AN EXTENSION OF THE EULER-TYPE TRANSFORMATION FOR THE ${ }_{3} F_{2}$ SERIES

A. K. RATHIE and R. B. PARIS

Manda Institute of Technology
Raisar NH-11, Jaipur Road
Bikaner 334001, India
Division of Mathematical Sciences
University of Abertay Dundee
Dundee DD1 1HG, U.K.

Abstract

The aim of this paper is to establish an extension of the Euler-type transformation for the ${ }_{3} F_{2}$ hypergeometric function. This is achieved by application of a recently obtained summation formula for ${ }_{3} F_{2}(1)$. An alternative simple proof is also given for the Kummer-type transformation for the series ${ }_{2} F_{2}$ recently derived by Paris [6].

1. Introduction

In 1997, Exton [3] derived four interesting reduction formulas for the Kampé de Fériet function and, from one of these formulas, he deduced the following two results:

$$
\begin{equation*}
(1-x)^{-d}{ }_{3} F_{2}\binom{d, a, 1+\frac{1}{2} a ;}{b, \frac{1}{2} a ;}={ }_{3} F_{2}\binom{d, b-a-1,2+a-b ;}{b, 1+a-b ;} \tag{1.1}
\end{equation*}
$$

2000 Mathematics Subject Classification: 33C20, 33C15, 33C50.
Keywords and phrases: Euler-type transformation, Kummer-type transformation, hypergeometric series.
and

$$
\begin{equation*}
e^{-x}{ }_{2} F_{2}\binom{a, 1+\frac{1}{2} a ;}{b, \frac{1}{2} a ;}={ }_{2} F_{2}\binom{b-a-1,2+a-b ;}{b, 1+a-b ;} . \tag{1.2}
\end{equation*}
$$

These expressions are generalizations of the well-known Euler transformation [8, p. 31]

$$
(1-x)^{-\alpha}{ }_{2} F_{1}\left(\alpha, \gamma-\beta ; \gamma ;-\frac{x}{1-x}\right)={ }_{2} F_{1}(\alpha, \beta ; \gamma ; x),
$$

valid for complex x in the domain $|x|<1, \operatorname{Re}(x)<\frac{1}{2}$, and Kummer's first theorem [1, Eq. (13.1.27)]

$$
e^{-x}{ }_{1} F_{1}(a ; b ; x)={ }_{1} F_{1}(b-a ; b ;-x)
$$

valid for all finite values of x. The identity (1.1) is also given in [8, p. 66], where it is obtained by a different method, and (1.2) has been established in [4].

The result (1.2) has recently been extended to three independent parameters in [6] in the form

$$
\begin{equation*}
e^{-x}{ }_{2} F_{2}\binom{a, c+1 ;}{b, c ;}={ }_{2} F_{2}\binom{b-a-1, f+1 ;}{b, f ;}, \tag{1.3}
\end{equation*}
$$

where the parameter f depends on a nonlinear combination of the free parameters a, b and c given by

$$
\begin{equation*}
f=\frac{c(1+a-b)}{a-c} . \tag{1.4}
\end{equation*}
$$

This analogue of the well-known Kummer transformation was established by means of an integral representation for ${ }_{2} F_{2}(x)$ combined with an addition theorem for the confluent hypergeometric function ${ }_{1} F_{1}(x+y)$. An alternative proof of (1.3) has been given by Miller [5] using a reduction formula for the Kampé de Fériet function.

The aim of this note is twofold. We employ a summation formula for a terminating ${ }_{3} F_{2}(1)$ function to generalize the identity (1.1) to three
independent parameters in the form

$$
(1-x)^{-d}{ }_{3} F_{2}\left(\begin{array}{c}
d, a, c+1 ; \tag{1.5}\\
b, c ;
\end{array}-\frac{x}{1-x}\right)={ }_{3} F_{2}\binom{d, b-a-1, f+1 ;}{b, f ;},
$$

where f is defined in (1.4) and x lies in the domain $|x|<1, \operatorname{Re}(x)<\frac{1}{2}$. This generalization is seen to involve the same nonlinear combination f of the free parameters as that in (1.3). In addition, we supply another simple proof of the Kummer-type transformation (1.3).

2. Proof of the Euler-type Transformation (1.5)

To establish the result (1.5) we require the following
Lemma 1. Let n be a nonnegative integer and a, b and c be complex parameters. Then

$$
\begin{equation*}
{ }_{3} F_{2}\binom{-n, a, c+1 ;}{b, c ;}=\frac{(b-a-1)_{n}}{(b)_{n}} \frac{(f+1)_{n}}{(f)_{n}}, \tag{2.1}
\end{equation*}
$$

where $(a)_{n}=\Gamma(a+n) / \Gamma(a)$ is the Pochhammer symbol and $f=$ $c(1+a-b) /(a-c)$.

This special summation theorem has been derived recently by Miller [5] by two different methods. The first proof relies on use of the result $(c+1)_{m} /(c)_{m}=1+(m / c)$ to reduce the above ${ }_{3} F_{2}(1)$ function to the sum of two Gauss functions, which may then be summed using Gauss' theorem [1, Eq. (15.1.20)]. Thus we find

$$
\begin{aligned}
{ }_{3} F_{2}\binom{-n, a, c+1 ;}{b, c ;} & =\sum_{m=0}^{\infty} \frac{(-n)_{m}(a)_{m}}{(b)_{m} m!}\left(1+\frac{m}{c}\right) \\
& ={ }_{2} F_{1}(-n, a ; b ; 1)-\frac{n a}{b c}{ }_{2} F_{1}(-n+1, a+1 ; b+1 ; 1) \\
& =\frac{\Gamma(b) \Gamma(b-a+n-1)}{\Gamma(b-a) \Gamma(b+n)}\left\{b-a+n-1-\frac{n a}{c}\right\}
\end{aligned}
$$

which, upon a little algebraic simplification, yields the result stated. Miller's second proof makes use of Kummer's two-term transformation for the ${ }_{3} F_{2}(1)$ function given in [2, p. 142, Cor. 3.3.5].

Let the domain D of the complex x-plane be specified by $|x|<1$, $\operatorname{Re}(x)<\frac{1}{2}$. Then, for $\operatorname{Re}(x)<\frac{1}{2}$, we have upon expansion of the ${ }_{3} F_{2}$ series in (1.5)

$$
\begin{aligned}
\mathcal{F}(x) & \equiv(1-x)^{-d}{ }_{3} F_{2}\left(\begin{array}{c}
d, a, c+1 ; \\
b, c ;
\end{array} \frac{-x}{1-x}\right) \\
& =\sum_{n=0}^{\infty} \frac{(d)_{n}(a)_{n}(c+1)_{n}}{(b)_{n}(c)_{n} n!}(-x)^{n}(1-x)^{-n-d}
\end{aligned}
$$

Application of the binomial theorem for $(1-x)^{-n-d}$ valid in $|x|<1$, followed by interchange of the order of summation, then shows that $\mathcal{F}(x)$ can be written as the absolutely convergent double sum when $x \in D$

$$
\begin{equation*}
\mathcal{F}(x)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(-)^{n}(a)_{n}(c+1)_{n}}{(b)_{n}(c)_{n}} \frac{(d)_{m+n}}{m!n!} x^{m+n} \quad(x \in D) \tag{2.2}
\end{equation*}
$$

where we have used $(d)_{n}(n+d)_{m}=(d)_{m+n}$.
If we now employ the result [7, p. 56, Lemma 10]

$$
\begin{equation*}
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A(m, n)=\sum_{m=0}^{\infty} \sum_{n=0}^{m} A(m-n, m) \tag{2.3}
\end{equation*}
$$

which enables an absolutely convergent double sum to be summed diagonally, we find from (2.2) that

$$
\mathcal{F}(x)=\sum_{m=0}^{\infty} \sum_{n=0}^{m} \frac{(-)^{n}(a)_{n}(c+1)_{n}}{(b)_{n}(c)_{n}} \frac{(d)_{m} x^{m}}{(m-n)!n!}
$$

Using

$$
\begin{equation*}
(m-n)!=(-)^{n} m!/(-m)_{n} \tag{2.4}
\end{equation*}
$$

we finally obtain

$$
\mathcal{F}(x)=\sum_{m=0}^{\infty} \frac{(d)_{m} x^{m}}{m!} \sum_{n=0}^{m} \frac{(-m)_{n}(a)_{n}(c+1)_{n}}{(b)_{n}(c)_{n} n!}=\sum_{m=0}^{\infty} \frac{(d)_{m} x^{m}}{m!}{ }_{3} F_{2}\binom{-m, a, c+1 ;}{b, c ;} .
$$

Now if we employ the result (2.1) to sum the ${ }_{3} F_{2}(1)$ function we obtain

$$
\mathcal{F}(x)=\sum_{m=0}^{\infty} \frac{(d)_{m}(b-a-1)_{m}(f+1)_{m}}{(b)_{m}(f)_{m}} \frac{x^{m}}{m!}={ }_{3} F_{2}\binom{d, b-a-1, f+1 ;}{b, f ;}
$$

for $x \in D$, where f is defined in (1.4) This completes the proof of (1.5).

3. Alternative Proof of the Kummer-type

Transformation (1.3)

For all finite complex values of x, we can express the left-hand side of (1.3) as an absolutely convergent double sum by expanding the functions e^{-x} and ${ }_{2} F_{2}(x)$ as

$$
\mathcal{G}(x) \equiv e^{-x}{ }_{2} F_{2}\binom{a, c+1 ;}{b, c ;}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(a)_{n}(c+1)_{n}}{(b)_{n}(c)_{n}} \frac{(-)^{m} x^{m+n}}{m!n!} .
$$

Application of (2.3) and (2.4) then leads to

$$
\begin{aligned}
\mathcal{G}(x) & =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(-m)_{n}(a)_{n}(c+1)_{n}}{(b)_{n}(c)_{n}} \frac{(-x)^{m}}{m!n!} \\
& =\sum_{m=0}^{\infty} \frac{(-x)^{m}}{m!}{ }_{3} F_{2}\binom{-m, a, c+1 ;}{b, c ;} .
\end{aligned}
$$

Upon summing the ${ }_{3} F_{2}(1)$ function by (2.1), we find

$$
\mathcal{G}(x)=\sum_{m=0}^{\infty} \frac{(b-a-1)_{m}(f+1)_{m}}{(b)_{m}(f)_{m}} \frac{(-x)^{m}}{m!}={ }_{2} F_{2}\binom{b-a-1, f+1 ;}{b, f ;},
$$

where f is defined in (1.4). This provides a simple, direct proof of the Kummer-type transformation (1.3).

References

[1] M. Abramowitz and I. Stegun, Eds., Handbook of Mathematical Functions, Dover, New York, 1965.
[2] G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999.
[3] H. Exton, On the reducibility of the Kampé de Fériet functions, J. Comput. Appl. Math. 83 (1997), 119-121.
[4] A. R. Miller, On a Kummer-type transformation for the generalized hypergeometric function ${ }_{2} F_{2}$, J. Comput. Appl. Math. 157 (2003), 507-509.
[5] A. R. Miller, A summation formula for Clausen's series ${ }_{3} F_{2}(1)$ with an application to Goursat's function ${ }_{2} F_{2}(x)$, J. Phys. A: Math. General 16 (2005), 3541-3545.
[6] R. B. Paris, A Kummer-type transformation for a ${ }_{2} F_{2}$ hypergeometric function, J. Comput. Appl. Math. 173 (2005), 379-382.
[7] E. D. Rainville, Special Functions, Macmillan, New York, 1960.
[8] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.

