$C_{p}(2)$ CAN BE CHARACTERIZED BY ITS ORDER COMPONENTS

HUAGUO SHI ${ }^{1,2}$ and GUIYUN CHEN ${ }^{1}$
${ }^{1}$ School of Mathematics and Statistics
Southwest China Normal University
Chongqing, 400715, P. R. China
${ }^{2}$ Sichuan Vocational and Technical College
Sichuan, 629000, P. R. China
e-mail: shihuaguo@126.com

Abstract

It is proved that if $M=C_{p}(2), p$ is an odd prime, and G is a finite group with the same order components of M, then $G \cong M$.

1. Introduction

If G is a finite group, then we define the prime graph $\Gamma(G)$ as follows: its vertices are the primes dividing the order of G, and two vertices p and q are joined by an edge if and only if there is an element in G of order $p q$. We denote the set of all connected components of graph $\Gamma(G)$ by $T(G)=$ $\left\{\pi_{i}(G)\right.$, for $\left.i=1,2, \ldots, t(G)\right\}$, where $t(G)$ is the number of connected components of $\Gamma(G)$, and if G is of even order we always assume 2 in $\pi_{1}(G)$. We also denote the set of all primes dividing n by $\pi(n)$, where n is 2000 Mathematics Subject Classification: 20D05, 20D60.

Keywords and phrases: finite groups, prime graphs, order components.
Submitted by Pu Zhang
Received June 22, 2007
a natural number. Obviously $|G|$ can be expressed as a product of $m_{1}, m_{2}, \ldots, m_{t(G)}$, where m_{i} is a positive integer with $\pi\left(m_{i}\right)=\pi_{i}(G)$. All m_{i} are called the order components of G. Let $O C(G)=\left\{m_{1}, m_{2}, \ldots, m_{t(G)}\right\}$ be the set of order components of G. The order components of non-abelian simple groups having at least two prime graph components have been attained in [4].

Some simple groups can be characterized by their order components, such as a finite simple group with at least three prime graph components [3], sporadic simple groups [4], Suzuki-Ree groups [6], $G_{2}(q)$, where $q \equiv 0(\bmod 3)[5], E_{8}(q)[1], P S L_{2}(q)[7],{ }^{3} D_{4}(q)[8],{ }^{2} D_{n}(3), 9 \leq n=$ $2^{m}+1 \neq p$ [9], ${ }^{2} D_{p+1}(2), \quad 5 \leq p \neq 2^{m}-1 \quad[24], A_{p}$, where p and $p-2$ are primes [12], $\operatorname{PSL}(5, q)$ [13], $\operatorname{PSL}(3, q)$, where q is an odd prime power [14], $\operatorname{PSL}(3, q)$ for $q=2^{n}$ [15], $F_{4}(q)$, where q is even [16], $C_{2}(q)$, where $q>5$ [17], $P S U S_{5}(q)$ [18], $\operatorname{PSU}(3, q)$ for $q>5$ [19], ${ }^{2} D_{4}(q)$ [20], ${ }^{2} E_{6}(q)$ [22], $E_{6}(q)$ [21]. In this paper we continue this work and shall prove the following theorem:

Theorem. Let $M=C_{p}(2), p$ be an odd prime. If a finite group G has the same order components of M, then $G \cong M$.

2. Preliminary Results

Lemma 1 [4, Lemma 6]. If $t(G) \geq 2, H$ is a π_{i} subgroup of G, and $H \triangleleft G$, then $\prod_{j=1, j \neq i}^{t(G)} m_{i} \mid(|H|-1)$.

Lemma 2 [2, Theorem 2]. Let G be a 2-Frobenius group of even order. Then $t(G)=2, G$ has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that $|K / H|$ $=m_{2},|H| \cdot|G / K|=m_{1},|G / K||(|K / H|-1),|G / K|| \varphi(|K / H|)$, and H is nilpotent.

Lemma 3 [25, Lemma 3]. If M is a simple group with $t(M)=2, G$ is a finite group and $O C(G)=O C(M)$, then one of the following holds:
(1) G is a Frobenius group or 2-Frobenius group.
(2) G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that H is a nilpotent π_{1}-group, K / H is a non-abelian simple group, the odd order component of M is equal to one of those of $K / H, G / K$ is a cyclic π_{1}-group, and $|G / K|||\operatorname{Out}(K / H)|$.

Lemma 4 [11, Remark]. The only solution of the equation $p^{m}-q^{n}=1$, where p, q are primes and $m, n>1$, is $3^{2}-2^{3}=1$.

Lemma 5 [26]. Let p be a prime and n be a natural number, $n \geq 2$. Then there exists a prime divisor r of $p^{n}-1$ which does not divide $p^{m}-1$ for any natural number $m \leq n$, except $n=6, \quad p=2$ or $n=2$, $p+1$ is a power of 2. Such r is called a primitive prime divisor of $p^{n}-1$.

Of course a primitive prime divisor of $p^{n}-1$ cannot divide $p^{n}+1$ or $p^{m}-1$ for $n \nmid m$.

Lemma 6 [23, Lemma 1]. If $n \geq 6$ is a natural number, then there exist at least $s(n)$ primes p_{i} such that $\frac{n+1}{2}<p_{i}<n$:

$$
\begin{aligned}
& s(n)=6 \text { for } n \geq 49 \\
& s(n)=5 \text { for } 42 \leq n \leq 47 \\
& s(n)=4 \text { for } 38 \leq n \leq 41 \\
& s(n)=3 \text { for } 18 \leq n \leq 37 \\
& s(n)=2 \text { for } 14 \leq n \leq 17 \\
& s(n)=1 \text { for } 6 \leq n \leq 13
\end{aligned}
$$

Lemma 7. Let p be a prime, $q>1$ be a natural number $e=$ $\min \left\{d: p \mid\left(q^{d}-1\right)\right\}, \quad q^{e}=1+p^{r} k, \quad p \nmid k, \quad t \quad$ be a natural number satisfying $t=p^{s} u$ and $p \nmid u$. If $p>2$ or $r>2$, then $p^{r+s} \|\left(q^{e t}-1\right)$.

Proof.

$$
q^{e t}-1=\left(1+p^{r} k\right)^{t}-1=t p^{r} k+\sum_{i=2}^{t}\binom{t}{i}\left(p^{r} k\right)^{i}
$$

If $s=0$, then $p \nmid t, p^{r} \| q^{e t}-1$.
If $s>0$, by calculation we can prove that $p^{r+s+1} \left\lvert\,\binom{ t}{i}\left(p^{r} k\right)^{i}\right.$ for $2 \leq i \leq t$, hence $p^{r+s} \|\left(q^{e t}-1\right)$.

So we have that $p^{r+s} \|\left(q^{e t}-1\right)$.

Lemma 8. Set $q>1$ is a natural number, $s=\prod_{i=1}^{n}\left(q^{i}-1\right), p$ is a prime, $p \mid s$. We denote the power of p in the standard factorization of s by $s_{p} . e=\min \left\{d: p \mid q^{d}-1\right\}, q^{e}=1+p^{r} k, p \nmid k$. If $p>2$ or $r>2$, then $s_{p}<q^{\frac{n p}{p-1}}$.

Proof. Set $a=\left[\frac{n}{e}\right], w=\prod_{i=1}^{a}\left(q^{e i}-1\right)$, hence, $s_{p}=w_{p}=p^{r a+\sum_{j=1}^{\infty}\left[\frac{a}{p^{j}}\right]}$ $\leq p^{r a+\frac{a}{p-1}}<q^{\frac{n p}{p-1}}$ by Lemma 7 and $p>2$ or $r>2$.

Lemma 9. Let q be an odd natural number, $s=\prod_{i=1}^{n}\left(q^{i}-1\right)$. Then $s_{2}<q^{1.5 n}$.

Proof. Set $2^{r} \| q-1$. We divide the proof into two cases based on r is 1 or not.

Case 1. When $r=1$,

$$
s=\prod_{i=1}^{n}\left(q^{i}-1\right)=\prod_{i=1,2 \mid i}^{n}\left(q^{i}-1\right) \cdot \prod_{j=1,2 \nmid j}^{n}\left(q^{j}-1\right)
$$

For $2 \mid i$, set $v=q^{2}, v=1+2^{r} k, 2 \nmid k$, clearly $r \geq 2$, hence, the power of 2 in the standard factorization of $\prod_{i=1,2 \mid i}^{n}\left(q^{i}-1\right)=$ $\prod_{i=1}^{\left[\frac{n}{2}\right]}{ }_{\left(v^{i}-1\right)}$ is less than $q^{\left[\frac{n}{2}\right] \cdot 2}$ by Lemma 8. For $2 \nmid j$, we have that $2 \| q^{j}-1$, so $2^{\left[\frac{n+1}{2}\right]} \| \prod_{j=1,2 \nmid j}^{n}\left(q^{j}-1\right)$.

Hence $s_{2}<2^{\left[\frac{n+1}{2}\right]} q^{\left[\frac{n}{2}\right] \cdot 2}<q^{1.5 n}$.
Case 2. When $r \neq 1$, by Lemma 7, we have that $s_{2}=2^{r n+\sum_{j=1}^{\infty}\left[\frac{n}{2^{j}}\right]}$ $<2^{r n} \cdot 2^{n}<q^{n} \cdot 2^{n}<q^{1.5 n}$ since $r \neq 1$.

Definition 1. Let a and f be expressions of integers with integral coefficients. If $f \mid a$ and $(f, a / f)=1$, then we say that f is a Hall factor of a.

Lemma 10 [10, Theorem 1]. If q is a power of a prime number, $c=\prod_{i=1}^{n}\left(q^{2 i}-1\right)$ or $\left(q^{n} \pm 1\right) \cdot \prod_{i=1}^{n-1}\left(q^{2 i}-1\right)$, then there exists a Hall factor of c satisfying:
(1) If $n \geq 23$, then $f>q^{8 n}$;
(2) If $n=22$, then $f>q^{7 n}$;
(3) If $18 \leq n \leq 21$, then $f>q^{6 n}$;
(4) If $16 \leq n \leq 17$, then $f>q^{5 n}$;
(5) If $14 \leq n \leq 15$, then $f>q^{4 n}$.

And if the standard factorization of $f=\prod_{k=1}^{t} r_{k}^{\delta_{k}}$, then $r_{k}^{\delta_{k}} \leq \frac{q^{n-1}-1}{q-1}$.

3. Proof of the Theorem

Proof. Because $M=C_{p}(2)$, and G has the same order components with M, so the even order component of G is

$$
m_{1}=2^{p^{2}}\left(2^{p}+1\right) \prod_{i=1}^{p-1}\left(2^{2 i}-1\right)
$$

the odd order component of G is $m_{2}=2^{p}-1$.
We divide the proof into 11 cases based on Lemma 3 and Tables 1-4 in [4].

Case 1. G cannot be a Frobenius group or a 2 -Frobenius group.
Subcase 1.1. If G is a Frobenius group with Frobenius kernel H and complement K, then $|H|=m_{1}$ and $|K|=m_{2}$ since $|k|<|h|$. There exists a primitive prime divisor r of $2^{2 p}-1$ since p is an odd prime. Let $S_{r} \in S y l_{r}(H), \quad$ obviously $\quad\left|S_{r}\right| \mid\left(2^{p}+1\right)$ and $\quad S_{r} \unlhd G$. Furthermore, $\left|S_{r}\right| \equiv 1\left(\bmod m_{2}\right)$ by Lemma 1 , which is impossible.

Subcase 1.2. If G is a 2 -Frobenius group, then there is a normal series $1 \unlhd H \unlhd K \unlhd G$ such that H is a nilpotent π_{1} group, $|K / H|=m_{2}$, $|G / K| \mid(|K / H|-1)=2^{p}-2$, it follows that $\left(2^{p}+1\right)||H|$. Similarly to Subcase 1.1, we can show that it is impossible.

From Subcase 1.1, Subcase 1.2 and Lemma 3, we have the following properties:
(1) There is a normal series $1 \unlhd H \unlhd K \unlhd G$ such that K / H is a simple group, H and G / K are π_{1} group and H is nilpotent.
(2) The odd order component of G is one of those of K / H, consequently $t(K / H) \geq 2$. Hence K / H may be one of the simple groups listed in Tables 1-4 in [4].

Case 2. $K / H \nRightarrow E_{7}(2), E_{7}(3), A_{2}(2), A_{2}(4),{ }^{2} A_{5}(2),{ }^{2} E_{6}(2),{ }^{2} F_{4}(2)^{\prime}$ or one of the sporadic simple groups.

If $p=3$, only $A_{2}(2), A_{2}(4),{ }^{2} A_{5}(2), M_{22}, J_{1}, H S$ or J_{2} in the above-mentioned groups has an odd order component 7 . If $K / H \cong A_{2}(2)$, $|G / K|||\operatorname{Out}(K / H)|=2$, furthermore there exists a Sylow-5 subgroup of H denoted by S_{5}, and $\left|S_{5}\right|=5, S_{5} \triangleleft G$, hence $5 \equiv 1(\bmod 7)$ by Lemma 1 , which is a contradiction. Similarly we can prove that $K / H \not \equiv A_{2}(4)$. And the order of ${ }^{2} A_{5}(2), M_{22}, J_{1}, J_{2}$ or $H S$ cannot divides the order of $C_{3}(2)$.

Similarly we can prove that p cannot be 5 or 7 .
If $p \geq 11$, then the odd order component of G is greater than any odd order components of any one of above-mentioned groups.

Case 3. $K / H \nRightarrow A_{n}$.
If $K / H \cong A_{n}$, then $2^{p}-1=n, \quad n-1$ or $n-2$. Thus $\left|A_{2^{p}-1}\right|\left|\left|A_{n}\right|\right|\left|C_{p}(2)\right|$. When $p \geq 5$, there exist at least three primes p_{i} satisfying $2^{p-1}<p_{i}<2^{p}-1$ by Lemma 6 . But there exist at most two prime divisors of $\left|C_{p}(2)\right|=2^{p^{2}} \prod_{i=1}^{p}\left(2^{2 i}-1\right)$ between 2^{p-1} and $2^{p}-1$ a contradiction.

When $p=3$, only A_{7}, A_{8} or A_{9} has an odd order component 7 equal to the odd order component of $C_{3}(2)$. If $K / H \cong A_{7}$, then $|G / K|\left||\operatorname{Out}(K / H)|=2\right.$, so there exists a Sylow-3 subgroup S_{3} of H, and $\left|S_{3}\right|=9, S_{3} \triangleleft G$. Furthermore $9 \equiv 1(\bmod 7)$ by Lemma 1 , which is a contradiction. $\left|A_{8}\right|$ and $\left|A_{9}\right|$ cannot divides the order of $C_{3}(2)$.

Case 4. $K / H \not \equiv A_{n}(q)$ and $K / H \not \equiv{ }^{2} A_{n}(q)$.
Subcase 4.1. If $K / H \cong A_{1}(q)$, then $2^{p}-1=q, q \pm 1$ or $(q \pm 1) / 2$. Whenever in any case we have that $q \leq 2^{p+1}$, hence $|K / H|<2^{3(p+1)}$. Assume $q=r^{f}$ we have that $|G / K|<2 p+2$ since $|G / K|||O u t(K / H)|$ $=2 f$. If $p+1 \geq 14$, there exists a Hall factor g of $|G|=$
$2^{p^{2}} \prod_{i=1}^{p}\left(2^{2 i}-1\right)$ such that $g>2^{4 p}$ and $g_{r^{\prime}} \leq 2^{p}-1$ for any prime $r^{\prime} \mid g$ by Lemma 10. Clearly $(g,|H|) \neq 1$. Let prime p^{\prime} be satisfy $p^{\prime} \mid(g,|H|)$ and $S_{p^{\prime}} \in S y l_{p^{\prime}}(G)$. $S_{p^{\prime}}$ is a normal π_{1}-subgroup of G and $\left|S_{p^{\prime}}\right|<2^{p}-1$, which contradicts Lemma 1.

By trivial calculation, we can show that p cannot be $3,5,7$ or 11 .
Subcase 4.2. If $K / H \cong A_{p^{\prime}}(q), \quad q-1 \mid p^{\prime}-1$, then $2^{p}-1=$ $\left(q^{p^{\prime}}-1\right) /(q-1), q^{p^{\prime}} \geq 2^{p}$.

If $p^{\prime} \geq 7$, then $q^{p^{\prime}\left(p^{\prime}+1\right) / 2}>2^{3 p}$, which implies q is a power of 2 by Lemmas 8 and 9. Suppose $q=2^{r}$, hence $\left(2^{r p^{\prime}}-1\right) /\left(2^{r}-1\right)=2^{p}-1$, $2^{r p^{\prime}}=2^{r+p}-2^{r}-2^{p}+2, \quad q=2, \quad p=p^{\prime}, \quad$ so $|G / K| \cdot|H|=|G| /|K / H|$ $=\frac{2^{p(p-1) / 2} \prod_{i=1}^{p}\left(2^{i}+1\right)}{2^{p+1}-1}$, which is impossible by Lemma 5 since $p^{\prime} \geq 7$.

By calculation we can prove that p^{\prime} cannot be 3 or 5 .
Subcase 4.3. Similarly to Subcase 4.2 we can show that $K / H \nsubseteq$ $A_{p^{\prime}-1}(q)$ and $K / H \not{ }^{2} A_{n}(q)$.

Case 5. $K / H \not \approx D_{n}(q)$.
If $K / H \cong D_{p^{\prime}}(5), \quad p^{\prime} \geq 5$, then $\left(5^{p^{\prime}}-1\right) / 4=2^{p}-1, \quad 5^{p^{\prime}}=2^{p+2}-3$ $>2^{p+1}$. Hence $5^{p^{\prime}\left(p^{\prime}-1\right)}>2^{4 p}$, which contradicts Lemma 8 .

If $K / H \cong D_{p^{\prime}}(3), \quad p^{\prime} \geq 5$, then $2^{p}-1=\left(3^{p^{\prime}}-1\right) / 2$, which contradicts Lemma 4.

Similarly we can prove that $K / H \not \equiv D_{p^{\prime}+1}(3), p^{\prime} \geq 3$.
Case 6. $K / H \nRightarrow E_{8}(q), E_{6}(q), F_{4}(q),{ }^{2} E_{6}(q)$ or ${ }^{2} F_{4}(q)$.
If $K / H \cong E_{6}(q)$, then $\left(q^{6}+q^{3}+1\right) /(3, q-1)=2^{p}-1, \quad q^{9}>2^{p}$, $q^{36}>2^{4 p}$, hence q is a power of 2 by Lemma 8 . Let $q=2^{r}$, we have that $2^{6 r}+2^{3 r}=3 \cdot 2^{p}-4$ or $2^{p}-2$, which is impossible.

Similarly we can prove that $K / H \not \equiv E_{8}(q), F_{4}(q),{ }^{2} E_{6}(q),{ }^{2} F_{4}(q)$ or ${ }^{2} G_{2}(q)$.

Case 7. $K / H \not{ }^{2} B_{2}(q), q=2^{2 k+1}$.
If $K / H \cong{ }^{2} B_{2}(q), q=2^{2 k+1}$, then $2^{p}-1=q \pm \sqrt{2 q}+1$ or $q-1$.
If $2^{p}-1=q \pm \sqrt{2 q}+1$, then $0 \equiv q \pm \sqrt{2 q}=2^{p}-2 \equiv 2(\bmod 4), \quad$ a contradiction.

If $2^{p}-1=q-1$, then $q=2^{p}$,

$$
|G / K| \cdot|H|=\frac{2^{p^{2}-2 p}\left(2^{p}+1\right) \prod_{i=1}^{p-1}\left(2^{2 i}-1\right)}{2^{2 p}+1} .
$$

Similarly to Subcase 4.2 we can get a contradiction.
Case 8. $K / H \not{ }^{2} G_{2}(q), q=3^{2 k+1} ; K / H \nRightarrow G_{2}(q), K / H \not{ }^{3} D_{4}(q)$.
Subcase 8.1. If $K / H \cong G_{2}(q), 3 \mid q$, then $2^{p}-1=q^{2} \pm q+1, q(q \pm 1)$ $=2\left(2^{p-1}-1\right)$. Let $q=3^{r}$, from Lemma 7, we have that $2 \cdot 3^{r-1} \mid p-1$, $2\left(2^{p-1}-1\right)>2^{p-1}>2^{2.3^{r-1}}>3^{3^{r-1}}$. If $r \geq 3$, then $2\left(2^{p-1}-1\right) \geq 3^{3 r}>$ $q^{3}>q^{2} \pm q$, a contradiction. By calculation we have that r cannot be 1 or 2. Similarly we can prove $K / H \not{ }^{2} G_{2}(q), q=3^{2 k+1}$.

Subcase 8.2. Similarly to Subcase 4.1, we can show that $K / H \nRightarrow$ $G_{2}(q), 3 \mid q+1$.

Subcase 8.3. If $K / H \cong G_{2}(q), 3 \mid q-1$, then $2^{p}-1=q^{2}-q+1$, $q^{2}>2^{p}$. It follows that $q^{6}>2^{3 p}$, hence q is a power of 2 by Lemma 8, which is impossible. Similarly we can prove that $K / H \not{ }^{3} D_{4}(q)$.

Case 9. $K / H \not \#^{2} D_{n}(q)$.
Subcase 9.1. If $K / H \cong{ }^{2} D_{p^{\prime}+1}(2), p^{\prime} \neq 2^{m}-1$, then $2^{p^{\prime}}-1=2^{p}-1$, $p=p^{\prime},\left|{ }^{2} D_{p+1}(2)\right|| | C_{p}(2) \mid$, which is impossible.

Subcase 9.2. If $K / H \cong{ }^{2} D_{p^{\prime}}(3), \quad 5 \leq p^{\prime}=2^{m}+1$, then $2^{p}-1=$ $\left(3^{p^{\prime}-1}+1\right) / 2$ or $\left(3^{p^{\prime}}+1\right) / 4$.

If $2^{p}-1=\left(3^{p^{\prime}}+1\right) / 4$, then $3^{p^{\prime}}>2^{p}, 3^{p^{\prime}\left(p^{\prime}-1\right)}>2^{4 p}$, which contradicts Lemma 8.

If $\left(3^{n-1}+1\right) / 2=2^{p}-1$, then $3^{n-1}+3=2^{p+1}$, which is impossible.

Similarly we can prove that $K / H \not{ }^{2} D_{p^{\prime}}(3), 5 \leq p^{\prime} \neq 2^{n}+1 ; K / H \nsubseteq$ ${ }^{2} D_{n}(3), n=2^{m}+1$ is not a prime.

Subcase 9.3. If $K / H \cong{ }^{2} D_{p^{\prime}+1}(2), 3 \leq p^{\prime}=2^{n}+1$, then $2^{p}-1=2^{p^{\prime}}+1$ or $2^{p^{\prime}+1}+1$, which is impossible.

Subcase 9.4. If $K / H \cong{ }^{2} D_{n}(q), 4 \leq n=2^{m}$, then $\left(q^{n}+1\right) /(2, q-1)$ $=2^{p}-1$. Clearly q cannot be a power of 2 . Furthermore $q^{n}>2^{p}$, $q^{n(n-1)}>2^{3 p}$, which contradicts Lemma 8.

Case 10. $K / H \not \equiv B_{n}(q)$.
Subcase 10.1. If $K / H \cong B_{p^{\prime}}(3)$, then $\left(3^{p^{\prime}}-1\right) / 2=2^{p}-1,3^{p^{\prime}}=2^{p+1}-1$, which contradicts Lemma 4.

Subcase 10.2. Similarly to Subcase 9.4 , we have that $K / H \nRightarrow B_{n}(q)$, $4 \leq n=2^{m}$.

Case 11. From Case 1 to Case 10 and Lemma 3, we have K / H isomorphic to one of $C_{n}(q)$.

Because $C_{p^{\prime}}(3)$ has the same order components of $B_{p^{\prime}}(3)$, so $K / H \not \equiv C_{p^{\prime}}(3)$. Similarly we can prove that $K / H \not \equiv C_{n}(q), 4 \leq n=2^{m}$.

So $K / H \not \equiv C_{p^{\prime}}(2), 2^{p}-1=2^{p^{\prime}}-1$. Hence $p=p^{\prime}, G / K=1, \quad H=1$, which implies that $G \cong M$, this is the end of the proof.

References

[1] Guiyun Chen, A new characterization of $E_{8}(q)$, J. Southwest China Normal Univ. 21(3) (1995), 215-217.
[2] Guiyun Chen, On Frobenius and 2-Frobenius group, J. Southwest China Normal Univ. 20(5) (1995), 485-487 (in Chinese).
[3] Guiyun Chen, On Thompson's conjecture, J. Algebra 15 (1996), 184-193.
[4] Guiyun Chen, A new characterization of sporadic groups, Algebra Colloq. 3(1) (1996), 49-58.
[5] Guiyun Chen, A new characterization of $G_{2}(q), \quad[q \equiv 0 \bmod (3)]$, J. Southwest China Normal Univ. 22(1) (1996), 47-51.
[6] Guiyun Chen, A new characterization of Suzuki-Ree group, Sci. China Ser. A 40(8) (1997), 807-812.
[7] Guiyun Chen, A new characterization of $P S L_{2}(q)$, Southeast Asian Bull. Math. 22 (1998), 257-263.
[8] Guiyun Chen, Characterization of ${ }^{3} D_{4}(q)$, Southeast Asian Bull. Math. 25 (2001), 389-401.
[9] Guiyun Chen and Huaguo Shi, ${ }^{2} D_{n}(3)\left(9 \leq n=2^{m}+1\right.$ not a prime $)$ can be characterized by its order components, J. Appl. Math. Comput. 19(1-2) (2005), 353362.
[10] Guiyun Chen and Huaguo Shi, On Hall factors of several special integral expressions, J. Southwest China Normal Univ. 30(5) (2005), 763-770.
[11] P. Crescenzo, A diophantine equation which arises in the theory finite groups, Adv. Math. 17 (1975), 25-29.
[12] A. Iranmanesh and S. H. Alavi, A new characterization of A_{p} where p and $p-2$ are primes, Korean J. Comput. Appl. Math. 8(3) (2001), 665-673.
[13] A. Iranmanesh and S. H. Alavi, A characterization of simple groups $P S L(5, q)$, Bull. Austral. Math. Soc. 65 (2002), 211-222.
[14] A. Iranmanesh, S. H. Alavi and B. Khosravi, A characterization of PSL(3, q), where q is an odd prime power, J. Pure Appl. Algebra 170(2-3) (2002), 243-254.
[15] A. Iranmanesh, S. H. Alavi and B. Khosravi, A characterization of $\operatorname{PSL}(3, q)$ for $q=2^{n}$, Acta Math. Sinica (Engl. Ser.) 18(3) (2002), 463-472.
[16] A. Iranmanesh and B. Khosravi, A characterization of $F_{4}(q)$, where q is even, Far East J. Math. Sci. (FJMS) 2(6) (2000), 853-859.
[17] A. Iranmanesh and B. Khosravi, A characterization of $C_{2}(q)$ where $q>5$, Comment. Math. Univ. Carolin. 43(1) (2002), 9-21.
[18] A. Iranmanesh and B. Khosravi, A characterization of $P S U_{5}(q)$, Int. Math. J. 3(2) (2003), 129-141.
[19] A. Iranmanesh, B. Khosravi and S. H. Alavi, A characterization of $\operatorname{PSU}(3, q)$ for $q>5$, Southeast Asian Bull. Math. 26(2) (2002), 33-44.
$[20] \quad$ B. Khosravi, A characterization of ${ }^{2} D_{4}(q)$, Pure Math. Appl. 12(4) (2001), 415-424.
[21] Behrooz Khosravi and Bahman Khosravi, A characterization of $E_{6}(q)$, Algebras Groups Geom. 19(2) (2002), 225-243.
[22] Behrooz Khosravi and Bahman Khosravi, A characterization of ${ }^{2} E_{6}(q)$, Kumamoto J. Math. 16 (2003), 1-11.
[23] A. S. Kondtratev and V. D. Mazurove, Recognition of alternating groups if prime degree from their element orders, Siberian Math. J. 41(2) (2000), 294-302.
[24] Huaguo Shi and Guiyun Chen, ${ }^{2} D_{p+1}(2)\left(5 \leq p \neq 2^{m}-1\right)$ can be characterized by its order components, Kumamoto J. Math. 18 (2005), 1-8.
[25] J. S. Williams, Prime graph components of finite group, J. Algebra 69 (1981), 487513.
[26] K. Zsigmody, Zur theories deb potencieses, Monarch. Math. Phys. 3 (1982), 265-284.

