Far East Journal of Applied Mathematics

Volume 29, Number 2, November 2007, Pages 241-247 Published online: October 6, 2007 This paper is available online at http://www.pphmj.com © 2007 Pushpa Publishing House

THE LAPLACIAN SPECTRAL RADIUS STUDY OF A SPECIAL TYPE OF GRAPHS

SHUHUA YIN

Institute of Mathematics Zhejiang Wanli University Ningbo 315100, P. R. China e-mail: quitshy@hotmail.com

Abstract

Let G be a simple graph. Then the Laplacian matrix L(G) = D(G) - A(G) is the difference of the diagonal of vertex degrees and the 0-1 adjacency matrix. In this paper, we investigate the effect on the Laplacian spectral radius of a graph by grafting an edge, and give some results of bicyclic graphs.

1. Introduction

Let G=(V,E) be a simple graph with vertex set $V=\{v_1,v_2,...,v_n\}$ and edge set $E=\{e_1,e_2,...,e_m\}$ in which n=|V| and m=|E|. Let $d(v_i)$ denote the degree of $v_i\in V,\,i=1,2,...,n$, and D=D(G) be the diagonal matrix of vertex degree. The matrix A=A(G) denotes the adjacency matrix of the graph G, then the matrix L(G)=D(G)-A(G) is called the *Laplacian matrix of G*. One may also describe L(G), by means of its quadratic form:

$$X^{T}L(G)X = \sum_{i < j, v_{i}v_{j} \in E(G)} (x_{i} - x_{j})^{2},$$

2000 Mathematics Subject Classification: 05C50.

Keywords and phrases: Laplacian matrix, Laplacian spectral radius, bicyclic graph, eigenvector.

Received March 1, 2007; Revised April 16, 2007

where $X = (x_1, x_2, ..., x_n)^T$. So L(G) is a symmetric, positive semidefinite matrix, denoted its eigenvalues by

$$\mu_1(G) \ge \mu_2(G) \ge \cdots \ge \mu_n(G) = 0.$$

The largest eigenvalue of L(G) is called the Laplacian spectral radius of the graph G, denoted by $\mu(G)$.

The Laplacian spectral radius of graphs has many results [1, 2, 3, 4, 5].

Lemma 1.1 [5]. Let G be a graph on n vertices with at least one edge. Then $\mu(G) \leq n$.

Lemma 1.2 [5]. Let G be a connected graph on n vertices with at least one edge. Then $\mu(G) \geq \Delta(G) + 1$, where $\Delta(G)$ is the maximum degree of the graph G, with equality if and only if $\Delta(G) = n - 1$.

Lemma 1.3 [5]. Let G be a connected graph on n vertices with at least one edge. Then $\mu(G) \leq d_1 + d_2$, where d_1 , d_2 are the maximum and the second maximum degree of the graph G.

2. The Laplacian Spectrum of Graphs $G_{s,t}$ and Graph $G'_{s,t}$

In this section, we will consider the effect on the Laplacian spectral radius of a graph by grafting an edge. Guo [4] determined how the Laplacian spectral radius behaves when the graph is perturbed by adding or grafting edges (Figure 1).

Figure 1. $G_{k,l}$ and $G_{k-1,l+1}$.

Lemma 2.1 [4]. Let G be a connected graph on $n \ge 2$ vertices and v be a vertex of G. If $l \ge k \ge 1$, then $\mu(G_{k-1,l+1}) \ge \mu(G_{k,l})$, with equality if and only if there exists a unit eigenvector of $G_{k,l}$ corresponding to $\mu(G_{k,l})$ taking the value 0 on vertex v.

Let $G_{s,t}$ denote the graph that is satisfied for conditions as follows: $v_s, v_t \in V(G_{s,t}), v_s v_t \notin E(G_{s,t}), d(v_s) > d(v_t)$ and v_s, v_t have the same neighboring vertex set N. Besides that, all the other vertices that are adjacent with v_s and v_t are dependent. v_0 is a dependent vertex of adjacent to v_t , and let $G_{s+1,t-1}$ be the graph obtained from $G_{s,t}$ by deleting the edge $v_t v_0$ and adding the edge $v_s v_0$ (Figure 2).

Figure 2. $G_{s,t}$ and $G_{s+1,t-1}$.

Now we consider the Laplacian spectrum of graph $G_{s,t}$.

Theorem 2.1. Let X be a unit eigenvector of $G_{s,t}$ corresponding to $\mu(G_{s,t})$, where x_v corresponds to the vertex $v(v \in V(G_{s,t}))$. Then we have $|x_{v_s}| > |x_{v_t}|$ and $x_{v_s}x_{v_t} > 0$.

Proof. By the definition of Laplacian matrix of graph G, we have $L(G_{s,t})X=\mu(G_{s,t})X$ and

$$[d(v_s) - \mu(G_{s,t})]x_{v_s} = \sum_{v_i \in N} x_{v_i} + \frac{[d(v_s) - |N|]x_{v_s}}{1 - \mu(G_{s,t})},$$
(1)

$$[d(v_t) - \mu(G_{s,t})]x_{v_t} = \sum_{v_i \in N} x_{v_i} + \frac{[d(v_t) - |N|]x_{v_t}}{1 - \mu(G_{s,t})}.$$
 (2)

By (1)-(2), we have

$$[\mu^{2}(G) - (1 + d(v_{t}))\mu(G_{s,t}) + |N|](x_{v_{s}} - x_{v_{t}}) = \mu(G_{s,t})[d(v_{s}) - d(v_{t})]x_{s}.$$
(3)

According to Lemma 1.2 we have obtained $\mu^2(G_{s,t}) - (1+d(v_t))\mu(G_{s,t}) + |N| > 0$, so $|x_{v_s}| > |x_{v_t}|$.

By (3) we have

$$(\mu^{2}(G_{s,t}) - (1 + d(v_{s}))\mu(G_{s,t}) + |N|)x_{v_{s}}$$

$$= (\mu^{2}(G_{s,t}) - (1 + d(v_{t}))\mu(G_{s,t}) + |N|)x_{v_{t}}.$$
(4)

Also note that $\mu^2(G_{s,t}) - (1 + d_{v_t})\mu(G_{s,t}) + |N| > 0$ and $\mu^2(G_{s,t}) - (1 + d_{v_s})\mu(G) + |N| > 0$, so $x_{v_s}x_{v_t} > 0$.

This completes the proof.

Applying Theorem 2.1, we can prove

Theorem 2.2. $\mu(G_{s,t}) < \mu(G_{s+1,t-1})$.

Proof. Let X be a unit eigenvector of $G_{s,t}$ corresponding to $\mu(G)$. Then

$$\begin{split} X^T L(G_{s+1,t-1}) X &= X^T L(G_{s,t}) X + (x_{v_s} - x_{v_0})^2 - (x_{v_t} - x_{v_0})^2 \\ &= X^T L(G_{s,t}) X + (x_{v_s} - x_{v_t}) (x_{v_s} + x_{v_t} - 2x_{v_0}), \end{split}$$

since $[1 - \mu(G_{s,t})]x_{v_0} = x_{v_t}$, so $x_{v_0}x_{v_t} < 0$. And by Theorem 2.1, we have $(x_{v_s} - x_{v_t})(x_{v_s} + x_{v_t} - 2x_{v_0}) > 0$, so $X^T L(G_{s+1,t-1})X > X^T L(G_{s,t})X$, then

we obtain

$$\mu(G_{s+1,\,t-1}) = \max_{\parallel \, Y \, \parallel = 1, \, \, Y^T e = 0} Y^T L(G_{s+1,\,t-1}) Y \, > \, X^T L(G_{s,\,t}) X \, = \, \mu(G_{s,\,t}).$$

This completes the proof.

Let $G'_{s,t}$ denote the graph that is satisfied for conditions as follows: $v_s, v_t \in V, \ v_s v_t \in E(G'_{s,t}), \ d(v_s) > d(v_t)$ and v_s, v_t have the same neighboring vertex set N. Besides that, all the other vertices that are adjacent with v_s and v_t are dependent, but $d(v_s) \neq \Delta(G'_{s,t})$. v_0 is a dependent vertex of adjacent to v_t , and let $G'_{s+1,t-1}$ be the graph obtained from $G'_{s,t}$ by deleting the edges $v_t v_0$ and adding the edges $v_s v_0$ (Figure 3).

Figure 3. $G'_{s,t}$ and $G'_{s+1,t-1}$.

By the same way, we can get a corollary as follows:

Corollary 2.1.
$$\mu(G'_{s,t}) < \mu(G'_{s+1,t-1})$$
.

3. The Laplacian Spectral Radius of a Type of Bicyclic Graphs

Bicyclic graphs are connected graphs in which the number of edges equals the number of vertices plus one.

Denote by C_p the cycle with n vertices. Let $A_{p+q-1}(p,q)$ be the bicyclic graph obtained from two vertex-disjoint cycles C_p and C_q by identifying vertices u_0 of C_p and v_0 of C_q . Bicyclic graph $A_n(p,q)$ can be obtained from $A_{p+q-1}(p,q)$ by attaching trees to some vertices of $A_{p+q-1}(p,q)$ and $|V[A_n(p,q)]| = n$. Specially, the bicyclic graph $S_n(p,q)$ obtained from $A_{p+q-1}(p,q)$ by attaching a star graph $K_{1,n-p-q-1}$ to the vertex u_0 (Figure 4).

Figure 4. $S_n(p, q)$ and $S_n(3, 3)$.

Applying Lemmas 1.2, 1.3, we easily obtain Corollary 3.1, 3.2.

Corollary 3.1. $\mu(S_n(3,3)) = n \ge \mu(A_n(p,q))$, the equality holds if and only if $A_n(p,q)$ is isomorphic to $S_n(3,3)$.

Corollary 3.2. $\mu(S_n(p-1, q)) > \mu(S_n(p, q)), \text{ where } p \ge 4.$

Proof. The maximum degree of $S_n(p,q)$ is n-p-q+5 and the second largest is 2. From Lemmas 1.2 and 1.3, we have $n-p-q+6 \le \mu(S_n(p,q)) \le n-p-q+7$. Clearly, $n-p-q+7 \le \mu(S_n(p-1,q)) \le n-p-q+8$.

This completes the proof.

Let graph $A_n^0(3,3)$ (Figure 5) be a bicyclic graph, $d(u) = \Delta(A_n^0(3,3))$ and $d(v_s) > d(v_t)$, $v_t v_0 \in E(A_n^0(3,3))$. $A_n^1(3,3)$ obtained from $A_n^0(3,3)$ by deleting edge $v_t v_0$ and adding edge $v_s v_0$.

Figure 5. $A_n^0(3, 3)$ and $A_n^1(3, 3)$.

By Corollary 2.1, we obtained

Corollary 3.3. $\mu(A_n^1(3, 3)) > \mu(A_n^0(3, 3))$.

References

- [1] W. N. Anderson and T. D. Morley, Eigenvalues of the Laplacian of a graph, Linear and Multilinear Algebra 18 (1985), 141-145.
- [2] D. Cvetkovic and P. Rowlinson, The largest eigenvalues of graph, A survey, Linear and Multilinear Algebra 28 (1990), 3-33.
- [3] K. C. Das, An improved upper bound for Laplacian graph eigenvalues, Linear Algebra Appl. 368 (2003), 269-278.
- [4] J. M. Guo, The effect on the Laplacian spectral radius of a graph by adding or grafting edges, Linear Algebra Appl. 413 (2006), 59-71.
- [5] R. Merris, Laplacian matrices of graphs, A survey, Linear Algebra Appl. 197-198 (1994), 143-176.