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Abstract

Nice polynomials are polynomials whose coefficients, roots, and critical
points are integers. We first define what it means for two nice
polynomials to be equivalent, then we give the relations between the
roots and critical points of all polynomials with four roots. This system
of relations is the key to studying nice polynomials. We use these
relations to derive the relations between the roots and critical points of
all symmetric polynomials with four roots. We use these relations for
symmetric polynomials to give a complete description of all nice
symmetric polynomials with four roots by finding an explicit formula
and counting the number of equivalence classes of such nice
polynomials. We then give a necessary, but not sufficient, condition that

nice symmetric polynomials with four roots with the first m derivatives
having integer roots must satisfy. To conclude, we state several open
problems about nice polynomials with four roots and about higher-order
derivatives of nice symmetric polynomials with four roots.

1. Introduction

Nice polynomials are polynomials whose coefficients, roots, and
critical points are integers. The first paper on nice polynomials [4],
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written in 1960, gives an explicit formula for all nice cubics. The
derivation of this formula uses Pythagorean triples. Most mathematicians
who had begun investigating this problem were interested in constructing
polynomials with integer coefficients, roots, and critical points-
polynomials that are “nice” for calculus students to sketch (see [1], for
example). Most earlier papers had focused on nice cubics and quartics.
We had found this problem of constructing nice polynomials of any degree
worthy of further study.

In 1999 the problem of finding, constructing, and classifying nice
polynomials was added to the list of unsolved problems [8] in The

American Mathematical Monthly. Other papers soon followed, including
the main paper [2] on nice polynomials, the paper [5] with a new
approach to nice polynomials, the accepted paper [6] with several new
results on nice symmetric and antisymmetric polynomials, and the
accepted paper [7] with a complete description of all nice polynomials of
any degree with three roots. The main result of [7] is a formula for
finding all nice polynomials with three roots. The new approach to nice
polynomials in [5] is the system of relations between the roots and critical
points of polynomials. The new results in [5]-[7] and in this paper follow
from these relations. Papers [5]-[7] and this paper prove that the key to
studying nice polynomials is this system of relations.

The first paper on nice quartics [3], written in 1990, gives a formula
for all nice symmetric quartics and also contains the first five known
examples of nice nonsymmetric quartics with four distinct roots. The
author of [5] has found over 300 examples of nice nonsymmetric quartics
with a computer; and he has included two of those examples in his paper,
these being the smallest possible example (the difference between the
largest root and the smallest root is minimal) and the largest known
example [5, Example B6]. Examples of higher degree with four roots have
not been published. But such examples have been found, and we include
some of these in this paper. But the problem of finding all nice
polynomials with four roots, which we briefly consider, is by no means
completely solved.

We do solve the problem of finding all nice symmetric polynomials of
any degree with four roots, a natural extension of the problem in [3] of
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finding all nice symmetric quartics. To find a formula for all nice
symmetric polynomials with four roots, we solve an equation relating the
roots and critical points of all symmetric polynomials with four roots (see
Lemma 4.1). For simplicity, we solve the equation in Q  rather than in ;Z
so our formula gives examples of polynomials with rational coefficients,

roots, and critical points. Such polynomials we call Q -nice. This does not

cause a problem, however, since we can then find examples of nice
polynomials by horizontally stretching Q -nice polynomials so that we

obtain a polynomial with integer coefficients, roots, and critical points.

In the following section, we discuss any necessary notation and
terminology. We also define what it means for two Q -nice polynomials

and two nice polynomials to be equivalent. In Section 3, we give the
relations between the roots and critical points of all polynomials with four
roots. These relations are useful in computer searches for nice
polynomials with four roots. Several new examples we have found using
these relations are included. If it is possible to find a formula for nice
polynomials with four roots, then these relations will help in deriving
such a formula. In Section 4, we give a complete description of all nice
symmetric polynomials with four roots; that is, we give a formula,
conditions for the existence of such polynomials, and the number of
equivalence classes. We illustrate these results with a few examples. In
Section 5, we briefly discuss higher-order nicety properties of nice
symmetric polynomials with four roots. In other words, we give a
necessary (but not sufficient) condition that nice symmetric polynomials

with four roots with the first m derivatives having integer roots must
satisfy. Sufficient conditions have not been found. We conclude in Section
6 by stating several open problems about nice polynomials with four roots
and about higher-order nicety properties of nice symmetric polynomials
with four roots.

2. Preliminaries

The type of a polynomial is a list of the multiplicities of its distinct
roots. For convenience, we often list the multiplicities in decreasing order.
For example, all polynomials of the type (4, 3, 2, 2) are of the form
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( ) ( ) ( ) ( ) ( ) ,2
4

2
3

3
2

4
1 rxrxrxrxaxp −−−−=  where ,,, 321 rrr  and 4r  are all

distinct.

Most of the earlier papers on nice or Q -nice polynomials note that

horizontal translations, horizontal or vertical stretches and compressions,
and reflections over the coordinate axes transform a Q -nice polynomial

( )xp1  into another Q -nice polynomial ( ).2 xp  Each of these

transformations has an inverse transformation which transforms ( )xp2

into ( ).1 xp  Two newly discovered transformations that behave similarly

are the power transformation and its inverse, the root transformation [6,

Theorem 2.1]: For any natural number n, a polynomial ( )xp  is Q -nice iff

( )[ ]nxp  is Q -nice. It is clear that the root transformation transforms a

Q -nice polynomial ( )xp  into another Q -nice polynomial iff ( ) =xp

( )[ ]nxq  for some Q -nice polynomial ( )xq  and some natural number n.

Otherwise, the n-th root of ( )xp  is not a polynomial. Since any finite

composition of these transformations and their inverses, which we call

equivalence transformations, transform a Q -nice polynomial ( )xp1  into

another Q -nice polynomial ( ),2 xp  we may define two Q -nice polynomials

( )xp1  and ( )xp2  to be equivalent whenever ( )xp1  can be transformed

into ( )xp2  and vice-versa by a finite composition of equivalence

transformations. And two nice polynomials ( )xp1  and ( )xp2  are

equivalent if, when considered Q -nice polynomials, they are equivalent.

Thus, whenever we count the number of Q -nice (or nice) polynomials of a

given type, we count the number of equivalence classes rather than the
actual number of Q -nice (or nice) polynomials of that given type.

Because horizontal stretches and compressions are equivalence
transformations for Q -nice polynomials and because all nice polynomials

are Q -nice polynomials, any result on the existence of or the number of

equivalence classes of Q -nice polynomials of a given type also holds for

nice polynomials of the same type and vice-versa. Thus, we may use our
formula for Q -nice symmetric polynomials to determine the existence of
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and the number of equivalence classes of all types of nice symmetric
polynomials with four roots.

3. Nice Polynomials with Four Roots

To begin, we consider the problem of finding all nice polynomials

( ) [ ]xxp Z∈  with four distinct roots. Because of vertical stretches and

compressions, we may assume ( )xp  is monic. Thus, ( ) ( ) ( −−= xrxxp m1
1

) ( ) ( ) 432
432

mmm rxrxr −−  for some integers ,1r  ,2r  ,3r  and ;4r  and the

derivative ( ) ( ) ( ) ( ) ( ) ( )1
1

4
1

3
1

2
1

1
4321 cxrxrxrxrxdxp mmmm −−−−−=′ −−−−

( ) ( )32 cxcx −−  for some integers .and,, 321 ccc

The following lemma gives the relations between the roots and
critical points of all polynomials with four roots. As [5]-[7] show, this
system of relations is the key to studying nice polynomials.

Lemma 3.1. A polynomial ( ) ( ) ( ) ( ) ( −−−−= xrxrxrxxp mmm 321
321

) 4
4

mr  of degree 4321 mmmmd +++=  with integer coefficients and with

four integer roots is nice iff there exist integers ,, 21 cc  and 3c  such that

( ) ,
4

1

3

1
∑ ∑
= =

=−
i i

iii cdrmd (3.1)

( ) ,
3141

∑∑
≤<≤≤<≤

=−−
ji

ji
ji

jiji ccdrrmmd (3.2)

( ) .
3141

∑∑
≤<<≤≤<<≤

=−−−
kji

kji
kji

kjikji cccdrrrmmmd (3.3)

Proof. Differentiating ( )xp  by the product rule, we have ( ) =′ xp

( ) ( ) ( ) ( ) ( ) ,1
4

1
3

1
2

1
1

4321 −−−− −−−− mmmm rxrxrxrxxq  where ( ) ( −= xmxq 1

) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )42134312432 rxrxrxmrxrxrxmrxrxr −−−+−−−+−−
( ) ( ) ( ).3214 rxrxrxm −−−+  By definition, the derivative of ( )xp  has the

form ( ) ( ) ( ) ( ) ( ) ( ) ( −−−−−−=′ −−−− xcxrxrxrxrxdxp mmmm
1

1
4

1
3

1
2

1
1

4321
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) ( ).32 cxc −  Therefore, ( ) ( ) ( ) ( ).321 cxcxcxdxq −−−=  By expanding

both forms of ( )xq  and equating coefficients, we obtain the relations

above.

Because of the horizontal translation, we may translate a nice

polynomial ( )xp  so that it has a root at 0. If we do assume 0 is a root,

then the relations (3.1)-(3.3) above simplify considerably, so finding
examples of nice nonsymmetric polynomials with four roots with a
computer and proving existence or nonexistence of certain types become
easier. For convenience, we state these relations with the assumption

that 0 is a root of ( ).xp

Lemma 3.2. A polynomial ( ) ( ) ( ) ( ) 3210
321

mmmm rxrxrxxxp −−−=  of

degree d with integer coefficients and with four integer roots is nice iff

there exist integers ,, 21 cc  and 3c  such that

( ) ( ) ( ) ( ),321332211 cccdrmdrmdrmd ++=−+−+− (3.4)

( ) ( ) ( ) 323231312121 rrmmdrrmmdrrmmd −−+−−+−−

( ),323121 ccccccd ++= (3.5)

.3213210 ccdcrrrm = (3.6)

Proof. Let 04 =r  and relabel 4m  as 0m  and use Lemma 3.1 above.

Remark. We had derived the relations in Lemma 3.1 without the

assumption that 0 is a root of ( )xp  so that we can use these relations to

derive immediately the relations for symmetric polynomials with four
roots. In other words, relations (3.4)-(3.6) do not allow us to derive the
relations for symmetric polynomials with four roots, as we will see in
Section 4.

Application. Although a complete description of all nice polynomials
with four roots is currently unknown (see Problems 6.1-6.3), the relations
above, especially the relations (3.4)-(3.6), can help reduce the amount of
work of a computer search for examples. Furthermore, if it is possible to
find a formula for all nice polynomials with four roots, the relations (3.4)-
(3.6) above will help in the derivation of this formula.
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We now include several new examples we have found using relations
(3.4)-(3.6). The first example is of type (2, 1, 1, 1):

( ) ( ) ( ) ( ),10580602 −−−= xxxxxp

( ) ( ) ( ) ( ).9670305 −−−=′ xxxxxp (3.7)

This example is of type (3, 1, 1, 1):

( ) ( ) ( ) ( ),6048423 −−−= xxxxxp

( ) ( ) ( ) ( ).5645246 2 −−−=′ xxxxxp (3.8)

The final example we give is of type (4, 1, 1, 1):

( ) ( ) ( ) ( ),4554203084 −−−= xxxxxp

( ) ( ) ( ) ( ).4403642107 3 −−−=′ xxxxxp (3.9)

4. Nice Symmetric Polynomials with Four Roots

We now consider the problem of finding all nice symmetric

polynomials with four roots. We call a polynomial ( )xp  symmetric if there

exists a unique number c, called the center, such that ( ) ( )xcpxcp +=−

for all x. In [5] it is proven that the average of the roots of a nice
polynomial is an integer. Since the average of the roots of a symmetric
polynomial equals the center, the center of a nice symmetric polynomial
is an integer, so we may center nice symmetric polynomials at the origin.
The same can be said about Q -nice symmetric polynomials.

If ( ) [ ]xxp Q∈  is a Q -nice symmetric polynomial with four roots and

is centered at the origin, then ( ) ( ) ( ) 21 2
2

22
1

2 mm rxrxxp −−=  for some

rational numbers 1r  and ;2r  and the derivative ( ) ( ) 12
1

2 1−−=′ mrxdxxp

( ) ( )2212
2

2 2 cxrx m −− −  for some rational number .0≠c

The following lemma gives the relations between the roots and

critical points of all symmetric polynomials ( )xp  with four roots. These

relations follow directly from Lemma 3.1 but not from Lemma 3.2 since 0

is not a root of ( ).xp
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Lemma 4.1. A symmetric polynomial ( ) ( ) ( ) 21 2
2

22
1

2 mm rxrxxp −−=

of degree 21 22 mmd +=  with rational coefficients and with four rational

roots is Q -nice iff there exists a nonzero rational number c such that

( ) .2
21

2
21

2
12 cmmrmrm +=+ (4.1)

The following theorem gives a formula for all Q -nice symmetric

polynomials with four roots. To find a formula, we solve (4.1) for all

rational numbers ,, 21 rr  and c. By Lemma 4.1, all such solutions allow us

to find representatives of all the equivalence classes of Q -nice (and nice)

symmetric polynomials with four roots. In this sense, the formula gives
all examples of nice symmetric polynomials with four roots.

Theorem 4.2. The symmetric polynomial ( ) ( ) ( −−= 22
1

2 1 xrxxp m

) 22
2

mr  with ( ) ( ) ( ) ( )2212
2

212
1

2 21 cxrxrxdxxp mm −−−=′ −−  is Q -nice iff

,
22 12

2
1

2
2

bmam
bmam

c
−
+= (4.2)

,1 acr −= (4.3)

,2 bcr += (4.4)

where a and b are positive rational numbers such that 022 12 ≠− bmam

or, equivalently, .
2

1 b
m
m

a 




≠

Proof. To find all rational solutions of (4.1), first assume .21 rr <  By

Rolle’s theorem, there is a critical point c so that ;21 rcr <<  thus,

arc += 1  and brc −= 2  for some positive rational numbers a and b.

Substituting ac −  for 1r  and bc +  for 2r  in (4.1), we have

( ) ( ) ( ) 2
21

22
1

22
2 22 cmmbbccmaaccm +=++++−  which simplifies to

( ) .22 12
2

1
2

2 cbmambmam −=+  Dividing both sides by bmam 12 22 −

,0≠  we obtain (4.2) above. Equations (4.3) and (4.4) follow from the

definition of a and b. It is easy to see that if ,022 12 =− bmam  then (4.1)

has no solution. This theorem is an equivalence because Lemma 4.1 is.
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Remarks. (1) Because Theorem 4.2 is an equivalence, we can find
representatives of all the equivalence classes of the type specified by

1m and 2m  just by picking positive rational numbers a and b where

b
m
m

a 




≠

2

1  and using formulas (4.2)-(4.4) above.

(2) The values a and b given in formulas (4.2)-(4.4) can be interpreted

geometrically as follows: The number a gives the distance between the

critical point c and the root ,1r  and the number b gives the distance

between c and the root .2r  If we were to multiply (4.2), (4.3), and (4.4) by

bmam 12 22 −  to clear fractions (which is a horizontal stretch or

compression) so that our formula gives examples of nice polynomials,

then a and b would lose this geometric interpretation. For this reason, we
prefer the rational forms of (4.2)-(4.4) given above.

Before we give a few examples we have found using formulas (4.2)-
(4.4), we need to make a few comments. Since stretching or compressing

( )xp  horizontally by a factor of Q∈k  results in an equivalent Q -nice

polynomial, we may stretch or compress so that ( )xp  has integer roots

and so that the greatest common divisor of all the nonzero roots and

nonzero critical points equals 1. Since ( )xp  and ( )[ ]nxp  are equivalent,

we may take the n-th root so that the greatest common divisor of the

multiplicities of the roots of ( )xp  equals 1. Thus, we may use as a

representative of any equivalence class a monic nice polynomial whose
greatest common divisor of all the nonzero roots and critical points equals
1 and whose greatest common divisor of the multiplicities of the roots

equals 1. Such a nice polynomial is in reduced form.

We now give several examples we have found using formulas (4.2)-
(4.4). All these examples are in reduced form.

Example 4.3. If we specify the type (3, 3, 1, 1) and choose 1=a  and

,5=b  then our formulas give ,7261 −=r  ,7162 =r  and 719−=c  if

31 =m  and .12 =m  Note that this example is equivalent to ( ) =xp

( ) ( )22322 1626 −− xx  with derivative ( ) ( ) ( ).19268 22222 −−=′ xxxxp  If
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11 =m  and ,32 =m  then our formulas give ,81 −=r  ,22 −=r  and

.7−=c  Note that this example is equivalent to ( ) ( )322 2−= xxp

( )22 8−x  with derivative ( ) ( ) ( ).728 22222 −−=′ xxxxp

Example 4.4. If we specify the type ( )5,5,7,7  and choose 2=a  and

,7=b  then our formulas give ,261731 −=r  ,26612 =r  and =c

26121−  if 71 =m  and .52 =m  Note that this example is equivalent to

( ) ( ) ( )522722 61173 −−= xxxp  with derivative ( ) ( )622 17324 −=′ xxxp

( ) ( ).12161 22422 −− xx  If 51 =m  and ,72 =m  then our formulas give

,2171 −=r  ,212 =r  and .213−=c  Note that this example is

equivalent to ( ) ( ) ( )72522 117 −−= xxxp  with derivative ( ) ( 224 xxxp =′

) ( ) ( ).13117 226242 −−− xx

We now use Theorem 4.2 to complete our description of all nice
symmetric polynomials with four roots. That is, we now count the number
of equivalence classes of all types of nice symmetric polynomials with four
roots.

Corollary 4.5. For every degree 4≥d  and every type ( ,,, 211 mmm

)2m  such that ,22 21 dmm =+  there exist infinitely many equivalence

classes of nice symmetric polynomials of this type.

Proof. If a and b are positive rational numbers, then, by (4.3) and

(4.4), cr ≠1  and .2 cr ≠  Hence, to find all values for a and b where ,2
1r

,2
2r  and 2c  are not all distinct, all we need are the values for a and b

where ,21 rr ±=  where ,01 =r  and where .02 =r  Solving the equation

21 rr ±=  for a and b, we have that .ba ±=  But ba −≠  since a and b are

positive. Thus, the ratio 01 >=ba  fails to give four distinct roots. Now

we solve the equation 01 =r  for ,ba  which is equivalent to solving

.22 1
2

2
2

1
2

2 abmambmam −=+  Rewrite this as .2 1
2

2
2

1 abmambm −=

Dividing both sides by ,02 ≠b  we now have .2 1

2

21 b
am

b
amm −


=
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Thus, there exist at most two ratios 0>ba  so that .01 =r  Similarly, by

solving the equation 02 =r  for ,ba  we obtain ,2 12

2

2 m
b
am

b
am =+




so there exist at most two ratios 0>ba where .02 =r  Thus, at most five

ratios 0>ba  fail to give four distinct roots.

Since all examples ( )xp  found by our formula are monic and since

( )xp  is even, examples found by our formula are equivalent only by

horizontal stretches or compressions. Since horizontal stretches and

compressions preserve the ratio ba and since at most five ratios 0>ba

fail to give four distinct roots, we can choose infinitely many different

ratios 0>ba  that give four distinct roots, regardless of the type,

allowing us to find infinitely many equivalence classes of nice symmetric
polynomials of any given type with four roots.

The following example illustrates Corollary 4.5.

Example 4.6. If we specify the type (3, 3, 2, 2) and choose 1=a  and

,4=b  then our formulas give ,271 −=r  ,232 =r  and 25−=c  if

31 =m  and .22 =m  Note that this example is equivalent to ( ) =xp1

( ) ( ) ,37 222322 −− xx  ( ) ( ) ( ) ( ).53710 2222222
1 −−−=′ xxxxxp  If we

choose 1=a  and ,2=b  then our formulas give ,4111 −=r  ,412 =r  and

.47−=c  Note that this example is equivalent to ( ) =xp2

( ) ( ) ,111 22322 −− xx  ( ) ( ) ( ) ( ).711110 222222
2 −−−=′ xxxxxp  Both these

examples are inequivalent examples of the type (3, 3, 2, 2).

The following formula for all nice symmetric quartics, found in [3],
was originally derived by the use of Pythagorean triples. We can give an
alternate derivation of this formula by using formulas (4.2)-(4.4).

Corollary 4.7. A symmetric quartic ( )xp  is nice iff

( ) [ ( ) ][ ( ) ],22 22222222 mnmnxmnmnxxp +−−−−−=

( ) [ ( ) ]22224 nmxxxp +−=′

for some positive integers m and n.
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Proof. Using (4.2)-(4.4) with 121 == mm  and positive integers a

and b we have ,
22

2,
22

22

1

22

ba
ababr

ba
bac

−
+−=

−
+=  and .

22
222

2 ba
abbar

−
+−=

By the second part of the proof of Corollary 4.5, each equivalence class is

determined by the ratio ba  so we may take a and b to be positive

integers. If we stretch ( )xp  horizontally by ,22 ba −  we have

,22 bac +=  ,222
1 ababr +−=  and .222

2 abbar +−=  Since =2
2r

( ) ,2
2r−  ( ) [ ( ) ][ ( ) ],22 22222222 ababxababxxp −−−+−−=  and ( )xp′

[ ( ) ].4 2222 baxx +−=  This polynomial is nice because a and b are

integers. This is the formula mentioned above with a and b in place of m

and n.

5. Higher-order Nicety Properties

When we study nice polynomials, we study both ( )xp  and its

derivative ( ).xp′  It is, therefore, natural to extend this problem by

considering higher-order derivatives as well. If ( )xp  and its first two

derivatives have integer roots, then we say ( )xp  is doubly nice. If ( )xp

and its first three derivatives have integer roots, then ( )xp  is triply nice.

In general, ( )xp  is m-th order nice if ( )xp  and its first m derivatives have

integer roots. If all nonconstant derivatives have integer roots, then we

say that ( )xp  is totally nice. The paper [5] uses these same definitions.

The idea of considering higher-order derivatives leads us to the

following question: Which types of nice symmetric polynomials with four

roots are doubly nice? triply nice? m-th order nice (for some choice of

)?1>m  totally nice? This question is not completely answered, but we

do have one result that tells us that certain types of nice symmetric

polynomials with four roots are not m-th order nice. We then conclude

that no nice symmetric polynomials with four roots are totally nice. The

proof of this uses the following result from an earlier paper [6, Theorem

3.3]: If ( )xp  is a nice symmetric or antisymmetric polynomial of degree d
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with an odd number of roots with the center root having multiplicity ,0m

then 0md  is the square of a rational number.

We now state and prove these results.

Proposition 5.1. Let 2≥m  be a positive even integer. If the degree

1+> md  of a nice symmetric polynomial ( )xp  is not of the form

( )12 −+ mn  for some odd integer n, then ( )xp  is not m-th order nice.

Proof. Suppose the degree of ( )xp  is not of the form ( ),12 −+ mn  so

( )1−− md  is not a perfect square. The ( )1−m st derivative of ( )xp  is,

therefore, an antisymmetric polynomial of degree ( )1−− md  with the

center root having multiplicity .10 =m  Since 
( ) ( )1

1

0
−−=−−

md
m
md

 is

not the square of a rational number, by [6, Theorem 3.3], the ( )1−m st

derivative is not a nice polynomial, so either ( )( )xp m 1−  or ( )( )xp m  does

not have integer roots. Therefore, ( )xp  is not m-th order nice.

The following corollary is a direct result of the above proposition. The
proof is simple, so we omit it.

Corollary 5.2. There are no totally nice symmetric polynomials with

four roots.

Nice symmetric quartics and sextics are of special interest, so we
state the following result about these nice symmetric polynomials.

Corollary 5.3. Nice symmetric quartics and sextics are not doubly

nice.

Remark. The condition stated in Proposition 5.1 is necessary but not
sufficient. To see this, note that both of the nice polynomials stated in
Example 4.6 are not doubly nice, yet both are nice symmetric polynomials

of degree ( ).12310 2 −+=  Finding sufficient conditions in Proposition

5.1 is difficult in general because ( ),xp′  which is antisymmetric, can have

up to seven roots and almost nothing is known about nice antisymmetric
polynomials with seven roots.
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6. Open Problems

We now conclude by stating several open problems about nice
polynomials with four roots.

Problem 6.1. Which types of nice nonsymmetric polynomials with
four roots exist? The only types whose existence is currently known are

the types ( ) ( ) ( )1,1,1,3,1,1,1,2,1,1,1,1  and ( ).1,1,1,4

Problem 6.2. Find a formula for all nice polynomials with four roots.

Problem 6.3. Suppose nice polynomials of the type ( )3210 ,,, mmmm

exist. How many equivalence classes exist for the type ( )?,,, 3210 mmmm

The following open problem comes from Section 5.

Problem 6.4. Are there nice symmetric polynomials with four roots

that are doubly nice? If so, which ones? What about triply nice? Or m-th

order nice (where m is any positive integer greater than 1)?
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