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Abstract

It is proved that if ( ),2pCM =  p is an odd prime, and G is a finite group

with the same order components of M, then .MG ≅

1. Introduction

If G is a finite group, then we define the prime graph ( )GΓ  as follows:

its vertices are the primes dividing the order of G, and two vertices p and

q are joined by an edge if and only if there is an element in G of order pq.

We denote the set of all connected components of graph ( )GΓ  by ( ) =GT

{ ( ) ( )},...,,2,1for, GtiGi =π  where ( )Gt  is the number of connected

components of ( ),GΓ  and if G is of even order we always assume 2 in

( ).1 Gπ  We also denote the set of all primes dividing n by ( ),nπ  where n is
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a natural number. Obviously G  can be expressed as a product of

( ),...,,, 21 Gtmmm  where im  is a positive integer with ( ) ( ).Gm ii π=π  All

im  are called the order components of G. Let ( ) { ( )}GtmmmGOC ...,,, 21=

be the set of order components of G. The order components of non-abelian
simple groups having at least two prime graph components have been
attained in [4].

Some simple groups can be characterized by their order components,

such as a finite simple group with at least three prime graph components

[3], sporadic simple groups [4], Suzuki-Ree groups [6], ( ),2 qG  where

( )3mod0≡q  [5], ( )qE8  [1], ( )qPSL2  [7], ( )qD4
3  [8], ( ),32

nD  =≤ n9

pm ≠+ 12  [9], ( ),21
2

+pD  125 −≠≤ mp  [24], ,pA  where p and 2−p

are primes [12], ( )qPSL ,5  [13], ( ),,3 qPSL  where q is an odd prime

power [14], ( )qPSL ,3  for nq 2=  [15], ( ),4 qF  where q is even [16],

( ),2 qC  where 5>q  [17], ( )qPSU5  [18], ( )qPSU ,3  for 5>q  [19],

( )qD4
2  [20], ( )qE6

2  [22], ( )qE6  [21]. In this paper we continue this work

and shall prove the following theorem:

Theorem. Let ( ),2pCM =  p be an odd prime. If a finite group G has

the same order components of M, then .MG ≅

2. Preliminary Results

Lemma 1 [4, Lemma 6]. If ( ) ,2≥Gt  H is a iπ  subgroup of G, and

,GH  then ( )( )∏ ≠=
−Gt

ijj i Hm
,1

.1|

Lemma 2 [2, Theorem 2]. Let G be a 2-Frobenius group of even order.

Then ( ) ,2=Gt  G has a normal series GKH1  such that HK

,2m=  ,1mKGH =⋅  ( ),1| −HKKG  ( ),| HKKG ϕ  and H

is nilpotent.

Lemma 3 [25, Lemma 3]. If M is a simple group with ( ) ,2=Mt  G is

a finite group and ( ) ( ),MOCGOC =  then one of the following holds:
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(1) G is a Frobenius group or 2-Frobenius group.

(2) G has a normal series GKH1  such that H is a nilpotent

1π -group, HK  is a non-abelian simple group, the odd order component

of M is equal to one of those of ,HK  KG  is a cyclic 1π -group, and

( ) .| HKOutKG

Lemma 4 [11, Remark]. The only solution of the equation ,1=− nm qp

where p, q are primes and ,1, >nm  is .123 32 =−

Lemma 5 [26]. Let p be a prime and n be a natural number, .2≥n

Then there exists a prime divisor r of 1−np  which does not divide

1−mp  for any natural number ,nm ≤  except ,6=n  2=p  or ,2=n

1+p  is a power of 2. Such r is called a primitive prime divisor of .1−np

Of course a primitive prime divisor of 1−np  cannot divide 1+np  or

1−mp  for .mn

Lemma 6 [23, Lemma 1]. If 6≥n  is a natural number, then there

exist at least ( )ns  primes ip  such that :
2

1
np

n
i <<+

( ) 6=ns  for ;49≥n

( ) 5=ns  for ;4742 ≤≤ n

( ) 4=ns  for ;4138 ≤≤ n

( ) 3=ns  for ;3718 ≤≤ n

( ) 2=ns  for ;1714 ≤≤ n

( ) 1=ns  for .136 ≤≤ n

Lemma 7. Let p be a prime, 1>q  be a natural number =e

{ ( )},1:min −| dqpd  ,1 kpq re +=  ,kp  t be a natural number

satisfying upt s=  and .up  If 2>p  or ,2>r  then ( ).1−+ etsr qp



www.p
phm

j.c
om

HUAGUO SHI and GUIYUN CHEN208

Proof.

( ) ( )∑ =





+=−+=−

t

i
irrtret kp

i

t
ktpkpq

2
.111

If ,0=s  then ,tp  .1−etr qp

If ,0>s  by calculation we can prove that ( )irsr kp
i

t
p 





++ 1  for

,2 ti ≤≤  hence ( ).1−+ etsr qp

So we have that ( ).1−+ etsr qp �

Lemma 8. Set 1>q  is a natural number, ( ),1
1∏ = −= n

i
iqs  p is a

prime, .sp |  We denote the power of p in the standard factorization of s by

.ps  { },1:min −|= dqpde  ,1 kpq re +=  .kp  If 2>p  or ,2>r  then

.1−< p
np

p qs

Proof. Set ,



=

e
na  ( ),1

1∏ =
−=

a
i

eiqw  hence, 
∑∞

= 










+

==
1j jp

ara

pp pws

11 −−
+

<≤ p
np

p
ara

qp  by Lemma 7 and 2>p  or .2>r �

Lemma 9. Let q be an odd natural number, ( ).1
1∏ = −= n

i
iqs  Then

.5.1
2

nqs <

Proof. Set .12 −qr  We divide the proof into two cases based on r is

1 or not.

Case 1. When ,1=r

( ) ( ) ( ).111
2,12,11 ∏∏∏ =|==

−⋅−=−=
n

jj
jn

ii
in

i
i qqqs
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For ,2 i|  set ,2qv =  ,21 kv r+=  ,2 k  clearly ,2≥r  hence, the

power of 2 in the standard factorization of ( ) =−∏ |=
n

ii
iq

2,1
1

( )∏ 





=
−2

1
1

n

i
iv  is less than 

2
2

⋅



n

q  by Lemma 8. For ,2 j  we have that

,12 −jq  so ( ).12
2,1

2
1

∏ =




 +

−n
jj

j
n

q

Hence .2 5.1
2

22
1

2
n

nn

qqs <<
⋅









 +

Case 2. When ,1≠r  by Lemma 7, we have that 
∑∞

= 



+

=
1 2

2 2
j j

nrn
s

nnnnrn qq 5.1222 <⋅<⋅<  since .1≠r �

Definition 1. Let a and f be expressions of integers with integral

coefficients. If af |  and ( ) ,1, =faf  then we say that f is a Hall factor of

a.

Lemma 10 [10, Theorem 1]. If q is a power of a prime number,

( )∏ =
−=

n
i

iqc
1

2 1  or ( ) ( ),11
1

1
2∏ −

=
−⋅±

n
i

in qq  then there exists a Hall

factor f of c satisfying:

(1) If ,23≥n  then ;8nqf >

(2) If ,22=n  then ;7nqf >

(3) If ,2118 ≤≤ n  then ;6nqf >

(4) If ,1716 ≤≤ n  then ;5nqf >

(5) If ,1514 ≤≤ n  then .4nqf >

And if the standard factorization of ,
1∏ =

δ= t
k k

krf  then .
1

11

−
−≤

−
δ

q
q

r
n

k
k
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3. Proof of the Theorem

Proof. Because ( ),2pCM =  and G has the same order components

with M, so the even order component of G is

( ) ( ),12122
1

1
2

1
2 ∏ −

=
−+=

p

i
ippm

the odd order component of G is .122 −= pm

We divide the proof into 11 cases based on Lemma 3 and Tables 1-4 in

[4].

Case 1. G cannot be a Frobenius group or a 2-Frobenius group.

Subcase 1.1. If G is a Frobenius group with Frobenius kernel H and

complement K, then 1mH =  and 2mK =  since .hk <  There

exists a primitive prime divisor r of 122 −p  since p is an odd prime. Let

( ),HSylS rr ∈  obviously ( )12| +p
rS  and .GSr  Furthermore,

≡rS  ( )2mod1 m  by Lemma 1, which is impossible.

Subcase 1.2. If G is a 2-Frobenius group, then there is a normal

series GKH1  such that H is a nilpotent 1π  group, ,2mHK =

( ) ,221| −=− pHKKG  it follows that ( ) .|12 Hp +  Similarly to

Subcase 1.1, we can show that it is impossible.

From Subcase 1.1, Subcase 1.2 and Lemma 3, we have the following

properties:

(1) There is a normal series GKH1  such that HK  is a

simple group, H and KG  are 1π  group and H is nilpotent.

(2) The odd order component of G is one of those of ,HK

consequently ( ) .2≥HKt  Hence HK  may be one of the simple groups

listed in Tables 1-4 in [4].

Case 2. ( ),27EHK ≅/  ( ),37E  ( ),22A  ( ),42A  ( ),25
2A  ( ),26

2E  ( )′24
2 F

or one of the sporadic simple groups.
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If ,3=p  only ( ),22A  ( ),42A  ( ),25
2A  ,22M  ,1J  HS or 2J  in the

above-mentioned groups has an odd order component 7. If ( ),22AHK ≅

( ) ,2| =HKOutKG  furthermore there exists a Sylow-5 subgroup of

H denoted by ,5S  and ,55 =S  ,5 GS  hence ( )7mod15 ≡  by Lemma

1, which is a contradiction. Similarly we can prove that ( ).42AHK ≅/

And the order of ( ),25
2 A  ,22M  ,1J  2J  or HS cannot divides the order of

( ).23C

Similarly we can prove that p cannot be 5 or 7.

If ,11≥p  then the odd order component of G is greater than any odd

order components of any one of above-mentioned groups.

Case 3. .nAHK ≅/

If ,nAHK ≅  then ,12 np =−  1−n  or .2−n  Thus

( ) .2||
12 pn CAA p −

 When ,5≥p  there exist at least three primes

ip  satisfying 122 1 −<<− p
i

p p  by Lemma 6. But there exist at most

two prime divisors of ( ) ( )∏ =
−= p

i
ip

pC
1

2 1222
2

 between 12 −p  and

12 −p  a contradiction.

When ,3=p  only ,7A  8A  or 9A  has an odd order component 7

equal to the odd order component of ( ).23C  If ,7AHK ≅  then

( ) ,2| =HKOutKG  so there exists a Sylow-3 subgroup 3S  of H,

and ,93 =S  .3 GS  Furthermore ( )7mod19 ≡  by Lemma 1, which is

a contradiction. 8A  and 9A  cannot divides the order of ( ).23C

Case 4. ( )qAHK n≅/  and ( ).2 qAHK n≅/

Subcase 4.1. If ( ),1 qAHK ≅  then ,12 qp =−  1±q  or ( ) .21±q

Whenever in any case we have that ,2 1+≤ pq  hence ( ).2 13 +< pHK

Assume frq =  we have that 22 +< pKG  since ( )HKOutKG |

.2f=  If ,141 ≥+p  there exists a Hall factor g of =G
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( )∏ =
−p

i
ip

1
2 122

2
 such that pg 42>  and 12 −≤′

p
rg  for any prime

gr |′  by Lemma 10. Clearly ( ) .1, ≠Hg  Let prime p′  be satisfy

( )Hgp ,|′  and ( ).GSylS pp ′′ ∈  pS ′  is a normal 1π -subgroup of G and

,12 −<′
p

pS  which contradicts Lemma 1.

By trivial calculation, we can show that p cannot be 3, 5, 7 or 11.

Subcase 4.2. If ( ),qAHK p′≅  ,11 −′|− pq  then =− 12p

( ) ( ),11 −−′ qq p  .2ppq ≥′

If ,7≥′p  then ( ) ,2321 pppq >+′′  which implies q is a power of 2 by

Lemmas 8 and 9. Suppose ,2rq =  hence ( ) ( ) ,121212 −=−−′ prpr

,22222 +−−= +′ prprpr  ,2=q  ,pp ′=  so HKGHKG =⋅

( ) ( )
,

12

122

1
1

21

−

+
=

+
=

− ∏
p

p
i

ipp

 which is impossible by Lemma 5 since .7≥′p

By  calculation we can prove that p′  cannot be 3 or 5.

Subcase 4.3. Similarly to Subcase 4.2 we can show that ≅/HK

( )qAp 1−′  and ( ).2 qAHK n≅/

Case 5. ( ).qDHK n≅/

If ( ),5pDHK ′≅  ,5≥′p  then ( ) ,12415 −=−′ pp  325 2 −= +′ pp

.2 1+> p  Hence ( ) ,25 41 ppp >−′′  which contradicts Lemma 8.

If ( ),3pDHK ′≅  ,5≥′p  then ( ) ,21312 −=− ′pp  which contradicts

Lemma 4.

Similarly we can prove that ( ),31+′≅/ pDHK  .3≥′p

Case 6. ( ),8 qEHK ≅/  ( ),6 qE  ( ),4 qF  ( )qE6
2  or ( ).4

2 qF

If ( ),6 qEHK ≅  then ( ) ( ) ,121,3136 −=−++ pqqq  ,29 pq >

,2436 pq >  hence q is a power of 2 by Lemma 8. Let ,2rq =  we have that

42322 36 −⋅=+ prr  or ,22 −p  which is impossible.
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Similarly we can prove that ( ),8 qEHK ≅/  ( ),4 qF  ( ),6
2 qE  ( )qF4

2  or

( ).2
2 qG

Case 7. ( ),2
2 qBHK ≅/  .2 12 += kq

If ( ),2
2 qBHK ≅  ,2 12 += kq  then 1212 +±=− qqp  or .1−q

If ,1212 +±=− qqp  then ( ),4mod22220 ≡−=±≡ pqq  a

contradiction.

If ,112 −=− qp  then ,2pq =

( ) ( )
.

12

12122

2

1

1
222

+

−+
=⋅

∏ −

=
−

p

p

i
ippp

HKG

Similarly to Subcase 4.2 we can get a contradiction.

Case 8. ( ),2
2 qGHK ≅/  ;3 12 += kq  ( ),2 qGHK ≅/  ( ).4

3 qDHK ≅/

Subcase 8.1. If ( ),2 qGHK ≅  ,3 q|  then ,112 2 +±=− qqp  ( )1±qq

( ).122 1 −= −p  Let ,3rq =  from Lemma 7, we have that ,132 1 −|⋅ − pr

( ) .322122
11 33.211 −−

>>>− −− rrpp  If ,3≥r  then ( ) >≥−− rp 31 3122

,23 qqq ±>  a contradiction. By calculation we have that r cannot be 1 or

2. Similarly we can prove ( ),2
2 qGHK ≅/  .3 12 += kq

Subcase 8.2. Similarly to Subcase 4.1, we can show that ≅/HK

( ),2 qG  .13 +|q

Subcase 8.3. If ( ),2 qGHK ≅  ,13 −|q  then ,112 2 +−=− qqp

.22 pq >  It follows that ,236 pq >  hence q is a power of 2 by Lemma 8,

which is impossible. Similarly we can prove that ( ).4
3 qDHK ≅/

Case 9. ( ).2 qDHK n≅/

Subcase 9.1. If ( ),21
2

+′≅ pDHK  ,12 −≠′ mp  then ,1212 −=−′ pp

,pp ′=  ( ) ( ) ,2|21
2

pp CD +  which is impossible.
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Subcase 9.2. If ( ),32
pDHK ′≅  ,125 +=′≤ mp  then =− 12p

( ) 213 1+−′p  or ( ) .413 +′p

If ( ) ,41312 +=− ′pp  then ,23 pp >′  ( ) ,23 41 ppp >−′′  which contradicts

Lemma 8.

If ( ) ,12213 1 −=+− pn  then ,233 11 +− =+ pn  which is impossible.

Similarly we can prove that ( ),32
pDHK ′≅/  ;125 +≠′≤ np  ≅/HK

( ),32
nD  12 += mn  is not a prime.

Subcase 9.3. If ( ),21
2

+′≅ pDHK  ,123 +=′≤ np  then 1212 +=− ′pp

or ,12 1 ++′p  which is impossible.

Subcase 9.4. If ( ),2 qDHK n≅  ,24 mn =≤  then ( ) ( )1,21 −+ qqn

.12 −= p  Clearly q cannot be a power of 2. Furthermore ,2pnq >

( ) ,231 pnnq >−  which contradicts Lemma 8.

Case 10. ( ).qBHK n≅/

Subcase 10.1. If ( ),3pBHK ′≅  then ( ) ,12213 −=−′ pp  ,123 1 −= +′ pp

which contradicts Lemma 4.

Subcase 10.2. Similarly to Subcase 9.4, we have that ( ),qBHK n≅/

.24 mn =≤

Case 11. From Case 1 to Case 10 and Lemma 3, we have HK

isomorphic to one of ( ).qCn

Because ( )3pC ′  has the same order components of ( ),3pB ′  so

( ).3pCHK ′≅/  Similarly we can prove that ( ),qCHK n≅/  .24 mn =≤

So ( ),2pCHK ′≅/  .1212 −=− ′pp  Hence ,pp ′=  ,1=KG  ,1=H

which implies that ,MG ≅  this is the end of the proof. �
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