# THE LAPLACIAN SPECTRAL RADIUS STUDY OF A SPECIAL TYPE OF GRAPHS 

## SHUHUA YIN

Institute of Mathematics
Zhejiang Wanli University
Ningbo 315100, P. R. China
e-mail: quitshy@hotmail.com


#### Abstract

Let $G$ be a simple graph. Then the Laplacian matrix $L(G)=$ $D(G)-A(G)$ is the difference of the diagonal of vertex degrees and the $0-1$ adjacency matrix. In this paper, we investigate the effect on the Laplacian spectral radius of a graph by grafting an edge, and give some results of bicyclic graphs.


## 1. Introduction

Let $G=(V, E)$ be a simple graph with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ in which $n=|V|$ and $m=|E|$. Let $d\left(v_{i}\right)$ denote the degree of $v_{i} \in V, i=1,2, \ldots, n$, and $D=D(G)$ be the diagonal matrix of vertex degree. The matrix $A=A(G)$ denotes the adjacency matrix of the graph $G$, then the matrix $L(G)=D(G)-A(G)$ is called the Laplacian matrix of $G$. One may also describe $L(G)$, by means of its quadratic form:

$$
X^{T} L(G) X=\sum_{i<j, v_{i} v_{j} \in E(G)}\left(x_{i}-x_{j}\right)^{2},
$$

2000 Mathematics Subject Classification: 05C50.
Keywords and phrases: Laplacian matrix, Laplacian spectral radius, bicyclic graph, eigenvector.

Received March 1, 2007; Revised April 16, 2007
where $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$. So $L(G)$ is a symmetric, positive semidefinite matrix, denoted its eigenvalues by

$$
\mu_{1}(G) \geq \mu_{2}(G) \geq \cdots \geq \mu_{n}(G)=0
$$

The largest eigenvalue of $L(G)$ is called the Laplacian spectral radius of the graph $G$, denoted by $\mu(G)$.

The Laplacian spectral radius of graphs has many results $[1,2,3,4,5]$.
Lemma 1.1 [5]. Let $G$ be a graph on $n$ vertices with at least one edge. Then $\mu(G) \leq n$.

Lemma 1.2 [5]. Let $G$ be a connected graph on $n$ vertices with at least one edge. Then $\mu(G) \geq \Delta(G)+1$, where $\Delta(G)$ is the maximum degree of the graph $G$, with equality if and only if $\Delta(G)=n-1$.

Lemma 1.3 [5]. Let $G$ be a connected graph on $n$ vertices with at least one edge. Then $\mu(G) \leq d_{1}+d_{2}$, where $d_{1}, d_{2}$ are the maximum and the second maximum degree of the graph $G$.

## 2. The Laplacian Spectrum of Graphs $G_{s, t}$ and Graph $G_{s, t}^{\prime}$

In this section, we will consider the effect on the Laplacian spectral radius of a graph by grafting an edge. Guo [4] determined how the Laplacian spectral radius behaves when the graph is perturbed by adding or grafting edges (Figure 1).


Figure 1. $G_{k, l}$ and $G_{k-1, l+1}$.

Lemma 2.1 [4]. Let $G$ be a connected graph on $n \geq 2$ vertices and $v$ be a vertex of $G$. If $l \geq k \geq 1$, then $\mu\left(G_{k-1, l+1}\right) \geq \mu\left(G_{k, l}\right)$, with equality if and only if there exists a unit eigenvector of $G_{k, l}$ corresponding to $\mu\left(G_{k, l}\right)$ taking the value 0 on vertex $v$.

Let $G_{s, t}$ denote the graph that is satisfied for conditions as follows: $v_{s}, v_{t} \in V\left(G_{s, t}\right), v_{s} v_{t} \notin E\left(G_{s, t}\right), d\left(v_{s}\right)>d\left(v_{t}\right)$ and $v_{s}, v_{t}$ have the same neighboring vertex set $N$. Besides that, all the other vertices that are adjacent with $v_{s}$ and $v_{t}$ are dependent. $v_{0}$ is a dependent vertex of adjacent to $v_{t}$, and let $G_{s+1, t-1}$ be the graph obtained from $G_{s, t}$ by deleting the edge $v_{t} v_{0}$ and adding the edge $v_{s} v_{0}$ (Figure 2).


Figure 2. $G_{s, t}$ and $G_{s+1, t-1}$.
Now we consider the Laplacian spectrum of graph $G_{s, t}$.
Theorem 2.1. Let $X$ be a unit eigenvector of $G_{s, t}$ corresponding to $\mu\left(G_{s, t}\right)$, where $x_{v}$ corresponds to the vertex $v\left(v \in V\left(G_{s, t}\right)\right)$. Then we have $\left|x_{v_{s}}\right|>\left|x_{v_{t}}\right|$ and $x_{v_{s}} x_{v_{t}}>0$.

Proof. By the definition of Laplacian matrix of graph $G$, we have $L\left(G_{s, t}\right) X=\mu\left(G_{s, t}\right) X$ and

$$
\begin{align*}
& {\left[d\left(v_{s}\right)-\mu\left(G_{s, t}\right)\right] x_{v_{s}}=\sum_{v_{i} \in N} x_{v_{i}}+\frac{\left[d\left(v_{s}\right)-|N|\right] x_{v_{s}}}{1-\mu\left(G_{s, t}\right)}}  \tag{1}\\
& {\left[d\left(v_{t}\right)-\mu\left(G_{s, t}\right)\right] x_{v_{t}}=\sum_{v_{i} \in N} x_{v_{i}}+\frac{\left[d\left(v_{t}\right)-|N|\right] x_{v_{t}}}{1-\mu\left(G_{s, t}\right)}} \tag{2}
\end{align*}
$$

By (1)-(2), we have

$$
\begin{equation*}
\left[\mu^{2}(G)-\left(1+d\left(v_{t}\right)\right) \mu\left(G_{s, t}\right)+|N|\right]\left(x_{v_{s}}-x_{v_{t}}\right)=\mu\left(G_{s, t}\right)\left[d\left(v_{s}\right)-d\left(v_{t}\right)\right] x_{s} \tag{3}
\end{equation*}
$$

According to Lemma 1.2 we have obtained $\mu^{2}\left(G_{s, t}\right)-\left(1+d\left(v_{t}\right)\right) \mu\left(G_{s, t}\right)$ $+|N|>0$, so $\left|x_{v_{s}}\right|>\left|x_{v_{t}}\right|$.

By (3) we have

$$
\begin{align*}
& \left(\mu^{2}\left(G_{s, t}\right)-\left(1+d\left(v_{s}\right)\right) \mu\left(G_{s, t}\right)+|N|\right) x_{v_{s}} \\
= & \left(\mu^{2}\left(G_{s, t}\right)-\left(1+d\left(v_{t}\right)\right) \mu\left(G_{s, t}\right)+|N|\right) x_{v_{t}} \tag{4}
\end{align*}
$$

Also note that $\mu^{2}\left(G_{s, t}\right)-\left(1+d_{v_{t}}\right) \mu\left(G_{s, t}\right)+|N|>0 \quad$ and $\mu^{2}\left(G_{s, t}\right)$ $-\left(1+d_{v_{s}}\right) \mu(G)+|N|>0$, so $x_{v_{s}} x_{v_{t}}>0$.

This completes the proof.
Applying Theorem 2.1, we can prove
Theorem 2.2. $\mu\left(G_{s, t}\right)<\mu\left(G_{s+1, t-1}\right)$.
Proof. Let $X$ be a unit eigenvector of $G_{s, t}$ corresponding to $\mu(G)$.
Then

$$
\begin{aligned}
X^{T} L\left(G_{s+1, t-1}\right) X & =X^{T} L\left(G_{s, t}\right) X+\left(x_{v_{s}}-x_{v_{0}}\right)^{2}-\left(x_{v_{t}}-x_{v_{0}}\right)^{2} \\
& =X^{T} L\left(G_{s, t}\right) X+\left(x_{v_{s}}-x_{v_{t}}\right)\left(x_{v_{s}}+x_{v_{t}}-2 x_{v_{0}}\right)
\end{aligned}
$$

since $\left[1-\mu\left(G_{s, t}\right)\right] x_{v_{0}}=x_{v_{t}}$, so $x_{v_{0}} x_{v_{t}}<0$. And by Theorem 2.1, we have $\left(x_{v_{s}}-x_{v_{t}}\right)\left(x_{v_{s}}+x_{v_{t}}-2 x_{v_{0}}\right)>0$, so $X^{T} L\left(G_{s+1, t-1}\right) X>X^{T} L\left(G_{s, t}\right) X$, then
we obtain

$$
\mu\left(G_{s+1, t-1}\right)=\max _{\|Y\|=1, Y^{T} e=0} Y^{T} L\left(G_{s+1, t-1}\right) Y>X^{T} L\left(G_{s, t}\right) X=\mu\left(G_{s, t}\right) .
$$

This completes the proof.
Let $G_{s, t}^{\prime}$ denote the graph that is satisfied for conditions as follows: $v_{s}, v_{t} \in V, v_{s} v_{t} \in E\left(G_{s, t}^{\prime}\right), d\left(v_{s}\right)>d\left(v_{t}\right)$ and $v_{s}, v_{t}$ have the same neighboring vertex set $N$. Besides that, all the other vertices that are adjacent with $v_{s}$ and $v_{t}$ are dependent, but $d\left(v_{s}\right) \neq \Delta\left(G_{s, t}^{\prime}\right)$. $v_{0}$ is a dependent vertex of adjacent to $v_{t}$, and let $G_{s+1, t-1}^{\prime}$ be the graph obtained from $G_{s, t}^{\prime}$ by deleting the edges $v_{t} v_{0}$ and adding the edges $v_{s} v_{0}$ (Figure 3).


Figure 3. $G_{s, t}^{\prime}$ and $G_{s+1, t-1}^{\prime}$.
By the same way, we can get a corollary as follows:
Corollary 2.1. $\mu\left(G_{s, t}^{\prime}\right)<\mu\left(G_{s+1, t-1}^{\prime}\right)$.

## 3. The Laplacian Spectral Radius of a Type of Bicyclic Graphs

Bicyclic graphs are connected graphs in which the number of edges equals the number of vertices plus one.

Denote by $C_{p}$ the cycle with $n$ vertices. Let $A_{p+q-1}(p, q)$ be the bicyclic graph obtained from two vertex-disjoint cycles $C_{p}$ and $C_{q}$ by identifying vertices $u_{0}$ of $C_{p}$ and $v_{0}$ of $C_{q}$. Bicyclic graph $A_{n}(p, q)$ can be obtained from $A_{p+q-1}(p, q)$ by attaching trees to some vertices of $A_{p+q-1}(p, q)$ and $\left|V\left[A_{n}(p, q)\right]\right|=n$. Specially, the bicyclic graph $S_{n}(p, q)$ obtained from $A_{p+q-1}(p, q)$ by attaching a star graph $K_{1, n-p-q-1}$ to the vertex $u_{0}$ (Figure 4).

$S_{n}(p, q)$

$S_{n}(3,3)$

Figure 4. $S_{n}(p, q)$ and $S_{n}(3,3)$.
Applying Lemmas $1.2,1.3$, we easily obtain Corollary 3.1, 3.2.
Corollary 3.1. $\mu\left(S_{n}(3,3)\right)=n \geq \mu\left(A_{n}(p, q)\right)$, the equality holds if and only if $A_{n}(p, q)$ is isomorphic to $S_{n}(3,3)$.

Corollary 3.2. $\mu\left(S_{n}(p-1, q)\right)>\mu\left(S_{n}(p, q)\right)$, where $p \geq 4$.
Proof. The maximum degree of $S_{n}(p, q)$ is $n-p-q+5$ and the second largest is 2 . From Lemmas 1.2 and 1.3, we have $n-p-q+6$ $\leq \mu\left(S_{n}(p, q)\right) \leq n-p-q+7$. Clearly, $n-p-q+7 \leq \mu\left(S_{n}(p-1, q)\right)$ $\leq n-p-q+8$.

This completes the proof.

Let graph $A_{n}^{0}(3,3)$ (Figure 5) be a bicyclic graph, $d(u)=\Delta\left(A_{n}^{0}(3,3)\right)$ and $d\left(v_{s}\right)>d\left(v_{t}\right), v_{t} v_{0} \in E\left(A_{n}^{0}(3,3)\right)$. $A_{n}^{1}(3,3)$ obtained from $A_{n}^{0}(3,3)$ by deleting edge $v_{t} v_{0}$ and adding edge $v_{s} v_{0}$.


$A_{n}^{1}(3,3)$

Figure 5. $A_{n}^{0}(3,3)$ and $A_{n}^{1}(3,3)$.
By Corollary 2.1, we obtained
Corollary 3.3. $\mu\left(A_{n}^{1}(3,3)\right)>\mu\left(A_{n}^{0}(3,3)\right)$.

## References

[1] W. N. Anderson and T. D. Morley, Eigenvalues of the Laplacian of a graph, Linear and Multilinear Algebra 18 (1985), 141-145.
[2] D. Cvetkovic and P. Rowlinson, The largest eigenvalues of graph, A survey, Linear and Multilinear Algebra 28 (1990), 3-33.
[3] K. C. Das, An improved upper bound for Laplacian graph eigenvalues, Linear Algebra Appl. 368 (2003), 269-278.
[4] J. M. Guo, The effect on the Laplacian spectral radius of a graph by adding or grafting edges, Linear Algebra Appl. 413 (2006), 59-71.
[5] R. Merris, Laplacian matrices of graphs, A survey, Linear Algebra Appl. 197-198 (1994), 143-176.

