprises of the reflectance NIR spectra of 234 red grape 
homogenates; where the grapes were sampled using a nested repeated 
measures design (Figure 1). Red grapes of three varieties (A, B, C) were 
grown in two regions (R1 and R2) with varieties A and B replicated (in 
different vineyards) twice in region R1 and thrice in R2, and variety C 
replicated once in each region. Further more, each variety/region/ 
vineyard combination was replicate four times. The grapes where frozen 
for 0, 1, 3, 6 and 12 months before being homogenized then measured 
using a FOSS NIRSystems6500 instrument (400-2500nm). The spectra 
were truncated to 400-2448nm and then normalized via the SNV 
transform [1]. Figure 2 shows the spectra in the visible and NIR range of 
red grape homogenates. 
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Figure 1. Experimental design. Fixed effects and random effects are 

indicated in parenthesis as (F) and (R) respectively. Nested factors are 
indicated by | and are nested within the factor directly about. The astrix 
denotes the level the experimental unit that is repeatedly measured over 
time. 

 

Figure 2. Sample spectra in the visible and NIR range of red grape 
homogenates. 

3.2. Analysis 

Analysis of the NIR spectra was performed via a three step process: 

1. Extraction of NIR features via the adaptive wavelet (AWPT) 
transform. 

2. Projection of the NIR wavelet features (from step 1) onto a five 
dimensional space using PDM. Five dimensions were chosen as over 99% 
of the between group variation was represented within the first five 
dimensions. 

3. Analysis of the PDM scores (from step 2) via a multivariate mixed 
model (repeated multivariate measures) using the experimental design 
shown in Figure 1. 
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4. Results and Discussion 

Using a multivariate mixed model (MMM) on the spectral scores from 
the adaptive discrete wavelet transform/penalised discriminate analysis 
(ADWT/PDM) (mapping), the region, variety and time factors 
significantly affect the spectra while the vineyard factor did not. 
Consequently, the MMM was re-analysed without the vineyard factor 
(Table 2). In the revised ADWT/PDM MMM, interaction between variety 
and region factors significantly affect the between subjects while the 
interaction between time, variety and region significantly influences the 
within subject effects. 

To determine if the ADWT contributes to the ADWT/PDM MMM 
analysis, a PDM MMM was performed as a comparison. As with the 
ADWT/PDM MMM, the vineyard factor did not affect the spectra and was 
removed from further analysis (Table 3). A comparison between the 
ADWT/PDM and PDM MMMs’ can be made by comparing Tables 2 and 3. 
For the PDM MMM, only variety is significant as a between subjects. 

While the time∗variety interaction affect is the only significant within 

subject factor. Notably, for the PDM MMM, the region factor does not 
contribute a significant role where it does in the ADWT/PDM MMM. 
Consequently, in this case study, ADWT/PDM method identified more of 
the underlying experimental design factors than PDM alone. 

Regions within the spectrum, identifiable with the significant effects 
found in the ADWT/PDM MMM, are highlighted using: (i) scatter plots, 
(ii) univariate mixed models and, (iii) inversion of the PDM axes via the 
inverse discrete wavelet transform. Scatter-plots of the ADWT/PDM 
scores reveal clustering effects consistent with the experimental design 
(Figure 3) where: PDM axis 1 (PDA1) is largely dominated by variety and 

variety∗region affects (Figure 3a), PDA2 is predominated by time effects 

– with longer storage times resulting in lower PDA2 scores (Figure 3b) 
and, PDA3 scores are substantially influenced by region and 

region∗variety effects (Figure 3c). 

Univariate mixed models on each of the PDM axes, highlights the 
relative magnitude of the factor affects of the various factors form the 
experimental design – summarized in Table 4. Dominant effects for each 
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PDM axis, highlighted by the univariate mixed models, are similar to 
those identified by visual inspection of the PDM scatter-plots. So in 
correlating experimental affects with PDM axes, both scatter-plots and 
univariate mixed models can be used. 

The correlation of PDM axes with experimental affects makes it 
possible to identify regions in the spectrum related to the experimental 
design. Regions in the spectrum related to the PDM axes are found by 
transforming the PDM factor loadings using the inverse discrete wavelet 
transform (Figure 4). Hence, experimental affects can be identified with 
regions within the spectrum. For instance, the regions 295-975nm and 

1275-1325nm (Figure 4a) can be attributed to variety and variety∗region 

affects, since these factors predominate PDA1. 

Table 2. MANOVA table for final NIR adaptive wavelet PDM linear 
mixed model 

Effect Wilks’ Lambda 
Value 

F Hypothesis df Error df Sig. 

Between Subjects      

Intercept .056 77.554 5.000 23.000 .000 

Variety .000 1272.384 10.000 46.000 .000 

Region .003 1571.905 5.000 23.000 .000 

Variety* 

Region 

.002 2515.477 5.000 23.000 .000 

Within Subjects      

Time .000 4621.284 25.000 3.000 .000 

time* Variety .000 52.168 50.000 6.000 .000 

time* Region .006 21.554 25.000 3.000 .014 

time* Variety* 

      Region 

.002 58.362 25.000 3.000 .003 
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Table 3. MANOVA table for NIR PDM linear mixed model 

Effect Wilks’ Lambda 
Value 

F Hypothesis df Error df Sig. 

Between Subjects      

Intercept .041 143.724 5.000 23.000 .000 

Variety .000 1020.277 10.000 46.000 .000 

Region .675 1.345 10.000 23.000 .227 

Variety* 

Region 

.793 0.761 10.000 23.000 .665 

Within Subjects      

Time .000 2216.599 25.000 3.000 .000 

time* Variety .001 11.473 50.000 6.000 .000 

time* Region .078 1.134 50.000 3.000 .384 

time* Variety* 

      Region 

.058 1.383 50.000 3.000 .206 

Table 4. Main experimental design effects associated by PDM axis. Mean 
squared error (MSE) values shown in brackets 

AWPT PDM axis Associated experimental effects 

PDA1 Variety(18400), Variety∗Region(2656) 

PDA2 Time(4688), Region(2248), 

Variety(1619), Variety∗Region(2222) 

PDA3 Region(4426), Variety∗Region(4380) 
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(a) 

                
(b) 

Figure 3. AWPT PDM scores for the (a) discriminant functions PDA1 
and PDA2 and (b) discriminant functions PDA2 and PDA3. Legend: Time; 
Fresh = cyan, Overnight = red, 1 month = yellow, 3 months = green, 
6 months = blue, 12 months = black, Region: Solid fill = R1, Empty fill = 

R2; Variety: A = o, B = ▼, C = g. Blue lines represent the sample mean 

change in time. 
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5. Conclusion 

In this paper, we have illustrated firstly how a repeated measures 
design can be implemented using near infra-red spectra and secondly, 
with pre-processing via the adaptive wavelet transform, the analysis of 
the repeated measures design is more sensitive to the between subjects 
and within effects. 

In this study of red grape homogenates, by using the ADWT/PDM 
MMM, we were able to identify the main effects and interactions 
resulting from (a) the flow of time (b) the variety of the grape and (c) the 
region from which it grew. However, in the analysis where the AWT is 
absent, the region effect was found to be insignificant. This demonstrates 
the effectiveness of the AWT ability to elucidate information form the 
spectral pertinent to repeated measures experimental design. Additional 
to this, the particular wavelengths attributed to the repeated 
multivariate measures with the AWT were identified (600 to 1400nm). 

By using repeated multivariate measures, we can identify if and how 
the spectra are being affected by the flow of time or by other measurable 
factors such as variety effect. Furthermore, the information contained 
within the spectra can be better utilized through the application of 
adaptive wavelets, generated specifically to extract the information from 
the spectra pertinent to the multivariate analysis of the experimental 
design. 

 
(a) 
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(b) 

 
(c) 

Figure 4. Relative wavelength importance for (a) PDA1 (b) PDA2 and (c) 
PDA3. 
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