$C_p(2)$ CAN BE CHARACTERIZED BY ITS ORDER COMPONENTS

$\mbox{HUAGUO} \mbox{ SHI}^{1,2}$ and $\mbox{GUIYUN} \mbox{ CHEN}^1$

¹School of Mathematics and Statistics Southwest China Normal University Chongqing, 400715, P. R. China

²Sichuan Vocational and Technical College Sichuan, 629000, P. R. China e-mail: shihuaguo@126.com

Abstract

It is proved that if $M=C_p(2)$, p is an odd prime, and G is a finite group with the same order components of M, then $G \cong M$.

1. Introduction

If G is a finite group, then we define the prime graph $\Gamma(G)$ as follows: its vertices are the primes dividing the order of G, and two vertices p and q are joined by an edge if and only if there is an element in G of order pq. We denote the set of all connected components of graph $\Gamma(G)$ by $T(G) = \{\pi_i(G), \text{ for } i=1, 2, ..., t(G)\}$, where t(G) is the number of connected components of $\Gamma(G)$, and if G is of even order we always assume 2 in $\pi_1(G)$. We also denote the set of all primes dividing n by $\pi(n)$, where n is

2000 Mathematics Subject Classification: 20D05, 20D60.

Keywords and phrases: finite groups, prime graphs, order components.

Submitted by Pu Zhang

Received June 22, 2007

© 2007 Pushpa Publishing House

a natural number. Obviously |G| can be expressed as a product of $m_1, m_2, ..., m_{t(G)}$, where m_i is a positive integer with $\pi(m_i) = \pi_i(G)$. All m_i are called the *order components* of G. Let $OC(G) = \{m_1, m_2, ..., m_{t(G)}\}$ be the set of order components of G. The order components of non-abelian simple groups having at least two prime graph components have been attained in [4].

Some simple groups can be characterized by their order components, such as a finite simple group with at least three prime graph components [3], sporadic simple groups [4], Suzuki-Ree groups [6], $G_2(q)$, where $q \equiv 0 \pmod{3}$ [5], $E_8(q)$ [1], $PSL_2(q)$ [7], $^3D_4(q)$ [8], $^2D_n(3)$, $9 \le n = 2^m + 1 \ne p$ [9], $^2D_{p+1}(2)$, $5 \le p \ne 2^m - 1$ [24], A_p , where p and p-2 are primes [12], PSL(5,q) [13], PSL(3,q), where q is an odd prime power [14], PSL(3,q) for $q=2^n$ [15], $F_4(q)$, where q is even [16], $C_2(q)$, where q>5 [17], $PSU_5(q)$ [18], PSU(3,q) for q>5 [19], $^2D_4(q)$ [20], $^2E_6(q)$ [22], $E_6(q)$ [21]. In this paper we continue this work and shall prove the following theorem:

Theorem. Let $M = C_p(2)$, p be an odd prime. If a finite group G has the same order components of M, then $G \cong M$.

2. Preliminary Results

Lemma 1 [4, Lemma 6]. If $t(G) \ge 2$, H is a π_i subgroup of G, and $H \triangleleft G$, then $\prod_{i=1,\ i\neq i}^{t(G)} m_i \mid (\mid H \mid -1)$.

Lemma 2 [2, Theorem 2]. Let G be a 2-Frobenius group of even order. Then t(G) = 2, G has a normal series $1 \le H \le K \le G$ such that $|K/H| = m_2$, $|H| \cdot |G/K| = m_1$, $|G/K| \cdot |K/H| - 1$, $|G/K| \cdot |\varphi(K/H)|$, and H is nilpotent.

Lemma 3 [25, Lemma 3]. If M is a simple group with t(M) = 2, G is a finite group and OC(G) = OC(M), then one of the following holds:

- (1) G is a Frobenius group or 2-Frobenius group.
- (2) G has a normal series $1 \leq H \leq K \leq G$ such that H is a nilpotent π_1 -group, K/H is a non-abelian simple group, the odd order component of M is equal to one of those of K/H, G/K is a cyclic π_1 -group, and |G/K| | |Out(K/H)|.

Lemma 4 [11, Remark]. The only solution of the equation $p^m - q^n = 1$, where p, q are primes and m, n > 1, is $3^2 - 2^3 = 1$.

Lemma 5 [26]. Let p be a prime and n be a natural number, $n \ge 2$. Then there exists a prime divisor r of $p^n - 1$ which does not divide $p^m - 1$ for any natural number $m \le n$, except n = 6, p = 2 or n = 2, p + 1 is a power of 2. Such r is called a primitive prime divisor of $p^n - 1$.

Of course a primitive prime divisor of $p^n - 1$ cannot divide $p^n + 1$ or $p^m - 1$ for $n \nmid m$.

Lemma 6 [23, Lemma 1]. If $n \ge 6$ is a natural number, then there exist at least s(n) primes p_i such that $\frac{n+1}{2} < p_i < n$:

$$s(n) = 6 \text{ for } n \ge 49;$$

$$s(n) = 5 \text{ for } 42 \le n \le 47;$$

$$s(n) = 4 \text{ for } 38 \le n \le 41;$$

$$s(n) = 3 \text{ for } 18 \le n \le 37;$$

$$s(n) = 2 \text{ for } 14 \le n \le 17;$$

$$s(n) = 1 \text{ for } 6 \le n \le 13.$$

Lemma 7. Let p be a prime, q > 1 be a natural number $e = \min\{d : p \mid (q^d - 1)\}$, $q^e = 1 + p^r k$, $p \nmid k$, t be a natural number satisfying $t = p^s u$ and $p \nmid u$. If p > 2 or r > 2, then $p^{r+s} \parallel (q^{et} - 1)$.

Proof.

$$q^{et} - 1 = (1 + p^r k)^t - 1 = tp^r k + \sum_{i=2}^t {t \choose i} (p^r k)^i.$$

If s = 0, then $p \nmid t$, $p^r || q^{et} - 1$.

If s>0, by calculation we can prove that $p^{r+s+1} \mid \binom{t}{i} (p^r k)^i$ for $2 \le i \le t$, hence $p^{r+s} \parallel (q^{et}-1)$.

So we have that
$$p^{r+s} \parallel (q^{et} - 1)$$
.

Lemma 8. Set q > 1 is a natural number, $s = \prod_{i=1}^{n} (q^i - 1)$, p is a prime, $p \mid s$. We denote the power of p in the standard factorization of s by s_p . $e = \min\{d: p \mid q^d - 1\}$, $q^e = 1 + p^r k$, $p \nmid k$. If p > 2 or r > 2, then $s_p < q^{\frac{np}{p-1}}$.

$$s_p < q^{\frac{np}{p-1}}.$$

$$\mathbf{Proof.} \text{ Set } a = \left[\frac{n}{e}\right], \ w = \prod_{i=1}^a (q^{ei} - 1), \text{ hence, } s_p = w_p = p^{ra + \sum_{j=1}^\infty \left[\frac{a}{p^j}\right]}$$

$$\leq p^{ra + \frac{a}{p-1}} < q^{\frac{np}{p-1}} \text{ by Lemma 7 and } p > 2 \text{ or } r > 2.$$

Lemma 9. Let q be an odd natural number, $s = \prod_{i=1}^{n} (q^i - 1)$. Then $s_2 < q^{1.5n}$.

Proof. Set $2^r \parallel q - 1$. We divide the proof into two cases based on r is 1 or not.

Case 1. When r = 1,

$$s = \prod_{i=1}^{n} (q^{i} - 1) = \prod_{i=1, 2 \mid i}^{n} (q^{i} - 1) \cdot \prod_{j=1, 2 \nmid j}^{n} (q^{j} - 1).$$

For $2 \mid i$, set $v = q^2$, $v = 1 + 2^r k$, $2 \nmid k$, clearly $r \geq 2$, hence, the power of 2 in the standard factorization of $\prod_{i=1,\,2 \mid i}^n (q^i - 1) = \prod_{i=1}^{\left \lfloor \frac{n}{2} \right \rfloor} (v^i - 1)$ is less than $q^{\left \lfloor \frac{n}{2} \right \rfloor \cdot 2}$ by Lemma 8. For $2 \nmid j$, we have that $2 \parallel q^j - 1$, so $2^{\left \lfloor \frac{n+1}{2} \right \rfloor} \parallel \prod_{j=1,\,2 \nmid j}^n (q^j - 1)$.

Hence
$$s_2 < 2^{\left[\frac{n+1}{2}\right]}q^{\left[\frac{n}{2}\right]\cdot 2} < q^{1.5n}.$$

Case 2. When $r \neq 1$, by Lemma 7, we have that $s_2 = 2^{rn + \sum_{j=1}^{\infty} \left[\frac{n}{2^j}\right]}$ $< 2^{rn} \cdot 2^n < q^n \cdot 2^n < q^{1.5n}$ since $r \neq 1$.

Definition 1. Let a and f be expressions of integers with integral coefficients. If $f \mid a$ and (f, a/f) = 1, then we say that f is a *Hall factor* of a.

Lemma 10 [10, Theorem 1]. If q is a power of a prime number, $c = \prod_{i=1}^{n} (q^{2i} - 1)$ or $(q^n \pm 1) \cdot \prod_{i=1}^{n-1} (q^{2i} - 1)$, then there exists a Hall factor f of c satisfying:

- (1) If $n \ge 23$, then $f > q^{8n}$;
- (2) If n = 22, then $f > q^{7n}$;
- (3) If $18 \le n \le 21$, then $f > q^{6n}$;
- (4) If $16 \le n \le 17$, then $f > q^{5n}$;
- (5) If $14 \le n \le 15$, then $f > q^{4n}$.

And if the standard factorization of $f = \prod_{k=1}^{t} r_k^{\delta_k}$, then $r_k^{\delta_k} \leq \frac{q^{n-1}-1}{q-1}$.

3. Proof of the Theorem

Proof. Because $M = C_p(2)$, and G has the same order components with M, so the even order component of G is

$$m_1 = 2^{p^2} (2^p + 1) \prod_{i=1}^{p-1} (2^{2i} - 1),$$

the odd order component of G is $m_2 = 2^p - 1$.

We divide the proof into 11 cases based on Lemma 3 and Tables 1-4 in [4].

Case 1. *G* cannot be a Frobenius group or a 2-Frobenius group.

Subcase 1.1. If G is a Frobenius group with Frobenius kernel H and complement K, then $|H| = m_1$ and $|K| = m_2$ since |k| < |h|. There exists a primitive prime divisor r of $2^{2p} - 1$ since p is an odd prime. Let $S_r \in Syl_r(H)$, obviously $|S_r| | (2^p + 1)$ and $S_r \leq G$. Furthermore, $|S_r| \equiv 1 \pmod{m_2}$ by Lemma 1, which is impossible.

Subcase 1.2. If G is a 2-Frobenius group, then there is a normal series $1 \le H \le K \le G$ such that H is a nilpotent π_1 group, $|K/H| = m_2$, $|G/K| | (|K/H| - 1) = 2^p - 2$, it follows that $(2^p + 1) | |H|$. Similarly to Subcase 1.1, we can show that it is impossible.

From Subcase 1.1, Subcase 1.2 and Lemma 3, we have the following properties:

- (1) There is a normal series $1 \leq H \leq K \leq G$ such that K/H is a simple group, H and G/K are π_1 group and H is nilpotent.
- (2) The odd order component of G is one of those of K/H, consequently $t(K/H) \ge 2$. Hence K/H may be one of the simple groups listed in Tables 1-4 in [4].

Case 2. $K/H \not\equiv E_7(2)$, $E_7(3)$, $A_2(2)$, $A_2(4)$, ${}^2A_5(2)$, ${}^2E_6(2)$, ${}^2F_4(2)'$ or one of the sporadic simple groups.

If p=3, only $A_2(2)$, $A_2(4)$, ${}^2A_5(2)$, M_{22} , J_1 , HS or J_2 in the above-mentioned groups has an odd order component 7. If $K/H \cong A_2(2)$, |G/K| | |Out(K/H)| = 2, furthermore there exists a Sylow-5 subgroup of H denoted by S_5 , and $|S_5| = 5$, $S_5 \triangleleft G$, hence $5 \equiv 1 \pmod{7}$ by Lemma 1, which is a contradiction. Similarly we can prove that $K/H \not\equiv A_2(4)$. And the order of ${}^2A_5(2)$, M_{22} , J_1 , J_2 or HS cannot divides the order of $C_3(2)$.

Similarly we can prove that *p* cannot be 5 or 7.

If $p \ge 11$, then the odd order component of G is greater than any odd order components of any one of above-mentioned groups.

Case 3. $K/H \not\equiv A_n$.

If $K/H \cong A_n$, then $2^p-1=n$, n-1 or n-2. Thus $|A_{2^p-1}| \mid \mid A_n \mid \mid \mid C_p(2) \mid$. When $p \geq 5$, there exist at least three primes p_i satisfying $2^{p-1} < p_i < 2^p-1$ by Lemma 6. But there exist at most two prime divisors of $|C_p(2)| = 2^{p^2} \prod_{i=1}^p (2^{2i}-1)$ between 2^{p-1} and 2^p-1 a contradiction.

When p=3, only A_7 , A_8 or A_9 has an odd order component 7 equal to the odd order component of $C_3(2)$. If $K/H \cong A_7$, then |G/K| | |Out(K/H)| = 2, so there exists a Sylow-3 subgroup S_3 of H, and $|S_3| = 9$, $S_3 \triangleleft G$. Furthermore $9 \equiv 1 \pmod{7}$ by Lemma 1, which is a contradiction. $|A_8|$ and $|A_9|$ cannot divides the order of $C_3(2)$.

Case 4. $K/H \not\equiv A_n(q)$ and $K/H \not\equiv {}^2A_n(q)$.

Subcase 4.1. If $K/H \cong A_1(q)$, then $2^p - 1 = q$, $q \pm 1$ or $(q \pm 1)/2$. Whenever in any case we have that $q \leq 2^{p+1}$, hence $|K/H| < 2^{3(p+1)}$. Assume $q = r^f$ we have that |G/K| < 2p + 2 since |G/K| | |Out(K/H)| = 2f. If $p+1 \geq 14$, there exists a Hall factor g of |G| = 1

 $2^{p^2}\prod_{i=1}^p(2^{2i}-1)$ such that $g>2^{4p}$ and $g_{r'}\leq 2^p-1$ for any prime $r'\mid g$ by Lemma 10. Clearly $(g,\mid H\mid)\neq 1$. Let prime p' be satisfy $p'\mid (g,\mid H\mid)$ and $S_{p'}\in Syl_{p'}(G)$. $S_{p'}$ is a normal π_1 -subgroup of G and $|S_{p'}|<2^p-1$, which contradicts Lemma 1.

By trivial calculation, we can show that p cannot be 3, 5, 7 or 11.

Subcase 4.2. If $K/H \cong A_{p'}(q)$, q-1|p'-1, then $2^p-1=(q^{p'}-1)/(q-1)$, $q^{p'}\geq 2^p$.

If $p' \ge 7$, then $q^{p'(p'+1)/2} > 2^{3p}$, which implies q is a power of 2 by Lemmas 8 and 9. Suppose $q = 2^r$, hence $(2^{rp'} - 1)/(2^r - 1) = 2^p - 1$, $2^{rp'} = 2^{r+p} - 2^r - 2^p + 2$, q = 2, p = p', so $|G/K| \cdot |H| = |G|/|K/H| = \frac{2^{p(p-1)/2} \prod_{i=1}^p (2^i + 1)}{2^{p+1} - 1}$, which is impossible by Lemma 5 since $p' \ge 7$.

By calculation we can prove that p' cannot be 3 or 5.

Subcase 4.3. Similarly to Subcase 4.2 we can show that $K/H \not\equiv A_{p'-1}(q)$ and $K/H \not\equiv {}^2A_n(q)$.

Case 5. $K/H \not\equiv D_n(q)$.

If $K/H \cong D_{p'}(5)$, $p' \geq 5$, then $(5^{p'} - 1)/4 = 2^p - 1$, $5^{p'} = 2^{p+2} - 3 > 2^{p+1}$. Hence $5^{p'(p'-1)} > 2^{4p}$, which contradicts Lemma 8.

If $K/H \cong D_{p'}(3)$, $p' \geq 5$, then $2^p - 1 = (3^{p'} - 1)/2$, which contradicts Lemma 4.

Similarly we can prove that $K/H \not\equiv D_{p'+1}(3), p' \geq 3$.

Case 6.
$$K/H \not\equiv E_8(q)$$
, $E_6(q)$, $F_4(q)$, ${}^2E_6(q)$ or ${}^2F_4(q)$.

If $K/H \cong E_6(q)$, then $(q^6 + q^3 + 1)/(3, q - 1) = 2^p - 1$, $q^9 > 2^p$, $q^{36} > 2^{4p}$, hence q is a power of 2 by Lemma 8. Let $q = 2^r$, we have that $2^{6r} + 2^{3r} = 3 \cdot 2^p - 4$ or $2^p - 2$, which is impossible.

Similarly we can prove that $K/H \not\equiv E_8(q), \ F_4(q), \ ^2E_6(q), \ ^2F_4(q)$ or $^2G_2(q).$

Case 7. $K/H \not\equiv {}^{2}B_{2}(q), q = 2^{2k+1}.$

If
$$K/H \cong {}^2B_2(q)$$
, $q = 2^{2k+1}$, then $2^p - 1 = q \pm \sqrt{2q} + 1$ or $q - 1$.

If $2^p - 1 = q \pm \sqrt{2q} + 1$, then $0 \equiv q \pm \sqrt{2q} = 2^p - 2 \equiv 2 \pmod{4}$, a contradiction.

If $2^p - 1 = q - 1$, then $q = 2^p$,

$$|G/K| \cdot |H| = \frac{2^{p^2 - 2p}(2^p + 1) \prod_{i=1}^{p-1} (2^{2i} - 1)}{2^{2p} + 1}.$$

Similarly to Subcase 4.2 we can get a contradiction.

Case 8.
$$K/H \not\cong {}^2G_2(q), \ q = 3^{2k+1}; \ K/H \not\cong G_2(q), \ K/H \not\cong {}^3D_4(q).$$

Subcase 8.1. If $K/H \cong G_2(q)$, $3 \mid q$, then $2^p - 1 = q^2 \pm q + 1$, $q(q \pm 1) = 2(2^{p-1} - 1)$. Let $q = 3^r$, from Lemma 7, we have that $2 \cdot 3^{r-1} \mid p - 1$, $2(2^{p-1} - 1) > 2^{p-1} > 2^{2 \cdot 3^{r-1}} > 3^{3^{r-1}}$. If $r \ge 3$, then $2(2^{p-1} - 1) \ge 3^{3r} > q^3 > q^2 \pm q$, a contradiction. By calculation we have that r cannot be 1 or 2. Similarly we can prove $K/H \not\equiv {}^2G_2(q)$, $q = 3^{2k+1}$.

Subcase 8.2. Similarly to Subcase 4.1, we can show that $K/H \not\equiv G_2(q)$, 3|q+1.

Subcase 8.3. If $K/H \cong G_2(q)$, 3|q-1, then $2^p-1=q^2-q+1$, $q^2>2^p$. It follows that $q^6>2^{3p}$, hence q is a power of 2 by Lemma 8, which is impossible. Similarly we can prove that $K/H \not\cong {}^3D_4(q)$.

Case 9.
$$K/H \not\equiv {}^{2}D_{n}(q)$$
.

Subcase 9.1. If $K/H \cong {}^2D_{p'+1}(2)$, $p' \neq 2^m - 1$, then $2^{p'} - 1 = 2^p - 1$, p = p', $|{}^2D_{p+1}(2)| ||C_p(2)|$, which is impossible.

Subcase 9.2. If $K/H \cong {}^2D_{p'}(3)$, $5 \leq p' = 2^m + 1$, then $2^p - 1 = (3^{p'-1} + 1)/2$ or $(3^{p'} + 1)/4$.

If $2^p - 1 = (3^{p'} + 1)/4$, then $3^{p'} > 2^p$, $3^{p'(p'-1)} > 2^{4p}$, which contradicts Lemma 8.

If $(3^{n-1} + 1)/2 = 2^p - 1$, then $3^{n-1} + 3 = 2^{p+1}$, which is impossible.

Similarly we can prove that $K/H \not\equiv {}^2D_{p'}(3), \ 5 \le p' \ne 2^n + 1; \ K/H \not\equiv {}^2D_n(3), \ n=2^m+1$ is not a prime.

Subcase 9.3. If $K/H \cong {}^2D_{p'+1}(2)$, $3 \le p' = 2^n + 1$, then $2^p - 1 = 2^{p'} + 1$ or $2^{p'+1} + 1$, which is impossible.

Subcase 9.4. If $K/H \cong {}^2D_n(q)$, $4 \le n = 2^m$, then $(q^n + 1)/(2, q - 1)$ = $2^p - 1$. Clearly q cannot be a power of 2. Furthermore $q^n > 2^p$, $q^{n(n-1)} > 2^{3p}$, which contradicts Lemma 8.

Case 10. $K/H \not\equiv B_n(q)$.

Subcase 10.1. If $K/H \cong B_{p'}(3)$, then $(3^{p'}-1)/2 = 2^p - 1$, $3^{p'} = 2^{p+1} - 1$, which contradicts Lemma 4.

Subcase 10.2. Similarly to Subcase 9.4, we have that $K/H \not\equiv B_n(q)$, $4 \le n = 2^m$.

Case 11. From Case 1 to Case 10 and Lemma 3, we have K/H isomorphic to one of $C_n(q)$.

Because $C_{p'}(3)$ has the same order components of $B_{p'}(3)$, so $K/H \not\equiv C_{p'}(3)$. Similarly we can prove that $K/H \not\equiv C_n(q)$, $4 \le n = 2^m$.

So $K/H \not\equiv C_{p'}(2)$, $2^p - 1 = 2^{p'} - 1$. Hence p = p', G/K = 1, H = 1, which implies that $G \cong M$, this is the end of the proof.

References

- [1] Guiyun Chen, A new characterization of $E_8(q)$, J. Southwest China Normal Univ. 21(3) (1995), 215-217.
- [2] Guiyun Chen, On Frobenius and 2-Frobenius group, J. Southwest China Normal Univ. 20(5) (1995), 485-487 (in Chinese).
- [3] Guiyun Chen, On Thompson's conjecture, J. Algebra 15 (1996), 184-193.
- [4] Guiyun Chen, A new characterization of sporadic groups, Algebra Colloq. 3(1) (1996), 49-58.
- [5] Guiyun Chen, A new characterization of $G_2(q)$, $[q \equiv 0 \mod (3)]$, J. Southwest China Normal Univ. 22(1) (1996), 47-51.
- [6] Guiyun Chen, A new characterization of Suzuki-Ree group, Sci. China Ser. A 40(8) (1997), 807-812.
- [7] Guiyun Chen, A new characterization of PSL₂(q), Southeast Asian Bull. Math. 22 (1998), 257-263.
- [8] Guiyun Chen, Characterization of $^3D_4(q)$, Southeast Asian Bull. Math. 25 (2001), 389-401.
- [9] Guiyun Chen and Huaguo Shi, ${}^2D_n(3)$ ($9 \le n = 2^m + 1$ not a prime) can be characterized by its order components, J. Appl. Math. Comput. 19(1-2) (2005), 353-362.
- [10] Guiyun Chen and Huaguo Shi, On Hall factors of several special integral expressions, J. Southwest China Normal Univ. 30(5) (2005), 763-770.
- [11] P. Crescenzo, A diophantine equation which arises in the theory finite groups, Adv. Math. 17 (1975), 25-29.
- [12] A. Iranmanesh and S. H. Alavi, A new characterization of A_p where p and p-2 are primes, Korean J. Comput. Appl. Math. 8(3) (2001), 665-673.
- [13] A. Iranmanesh and S. H. Alavi, A characterization of simple groups PSL(5, q), Bull. Austral. Math. Soc. 65 (2002), 211-222.
- [14] A. Iranmanesh, S. H. Alavi and B. Khosravi, A characterization of PSL(3, q), where q is an odd prime power, J. Pure Appl. Algebra 170(2-3) (2002), 243-254.
- [15] A. Iranmanesh, S. H. Alavi and B. Khosravi, A characterization of PSL(3, q) for $q=2^n$, Acta Math. Sinica (Engl. Ser.) 18(3) (2002), 463-472.
- [16] A. Iranmanesh and B. Khosravi, A characterization of $F_4(q)$, where q is even, Far East J. Math. Sci. (FJMS) 2(6) (2000), 853-859.

- [17] A. Iranmanesh and B. Khosravi, A characterization of $C_2(q)$ where q>5, Comment. Math. Univ. Carolin. 43(1) (2002), 9-21.
- [18] A. Iranmanesh and B. Khosravi, A characterization of $PSU_5(q)$, Int. Math. J. 3(2) (2003), 129-141.
- [19] A. Iranmanesh, B. Khosravi and S. H. Alavi, A characterization of PSU(3, q) for q > 5, Southeast Asian Bull. Math. 26(2) (2002), 33-44.
- [20] B. Khosravi, A characterization of ${}^{2}D_{4}(q)$, Pure Math. Appl. 12(4) (2001), 415-424.
- [21] Behrooz Khosravi and Bahman Khosravi, A characterization of $E_6(q)$, Algebras Groups Geom. 19(2) (2002), 225-243.
- [22] Behrooz Khosravi and Bahman Khosravi, A characterization of $\,^2E_6(q)$, Kumamoto J. Math. 16 (2003), 1-11.
- [23] A. S. Kondtratev and V. D. Mazurove, Recognition of alternating groups if prime degree from their element orders, Siberian Math. J. 41(2) (2000), 294-302.
- [24] Huaguo Shi and Guiyun Chen, ${}^2D_{p+1}(2)$ (5 $\leq p \neq 2^m 1$) can be characterized by its order components, Kumamoto J. Math. 18 (2005), 1-8.
- [25] J. S. Williams, Prime graph components of finite group, J. Algebra 69 (1981), 487-513.
- [26] K. Zsigmody, Zur theories deb potencieses, Monarch. Math. Phys. 3 (1982), 265-284.