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Abstract 

By means of an extended mapping approach and a linear variable 

separation approach, a new family of exact solutions of the ( )12 + -

dimensional Broek-Kaup system with variable coefficients (VCBKK) is 

derived. Based on the derived solitary wave excitation, we obtain some 

special peakon localized excitations, then we discussed the interactions 

between two peakons in this short note. 

1. Introduction 

Soliton theory is one important aspect of nonlinear science [10, 12, 

24]. Because of the wide applications of soliton in many natural sciences 

such as chemistry, biology, mathematics, communication, and 

particularly in almost all branches of physics like fluid dynamics, plasma 

physics, field theory, optics, and condensed matter physics, etc., [9, 17, 25] 
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searching for exact and explicit solutions of a nonlinear physical model, 

especially for new exponentially localized structures like soliton solutions 

or for these excitations with novel properties is a very significant work. 

Since the concept of dromions was introduced by Boiti et al. [1] the study 

of soliton-like solutions in higher dimensions has attracted much more 

attention. Now several significant ( )12 + - and ( )13 + -dimensional models, 

such as ( )12 + -dimensional Kadomtsev-Petviashvili equation [11], Davey 

Stewartson equation [4], generalized Korteweg-de Vries equation [22], 

asymmetric NNV equation [21], sine-Gordon equation [13], ( )13 + -

dimensional Korteweg-de Vries equation [14] and Jimbo-Miwa-

Kadomtsev-Petviashvili equation [23] have been investigated and some 

special types of localized solutions for these models have also been 

obtained by means of different approaches, for instance, the bilinear 

method, the standard Painlevé truncated expansion, the method of 

“coalescence of eigenvalue” or “wavenumbers”, the homogenous balance 

method, the variable separation method [15, 16, 26-28, 31-35], and the 

mapping method [5-7, 18-20], etc. From the above study of ( )12 + - and 

( )13 + -dimensional models, one can see that there exist more abundant 

localized structures than in lower dimensions. This fact hints that there 

may exist new localized coherent structures that are unrevealed in some 

( )12 + -dimensional integrable models. 

In this paper, by the extended mapping approach, we found the new 

exact solutions of ( )12 + -dimensional VCBKK system 

( ) [ ( ) ] ,022 =−−− xxyxxxyty vuuutau  

( ) ( )[ ] ,02 =++ xxxt uvvtav  (1) 

where ( )ta  is an arbitrary function of time t. It is evident that when 

( ) ,1=ta  the VCBKK system will be degenerated to the well-known 

( )12 + -dimensional Broer-Kaup-Kupershmidt (BKK) system, which may 

be derived from the inner parameter dependent symmetry constant of the 

Kadomtsev-Petviashvili model. When ,xy =  the ( )12 + -dimensional 
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Broer-Kaup-Kupershmidt system is reduced to the usual ( )11 + -

dimensional BKK system, which is often used to describe the propagation 

of long waves in shallow water [30]. Using some suitable dependent and 

independent variable transformations, the ( )12 + -dimensional BKK 

system can be further transformed to the ( )12 + -dimensional dispersive 

long-water wave equation and ( )12 + -dimensional Ablowitz-Naup-

Newell-Segur system [2]. Actually the ( )12 + -dimensional BKK system 

has been widely investigated in details by many researcher [29]. 

2. New Exact Solutions to the 

( )12 + -dimensional VCBKK System 

In this section, we give some exact solutions to the VCBKK system, 
including solitary wave solutions, trigonometric function solutions, 
rational solutions and Weierstrass function solutions. 

Letting ( )( ),xff ξ≡  ( )( ),xgg ξ≡  where ( )xξ≡ξ  is an undetermined 

function for the independent variables ( ),...,,,, 210 mxxxtxx =≡  the 

projective Riccati equation [3, 8] is defined by 

 ,, 2 rfpgqgpfgf −+=′=′  (2) 

where ,12 =p  q and r are two real constants. When 1−=p  and ,1=q  

(2) reduces the coupled equations given in [3] and the following relation 

between f and g can be satisfied as 1±=δ  and :0≠q  

 .21 2
2

2







 δ++−−= f
q

rrfq
p

g  (3) 

Equation (2) had been discussed in [8]. In this paper, we discuss other 
cases. 

Lemma. If the condition of (3) holds with other choices of δ, then the 

projective Riccati equation (2) has following solutions: 

(a) If ,2r−=δ  then the Weierstrass elliptic function solution is 

admitted 
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 ( ) ( )
( ) .

12
12,2

6 ξ℘+
ξ℘′

=ξ℘+=
pq

g
prr

qf  (4) 

Here ,1±=p  the Weierstrass elliptic function ( ) ( )32,; ggξ℘=ξ℘  satisfies 

( ) ( ) ( ) ,4 32
32 gg −ξ℘−ξ℘=ξ℘′  and ,

12

2

2
gg =  .

216

3

3
pqg =  

(b) If ,
25

2r−=δ  then the projective Riccati equation (2) has the 

Weierstrass elliptic function solution 

 ( )
( )

( ) ( )( ) ,
12

,
72

5
6
5 2

ξ℘+ξ℘
ξ℘′

−=
ξ℘

+=
pq
qg

r
pq

r
qf  (5) 

where .1±=p  Both q and r in (4) and (5) are arbitrary constants. 

(c) If ,22 sh −=δ  and ,0<pq  then (2) has the solitary wave solution 

  
( ) ( )

,
sinhcosh ξ−+ξ−+

=
pqhpqsr

qf  

 ( ) ( )
( ) ( )

,
sinhcosh

coshsinh
ξ−+ξ−+

ξ−+ξ−−−=
pqhpqsr

pqhpqs
p
pqg  (6) 

where ,1±=p  r, s and h are arbitrary constants. 

(d) If ,22 sh −−=δ  and ,0>pq  then (2) has the trigonometric 

function solution 

( ) ( )
,

sincos ξ+ξ+
=

pqhpqsr
qf  

 ( ) ( )
( ) ( )

,
sincos

cossin
ξ+ξ+

ξ−ξ=
pqhpqsr

pqhpqs
p
pqg  (7) 

where ,1±=p  r, s and h are arbitrary constants. 

(e) If ,0=q  then (2) has the rational solution 

,2

21
2 CCpr

f
−ξ+ξ

=  
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( )

,
2

21
2

1

pCCpr

Cpr
g

−ξ+ξ

+ξ
−=  (8) 

where ,1±=p  r, 1C  and 2C  are arbitrary constants. 

We now introduce the mapping approach via the above projective 

Riccati equation. The basic ideal of the algorithm is as follows. For a 

given nonlinear partial differential equation (NPDE) with the 

independent variables ( ),...,,,, 210 mxxxtxx ==  and the dependent 

variable u, in the form 

 ( ) ,0...,,,, =
jii xxxt uuuuP  (9) 

where P is in general a polynomial function of its arguments, and the 

subscripts denote the partial derivatives. We assume that its solution is 

written as the standard truncated Painlevé expansion, namely 

 ( ) [ ( ) ( )( ) ( ) ( )( )] ( )( )∑
=

− ξξ+ξ+=
n

i

i
ii xfxgxBxfxAxAu

1

1
0 .  (10) 

Here ( ),0 xA  ( ),xAi  ( ) ( )nixBi ...,,1=  are arbitrary constants to be 

determined, and f, g satisfy the projective Riccati equation (2). 

To determine u explicitly, one proceeds as follows: First similar to the 

usual mapping approach, we can determine n by balancing the highest-

order partial differential terms with the highest nonlinear terms in (9). 

Second, substituting (10) together with (2) and (3) into the given NPDE, 

collecting the coefficients of polynomials of ii gf  and eliminate each of 

them, we can derive a set of partial differential equations for ( ),0 xA  

( ),xAi  ( ) ( )nixBi ...,,1=  and ( ).xξ  Third, to calculate ( ),0 xA  ( ),xAi  

( ) ( )nixBi ...,,1=  and ( ),xξ  we solve these partial differential equations. 

Finally, substituting ( ),0 xA  ( ),xAi  ( ) ( ),...,,1 nixBi =  ( )xξ  and the 

solutions (4)-(8) into (10), one obtains solutions of the given NPDE. 

First, let us make a transformation of (1): .yuv =  Substituting this 

transformation into (1), yields 
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 ( ) [ ] .022 =+++ xxyxyxyty uuuuutau  (11) 

Now we apply the mapping approach to (11). By the balancing procedure, 

ansatz (10) becomes 

 ( )( ) ( )( ),,,,, tyxHgtyxGfFu ξ+ξ+=  (12) 

where F, G, H, and ξ are arbitrary functions of ( )tyx ,,  to be determined. 

Substituting (12) together with (2) and (3) into (11), collecting the 

coefficients of the polynomials of ( )...,2,1,0...,,2,1,0 == jigf ii  and 

setting each of the coefficients equal to zero, we can derive a set of partial 

differential equations for F, G, H, and ξ. It is difficult to obtain the 

general solutions of these algebraic equations based on the solutions of 

(2). Fortunately, in the special case if setting ( ) ( ),, ytx ϕ+χ=ξ  where 

( ),, txχ≡χ  ( )yϕ≡ϕ  are two arbitrary variable separated functions of 

( )tx,  and y, respectively, we can obtain solutions of (1). 

Case 1. For ,2r−=δ  the Weierstrass elliptic function solutions are 

( )
( ) ( ),

2
1

2
1

1 ξχ+
χ
χ+χ

= gp
ta

ta
u x

x

xxt  (13) 

( ),
2
1

1 ξϕ−= fpv y  (14) 

where ,1±=p  f, g are expressed by (4). 

Case 2. For ,
25

2r−=δ  another set of Weierstrass elliptic function 

solutions are found 

( )
( )

( ) ( ),
2
16

5
1

2
1

2 ξχ−
ξχ−

+
χ
χ+χ

= gp
q

frpq
ta

ta
u x

x

x

xxt  (15) 

( )
( ),

2
16

5
1

2 ξϕ−
ξϕ−

= fp
q

frpq
v y

y  (16) 

where ,1±=p  q and r are arbitrary constants, f, g are expressed by (5). 
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Case 3. For 22 sh −=δ  and ,1−=pq  the solitary wave solutions are 

( )
( ) x

xxt
ta

ta
u

χ
χ+χ

−=
2
1

3  

[ ( ) ( )]
( ) ( ) ,

sinhcosh
sinhcosh

2
1 222

ϕ+χ+ϕ+χ+
ϕ+χ+ϕ+χ+−+χ

+
hsr

shshrx  (17) 

[ ( ) ( )]
( ) ( )[ ]2

222

3
sinhcosh

cosh
2
1

ϕ+χ+ϕ+χ+

−−+ϕ+χϕχ
−=

hsr

srshrh
v yx  

[ ( ) ( ) ]
( ) ( )[ ]2

22222

sinhcosh

sinh
2
1

ϕ+χ+ϕ+χ+

+−−−+ϕ+χϕχ
−

hsr

hshrshrsyx  (18) 

with two arbitrary functions being ( )tx,χ  and ( ),yϕ  r, s, h are arbitrary 

constants. 

Case 4. For ,22 sh −−=δ  and ,1=pq  the trigonometric function 

solutions are 

( )
( ) x

xxt
ta

ta
u

χ
χ+χ

−=
2
1

4  

[ ( ) ( )]
( ) ( ) ,

sincos
sincos

2
1 222

ϕ+χ+ϕ+χ+
ϕ+χ−ϕ+χ+−+χ

+
hsr

shrhsx  (19) 

[ ( ) ( )]
( ) ( )[ ]2

222

4
sincos

cos
2
1

ϕ+χ+ϕ+χ+

+++−ϕ+χϕχ
−=

hsr

srshrh
v yx  

[ ( ) ( ) ]
( ) ( )[ ]2

22222

sincos

sin
2
1

ϕ+χ+ϕ+χ+

+++++−−ϕ+χϕχ
−

hsr

hshrshrsyx  (20) 

with two arbitrary functions being ( )tx,χ  and ( ),yϕ  r, s, h are arbitrary 

constants. 
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Case 5. For ,0=q  the rational solutions are 

( )
( ) x

xxt
ta

ta
u

χ
χ+χ

−=
2
1

5  

[ ( ) ]
( ) ( )

,
24

2
1

21
2

12
2
1

CCpr

CprprCCpx

−ϕ+χ+ϕ+χ

+ϕ+χ++χ
+  (21) 

[ ( )]
[ ( ) ( ) ]221

2
1

22
2

2
1

5
224

2
1

CCpr

pCrprpprCC
v yx

−ϕ+χ+ϕ+χ

+ϕ+χ+ϕχ
−=  

[ ( ) ( ) ]
[ ( ) ( ) ]221

2

2
121

222 222
2
1

CCpr

CprCprCrpyx

−ϕ+χ+ϕ+χ

++ϕ+χ+ϕ+χϕχ
−  (22) 

with two arbitrary functions being ( )tx,χ  and ( ),yϕ  ,1±=p  ,1C  ,2C  and 

r are arbitrary constants. 

3. Some Special Localized Excitations in the VCBKK System 

Due to the arbitrariness of the functions ( )tx,χ  and ( )yϕ  included in 

the above cases, the physical quantities u and v may possess rich 
structures. For example, when ctax +=χ  and ,by=ϕ  all the solutions 

of the above cases become simple travelling wave excitations. Moreover, 
based on the derived solutions, we may obtain rich localized structures 
such as peakons. In the following discussion, we merely analyze some 
special multi-peakons localized excitation and the interactions between 
two peakons of solution 3v  (18) in Case 3, namely 

[ ( ) ( )]
( ) ( )[ ]2

222

3
sinhcosh

cosh
2
1

ϕ+χ+ϕ+χ+

−−+ϕ+χϕχ
−==

hsr

srshrh
vV yx  

[ ( ) ( ) ]
( ) ( )[ ]

.
sinhcosh

sinh
2
1

2

22222

ϕ+χ+ϕ+χ+

+−−−+ϕ+χϕχ
−

hsr

hshrshrsyx  (23) 

3.1. Multi-peakon excitations 

According to the solution V (23), we first discuss its multi-peakon 
excitations. For instance, if we choose χ and ϕ as 
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( ) ( ) ( ),1exp1,1exp22exp1 −−+=ϕ−+−+++−+=χ yctxctx  (24) 

and 

( ) ( ) ( )3exp1exp8.02exp5.01 −+−+−+−+++−+=χ ctxctxctx  

( ),4exp2 −+−+ ctx  

( ),1exp1 −−+=ϕ y  (25) 

we can obtain the two-peakon and four-peakon excitations for the 

physical quantity V of equation (23) presented in Figures 1(a) and 1(b) 

with fixed parameters ,2=h  ,1=s  ,0=r  and .0=t  

 

Figure 1. A plot of multi-peakon structures for the physical quantity V 

given by the solution (23) with the choice (24), (25) and ,2=h  ,1=s  

,0=r  .0=t  

3.2. Interactions between two peakons 

According to the solution V (23), if we choose χ and ϕ as 

( ) ( ) ( ),1tanh1,1exp213exp1 −−+=ϕ−−−+−+−+=χ ytxtx (26) 

then we can obtain a solitary wave solution of equation (1) with elastic 

behaviour. Figure 2 shows an evolutional profile corresponding to the 

physical quantity V of equation (23). From Figure 2 and through detailed 

analysis, we find that the shapes, amplitudes and velocities of the two 

peakons are completely after their interaction. 
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Figure 2. The evolutional plot of two peakons for the solution V (23) 

under the condition (26) with fixed parameters ,2=h  ,1=s  ,0=r  at 

different times (a) ,5−=t  (b) ,5.2−=t  (c) ,0=t  (d) ,1=t  (e) ,5=t  

respectively. 

Generally, the interactions between solitons are completely elastic as 
Figure 2. While for some specific cases, the interactions between solitons 
are nonelastic. For example, if χ and ϕ are chosen to be 

( ) ( ),13.0cosech2.11cosech5.31 −+−+−+−+=χ txtx  

( ),1tanh1 −−+=ϕ y  (27) 
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and ,2=h  ,1=s  0=r  in equation (23), we can obtain another type of 

solitary wave solution of equation (1) with nonelastic behaviour. The two 
peakons move with the same direction, but their velocities are different. 
One peakon catch up with the other and they are in collision with each 
other. From Figure 3 we can see that the shapes and amplitudes of two 
peakons are changed after their collisions. What is more, after their 
departure, the distance of the two peakons becomes farther and farther. 

 

Figure 3. The evolutional plot of two peakons for the solution V (23) 

under the condition (27) with fixed parameters ,2=h  ,1=s  ,0=r  at 

different times (a) ,15−=t  (b) ,8−=t  (c) ,0=t  (d) ,8=t  (e) ,15=t  

respectively. 
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4. Summary and Discussion 

In summary, via an extended mapping approach and a special 
variable separation approach, we find some new exact solutions of the 
( )12 + -dimensional Broek-Kaup system with variable coefficients. Based 

on the derived solitary wave solution 3v  (18), we obtain some special 

peakon excitations. Then we discussed the interactions between two 
peakons. Additionally, using the piecewise function, Zheng and Zhu 
recently obtained some peakon excitations in the new ( )12 + -dimensional 

long dispersive wave system [35]. Along with the above line, we use the 
piecewise function to get the new peakon excitations of VCBKK system. 
Especially, the phenomenon showed in Figure 3 of two peakons running 
after each other and in collision with each other has never been reported 
in other literature. Since the wide applications of the soliton theory, to 
learn more about the localized excitations and their applications in 
reality is worthy of study further. 
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