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Abstract

It is proved that if M = Cp(Z), p is an odd prime, and G is a finite group

with the same order components of M, then G = M.
1. Introduction

If G is a finite group, then we define the prime graph I'(G) as follows:

its vertices are the primes dividing the order of G, and two vertices p and
q are joined by an edge if and only if there is an element in G of order pq.
We denote the set of all connected components of graph I'(G) by T'(G) =

{n;(G), for i =1, 2, ..., ¢(G)}, where #(G) is the number of connected
components of T'(G), and if G is of even order we always assume 2 in

71 (G). We also denote the set of all primes dividing n by n(n), where n is
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a natural number. Obviously |G| can be expressed as a product of
my, mg, ..., my), where m; is a positive integer with n(m;) = m;(G). All
m; are called the order components of G. Let OC(G) = {my, my, ..., myc)}

be the set of order components of G. The order components of non-abelian
simple groups having at least two prime graph components have been

attained in [4].

Some simple groups can be characterized by their order components,
such as a finite simple group with at least three prime graph components
[3], sporadic simple groups [4], Suzuki-Ree groups [6], Gy(q), where

g =0 (mod 3) [5], Eg(q) [1], PSLy(q) [7], 3D4(q) [8]. *D,(3). 9<n =
2" +1# p [9], 2D,,1(2), 5<p=2™ -1 [24], A,, where p and p -2
are primes [12], PSL(5, q) [13], PSL(3, q), where ¢ is an odd prime
power [14], PSL(3, q) for q = 2" [15], F,(q), where g is even [16],
Cy(q), where ¢ >5 [17], PSUs(q) [18], PSU(3, q) for q >5 [19],
2D4 (q@) [20], 2E6(q) [22], Eg(g) [21]. In this paper we continue this work
and shall prove the following theorem:

Theorem. Let M = C,(2), p be an odd prime. If a finite group G has

the same order components of M, then G = M.
2. Preliminary Results

Lemma 1 [4, Lemma 6). If t(G) > 2, H is a m; subgroup of G, and

H < G, then []1S) _mi | (H|-1)

1, j#1
Lemma 2 [2, Theorem 2]. Let G be a 2-Frobenius group of even order.
Then t(G) = 2, G has a normal series 1 < H < K < G such that | K/H |
=my, |H|-|G/K|=m, |G/K[I(K/H|-1), |G/K|| ¢ K/H |), and H
is nilpotent.
Lemma 3 [25, Lemma 3]. If M is a simple group with t(M) =2, G is
a finite group and OC(G) = OC(M), then one of the following holds:



C,(2) CAN BE CHARACTERIZED BY ITS ORDER ... 207

(1) G is a Frobenius group or 2-Frobenius group.

(2) G has a normal series 1 < H < K < G such that H is a nilpotent
ny -group, K/H is a non-abelian simple group, the odd order component
of M is equal to one of those of K/H, G/K is a cyclic m-group, and
| G/K]| || Out(K/H)|.

Lemma 4 [11, Remark]. The only solution of the equation p™ —q" =1,
where p, q are primes and m, n > 1, is 32 -23 = 1.

Lemma 5 [26]. Let p be a prime and n be a natural number, n > 2.
Then there exists a prime divisor r of p" —1 which does not divide
p™ -1 for any natural number m < n, except n =6, p=2 or n =2,

p +1 is a power of 2. Such r is called a primitive prime divisor of p”* — 1.
Of course a primitive prime divisor of p” —1 cannot divide p” +1 or
p™ -1 for n { m.

Lemma 6 [23, Lemma 1]. If n > 6 is a natural number, then there

n+l

exist at least s(n) primes p; such that < p;<n:

s(n) = 6 for n > 49;
s(n) =5 for 42 < n < 47,
s(n) = 4 for 38 < n < 41;
s(n) = 3 for 18 < n < 37,
s(n) =2 for 14 < n <17,
s(n) =1 for 6 < n <13.

Lemma 7. Let p be a prime, q >1 be a natural number e =

min{d : p|(@® -1)}, ¢°=1+p'k, ptk t be a natural number

satisfying t = p’u and p { u. If p > 2 or r > 2, then p"**| (¢* -1).
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Proof.
et 1 _ LY 1 AT ¢ l T\
g -1=0+p'k) 1—tpk+2i=2(ij(pk).
If s=0,then ptt, p" g% -1.

t .
If s>0, by calculation we can prove that p’ ™™ |(,j(prk)l for
i

2 <i<t, hence p"**| (g% -1).
So we have that p"** | (% -1). 0

Lemma 8. Set q > 1 is a natural number, s = H?zl (qi -1), pisa
prime, p|s. We denote the power of p in the standard factorization of s by

s,. e=min{d: plg? -1}, ¢ =1+ pk, ptk If p>2 orr>2 then

-
_np_
p-1
sp <qP.
e} a
ra+z. —_—
n a ; J=1[ J:l
Proof. Set a = [;} w= Hizl(qel ~1), hence, s, =w, =p p
s @D
<p P71 <qgP?! byLemmaT7and p>2orr > 2. O
Lemma 9. Let q be an odd natural number, s = H?Il (@' -1). Then
so < g
Proof. Set 2" | g —1. We divide the proof into two cases based on r is
1 or not.

Case 1. When r =1,

- H;(qi b= szl,zu(qi _1)'H::1,2fj(qj D
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For 2|i, set v=¢q%, v=1+2"k, 21k clearly r > 2, hence, the

power of 2 in the standard factorization of H?:12|i(qi -1)=

n

HB} ' —1) is less than qb]2 by Lemma 8. For 2 t j, we have that

n+l

2] ¢’ -1, so 2{ 2 }"H;zﬂ,zu(qj -1).

5 5]
Hence sy < 28 2 Jgl2) < ¢157,

0 n
(3]

Case 2. When r # 1, by Lemma 7, we have that sy = 2

<2 . 2" < g . 2" < ¢! since r # 1. O

Definition 1. Let ¢ and f be expressions of integers with integral
coefficients. If f|a and (f, a/f) = 1, then we say that fis a Hall factor of

a.

Lemma 10 [10, Theorem 1]. If q is a power of a prime number,
c= H?ZI (% -1) or (¢" J_rl)~H?;11(q2i —1), then there exists a Hall
factor f of ¢ satisfying:

(V) If n > 23, then f > ¢

() If n = 22, then f >q™;

(3)If 18 < n < 21, then f > ¢°";
(4)If 16 < n < 17, then [ > ¢°";

(5) If 14 < n < 15, then f > ¢*".

n-1
. .. -1
And if the standard factorization of f = I I;_l rlfk, then r,fk < q—l
- q-
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3. Proof of the Theorem

Proof. Because M = C,(2), and G has the same order components

with M, so the even order component of G is
m =22 @+ D[] @¥ -1)
1 i=1 ’

the odd order component of G is mqg = 2P —1.

We divide the proof into 11 cases based on Lemma 3 and Tables 1-4 in
[4].
Case 1. G cannot be a Frobenius group or a 2-Frobenius group.

Subcase 1.1. If G is a Frobenius group with Frobenius kernel H and
complement K, then |H|=m; and |K|=my since |k|<|h|. There

exists a primitive prime divisor r of 22P _1 since p is an odd prime. Let
S, € Syl.(H), obviously |S,||(2” +1) and S, <G. Furthermore,
| S, |= 1 (mod my) by Lemma 1, which is impossible.

Subcase 1.2. If G is a 2-Frobenius group, then there is a normal
series 1 < H < K < G such that H is a nilpotent m; group, | K/H | = mg,
|G/K || (K/H|-1)=2P -2, it follows that (2P +1)||H |. Similarly to
Subcase 1.1, we can show that it is impossible.

From Subcase 1.1, Subcase 1.2 and Lemma 3, we have the following

properties:
(1) There is a normal series 1 < H < K < G such that K/H is a

simple group, H and G/K are m; group and H is nilpotent.

(2) The odd order component of G is one of those of K/H,
consequently ¢(K/H) > 2. Hence K/H may be one of the simple groups
listed in Tables 1-4 in [4].

Case 2. K/H 2 E7(2), E;(3), A5(2), As(4), 245(2), 2Eg(2), 2F,(2)

or one of the sporadic simple groups.
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If p=3, only Ay(2), Ay(4), 245(2), Myy, Jy, HS or Jy in the
above-mentioned groups has an odd order component 7. If K/H = Ay(2),
|G/K || |Out(K/H)| = 2, furthermore there exists a Sylow-5 subgroup of
H denoted by Sj, and | S5| =5, S5 < G, hence 5 =1 (mod 7) by Lemma
1, which is a contradiction. Similarly we can prove that K/H # Ay(4).
And the order of 2A45(2), My, J1, Jo or HS cannot divides the order of
C5(2).

Similarly we can prove that p cannot be 5 or 7.

If p > 11, then the odd order component of G is greater than any odd

order components of any one of above-mentioned groups.

Case 3. K/H # A,,.

If K/H=zA,, then 2°-1=n n-1 or n-2. Thus

A [|A,]]|C,(2)]. When p =5, there exist at least three primes
| | A, [ 1]Cp

2P 1

p; satisfying 2°71 < p; < 2P =1 by Lemma 6. But there exist at most
2 .

two prime divisors of |C,(2)|= 27 Hle (2% -1) between 2P~ and

2P —1 a contradiction.

When p =3, only A;, Ag or Ag has an odd order component 7
equal to the odd order component of C3(2). If K/H = A;, then
|G/K |||Out(K/H)| = 2, so there exists a Sylow-3 subgroup S3 of H,
and | Sg| =9, S3 < G. Furthermore 9 =1 (mod 7) by Lemma 1, which is
a contradiction. | Ag | and | Ag | cannot divides the order of C3(2).

Cased. K/H # A,(q) and K/H % %A,(q).

Subcase 4.1. If K/H = A(q), then 2P -1=¢q, ¢+1 or (g +1)/2.
Whenever in any case we have that ¢ < 2°*!, hence | K/H | < 23(p+1),

Assume g = r/ we have that |G/K | < 2p + 2 since |G/K ||| Out(K/H)|
=2f. If p+1214, there exists a Hall factor g of |G|=
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92 .

2P Hf:l (2% -1) such that g > 2% and g. <2P -1 for any prime
r'|g by Lemma 10. Clearly (g,|H|)# 1. Let prime p’ be satisfy
P'l(g,|H|) and S,y € Syl,y(G). S, is a normal m -subgroup of G and
|Sp

< 2P —1, which contradicts Lemma 1.

By trivial calculation, we can show that p cannot be 3, 5, 7 or 11.

Subcase 4.2. If K/H =Ay(q), q-1|p'-1, then 2P -1-=
(@ -1)/(@-1), ¢” = 2.

If p' > 7, then qp'(p'+1)/2 > 23P which implies ¢ is a power of 2 by
Lemmas 8 and 9. Suppose ¢ = 2", hence (27 —-1)/(2" -1) =27 -1,
2P = 9™P _9r _9P 19 g=2 p=p, so |G/K||H|=|G||K/H|

2p(p—1)/2H f’zl (28 +1)

= , which is impossible by Lemma 5 since p’ > 7.
P |

By calculation we can prove that p’ cannot be 3 or 5.

Subcase 4.3. Similarly to Subcase 4.2 we can show that K/H %
Ay 1(q) and K/H % *A,(q).

Case 5. K/H # D,(q).

If K/H = D,(5), p'>5, then (59 -1)/4 =2P -1, 5 =2P*2_3

> 2P+ Hence 5P(P-1) 5 o4p , which contradicts Lemma 8.

If K/H = Dy(3), p' 25, then 27 -1 = (37" —1)/2, which contradicts
Lemma 4.

Similarly we can prove that K/H # D,y,;1(3), p’ > 3.
Case 6. K/H % Eg(q), Eoa), Fu(a), *Eg(q) or *Fy(q).
If K/H = Eg(q), then (¢%+¢®>+1)/8,¢-1)=2°-1, ¢° > 2P,

q36 > 24p, hence q is a power of 2 by Lemma 8. Let ¢ = 2", we have that

267 4 937 = 3.2P _ 4 or 2P — 2, which is impossible.
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Similarly we can prove that K/H % Eg(q), Fy(q), 2Eg(q), 2F,(q) or
2G2(Q)-
Case 7. K/H % 2By(q), q = 22F*1,
If K/H = ?By(q), q = 22k+1 then 2P —1=q++/2¢ +1 or ¢ — 1.

If 22 -1=q+42¢9 +1, then 0=q++2¢ =2 —2=2 (mod 4), a

contradiction.
If 22 -1 = q -1, then ¢q = 27,

2 -1 .
272+ [ @% -1
1=

G/K|-|H|=
(G/K || H| TR

Similarly to Subcase 4.2 we can get a contradiction.
Case 8. K/H = 2Gy(q), q = 3%, K/H 2 G5(q), K/H 2 >Dy(q).
Subcase 8.1. If K/H = Gy(q), 3|q, then 27 —-1= g +q+1, q(g £1)
= 2(2p_1 —-1). Let g = 3", from Lemma 7, we have that 2 - 31 p-1,
22P 1 —1)> 271 5 928" S 33 If 153 then 202771 —1)>3% >

q3 > q2 + g, a contradiction. By calculation we have that r cannot be 1 or

2. Similarly we can prove K/H % 2Gy(q), q = g2k+1,

Subcase 8.2. Similarly to Subcase 4.1, we can show that K/H %
Go(q), 3lq +1.

Subcase 8.3. If K/H = Gy(q), 3|qg—1, then 27 -1=¢%—q+1,
q2 > 2P Tt follows that q6 > 23P hence q 1s a power of 2 by Lemma 8,

which is impossible. Similarly we can prove that K/H # 3D4 (q).
Case 9. K/H % ’D,(q).

Subcase 9.1. If K/H = 2Dp'+1(2), p % 2™ -1, then 2 —1=2P —1,

p=r,]| 2Derl(2)| | |Cp(2)|, which is impossible.
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Subcase 9.2. If K/H = sz'(S), 5<p =2"+1, then 2P -1=
(37714 1)/2 or (37 +1)/4.

If 2P 1= (37 +1)/4, then 37 > 2P, 3 (P~1) 5 947 which contradicts

Lemma 8.
If (3"1 +1)/2 = 2P —1, then 3" + 3 = 2P*! which is impossible.
Similarly we can prove that K/H % 2Dp/(S), 5<p #2"+1; K/H ¢
2D,(3), n =2™ +1 is not a prime.

Subcase 9.3. If K/H = 2Dpr+1(2), 3<p' =2"+1, then 2P -1 =27 +1

or 2P*1 41, which is impossible.

Subcase 9.4. If K/H = 2D,(q), 4 <n =2", then (¢" +1)/(2, ¢ - 1)
=2P —1. Clearly ¢ cannot be a power of 2. Furthermore ¢" > 2P,

qn(n_l) > 23P which contradicts Lemma 8.

Case 10. K/H # B,(q).

Subcase 10.1. If K/H = B,,(3), then (37 -1)/2=2P -1, 37 =2P"1 _1,
which contradicts Lemma 4.

Subcase 10.2. Similarly to Subcase 9.4, we have that K/H # B,(q),
4<n=2"

Case 11. From Case 1 to Case 10 and Lemma 3, we have K/H
isomorphic to one of C,(q).

Because C,(3) has the same order components of B, (3), so

K/H # C,/(3). Similarly we can prove that K/H # C,(q), 4 <n = 2",

So K/H # Cy(2), 2P -1 = 2P _1. Hence p =p', G/K =1, H =1,
which implies that G = M, this is the end of the proof. O



(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

(12]

(13]

(14]

(15]

[16]

C,(2) CAN BE CHARACTERIZED BY ITS ORDER ... 215

References

Guiyun Chen, A new characterization of Eg(g), J. Southwest China Normal Univ.
21(3) (1995), 215-217.

Guiyun Chen, On Frobenius and 2-Frobenius group, J. Southwest China Normal
Univ. 20(5) (1995), 485-487 (in Chinese).

Guiyun Chen, On Thompson’s conjecture, J. Algebra 15 (1996), 184-193.

Guiyun Chen, A new characterization of sporadic groups, Algebra Collog. 3(1) (1996),
49-58.

Guiyun Chen, A new characterization of G9(q), [g =0 mod (3)], J. Southwest
China Normal Univ. 22(1) (1996), 47-51.

Guiyun Chen, A new characterization of Suzuki-Ree group, Sci. China Ser. A 40(8)
(1997), 807-812.

Guiyun Chen, A new characterization of PSLy(q), Southeast Asian Bull. Math. 22
(1998), 257-263.

Guiyun Chen, Characterization of 3D4 (g), Southeast Asian Bull. Math. 25 (2001),
389-401.

Guiyun Chen and Huaguo Shi, an(S) (9<n=2"+1not a prime) can be

characterized by its order components, J. Appl. Math. Comput. 19(1-2) (2005), 353-
362.

Guiyun Chen and Huaguo Shi, On Hall factors of several special integral
expressions, J. Southwest China Normal Univ. 30(5) (2005), 763-770.

P. Crescenzo, A diophantine equation which arises in the theory finite groups, Adv.
Math. 17 (1975), 25-29.

A. Tranmanesh and S. H. Alavi, A new characterization of A, where p and p -2
are primes, Korean J. Comput. Appl. Math. 8(3) (2001), 665-673.

A. Iranmanesh and S. H. Alavi, A characterization of simple groups PSL(5, ¢), Bull.
Austral. Math. Soc. 65 (2002), 211-222.

A. ITranmanesh, S. H. Alavi and B. Khosravi, A characterization of PSL(3, q), where
g is an odd prime power, J. Pure Appl. Algebra 170(2-3) (2002), 243-254.

A. Tranmanesh, S. H. Alavi and B. Khosravi, A characterization of PSL(3, q) for

q = 2", Acta Math. Sinica (Engl. Ser.) 18(3) (2002), 463-472.

A. Tranmanesh and B. Khosravi, A characterization of Fy(q), where g is even, Far

East J. Math. Sci. (FIMS) 2(6) (2000), 853-859.



216

(17]

(18]

[19]

(20]

[21]

(22]

(23]

[24]

(25]

(26]

HUAGUO SHI and GUIYUN CHEN

A. Iranmanesh and B. Khosravi, A characterization of Cy(g) where ¢ > 5,
Comment. Math. Univ. Carolin. 43(1) (2002), 9-21.

A. Tranmanesh and B. Khosravi, A characterization of PSUj5(g), Int. Math. J. 3(2)
(2003), 129-141.

A. Tranmanesh, B. Khosravi and S. H. Alavi, A characterization of PSU(3, q) for
q > 5, Southeast Asian Bull. Math. 26(2) (2002), 33-44.

B. Khosravi, A characterization of 2D4 (g), Pure Math. Appl. 12(4) (2001), 415-424.

Behrooz Khosravi and Bahman Khosravi, A characterization of Eg(q), Algebras
Groups Geom. 19(2) (2002), 225-243.

Behrooz Khosravi and Bahman Khosravi, A characterization of 2E6 (), Kumamoto
J. Math. 16 (2003), 1-11.

A. S. Kondtratev and V. D. Mazurove, Recognition of alternating groups if prime
degree from their element orders, Siberian Math. J. 41(2) (2000), 294-302.

Huaguo Shi and Guiyun Chen, 2Dp+1 (2) (5 < p # 2™ -1) can be characterized by
its order components, Kumamoto J. Math. 18 (2005), 1-8.

J. S. Williams, Prime graph components of finite group, J. Algebra 69 (1981), 487-
513.

K. Zsigmody, Zur theories deb potencieses, Monarch. Math. Phys. 3 (1982), 265-284.



