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Abstract

The aim of this paper is to establish an extension of the Euler-type

transformation for the 23 F  hypergeometric function. This is achieved by

application of a recently obtained summation formula for ( ).123 F  An

alternative simple proof is also given for the Kummer-type

transformation for the series 22F  recently derived by Paris [6].

1. Introduction

In 1997, Exton [3] derived four interesting reduction formulas for the
Kampé de Fériet function and, from one of these formulas, he deduced
the following two results:
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These expressions are generalizations of the well-known Euler
transformation [8, p. 31]
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valid for complex x in the domain ,1<x  ( ) ,
2
1

Re <x  and Kummer’s

first theorem [1, Eq. (13.1.27)]

( ) ( )xbabFxbaFe x −−=− ;;;; 1111

valid for all finite values of x. The identity (1.1) is also given in [8, p. 66],
where it is obtained by a different method, and (1.2) has been established
in [4].

The result (1.2) has recently been extended to three independent
parameters in [6] in the form
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where the parameter f depends on a nonlinear combination of the free

parameters a, b and c given by

( )
.

1
ca

bac
f

−
−+= (1.4)

This analogue of the well-known Kummer transformation was

established by means of an integral representation for ( )xF22  combined

with an addition theorem for the confluent hypergeometric function

( ).11 yxF +  An alternative proof of (1.3) has been given by Miller [5] using

a reduction formula for the Kampé de Fériet function.

The aim of this note is twofold. We employ a summation formula for a

terminating ( )123F  function to generalize the identity (1.1) to three
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independent parameters in the form
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where f is defined in (1.4) and x lies in the domain ,1<x  ( ) .
2
1Re <x

This generalization is seen to involve the same nonlinear combination f of

the free parameters as that in (1.3). In addition, we supply another

simple proof of the Kummer-type transformation (1.3).

2. Proof of the Euler-type Transformation (1.5)

To establish the result (1.5) we require the following

Lemma 1. Let n be a nonnegative integer and a, b and c be complex

parameters. Then
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where ( ) ( ) ( )anaa n Γ+Γ=  is the Pochhammer symbol and =f

( ) ( ).1 cabac −−+

This special summation theorem has been derived recently by Miller

[5] by two different methods. The first proof relies on use of the result

( ) ( ) ( )cmcc mm +=+ 11  to reduce the above ( )123F  function to the sum

of two Gauss functions, which may then be summed using Gauss’

theorem [1, Eq. (15.1.20)]. Thus we find
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which, upon a little algebraic simplification, yields the result stated.
Miller’s second proof makes use of Kummer’s two-term transformation for

the ( )123F  function given in [2, p. 142, Cor. 3.3.5].

Let the domain D of the complex x-plane be specified by ,1<x

( ) .
2
1Re <x  Then, for ( ) ,

2
1Re <x  we have upon expansion of the 23F

series in (1.5)

( ) ( ) 









−
−+

−≡ −
x

x

cb

cad
Fxx d

1;,

;1,,
1 23F

( ) ( ) ( )
( ) ( ) ( ) ( )∑

∞

=

−−−−
+

=
0

.1
!
1

n

dnn

nn

nnn xx
ncb

cad

Application of the binomial theorem for ( ) dnx −−−1  valid in ,1<x

followed by interchange of the order of summation, then shows that ( )xF

can be written as the absolutely convergent double sum when Dx ∈
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where we have used ( ) ( ) ( ) .nmmn ddnd +=+

If we now employ the result [7, p. 56, Lemma 10]

( ) ( )∑ ∑ ∑ ∑
∞

=

∞

=

∞

= =

−=
0 0 0 0

,,
m n m

m

n

mnmAnmA (2.3)

which enables an absolutely convergent double sum to be summed
diagonally, we find from (2.2) that
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Using

( ) ( ) ( ) ,!! n
n mmnm −−=− (2.4)
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we finally obtain
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Now if we employ the result (2.1) to sum the ( )123 F  function we obtain
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for ,Dx ∈  where f is defined in (1.4) This completes the proof of (1.5).

3. Alternative Proof of the Kummer-type

Transformation (1.3)

For all finite complex values of x, we can express the left-hand side of
(1.3) as an absolutely convergent double sum by expanding the functions

xe−  and ( )xF22  as
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Application of (2.3) and (2.4) then leads to
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Upon summing the ( )123F  function by (2.1), we find
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where f is defined in (1.4). This provides a simple, direct proof of the
Kummer-type transformation (1.3).
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