
w
w

w
.p

ph
m

j.c
om

Adv. & Appl. in Stat. 7(3) (2007), 441-449

:tionClassifica jectSub sMathematic 2000 62F15.

Keywords and phrases: Bayesian multiple comparison, bivariate exponential model,

fractional Bayes factor, noninformative priors, multiple comparison, posterior probability.

Received May 10, 2007

 2007 Pushpa Publishing House

MULTIPLE COMPARISONS FOR FREUND’S

BIVARIATE EXPONENTIAL POPULATIONS BASED

ON FRACTIONAL BAYES FACTOR

JANG SIK CHO

Department of Informational Statistics
Kyungsung University
Busan, 608-736, Korea
e-mail: jscho@ks.ac.kr

Abstract

In this paper, we suggest a Bayesian multiple comparisons procedure

for failure rates in K Freund’s bivariate exponential populations based

on a noninformative prior for the parameters. We compute fractional

Bayes factor for all comparisons. Also, we calculate the posterior

probabilities for all models and select the model with highest posterior

probability as best model. Finally we give a numerical example to

illustrate our procedure.

1. Introduction

Let us consider a life testing experiment in which two components are
put on test. In many cases of life testing and reliability analysis, two
components are assumed to have independent lifetime distributions.
However, it is more realistic to assume some form of positive dependence
among components. Freund [4], Marshall and Olkin [7], and Block and
Basu [2] formulated a bivariate extension of the exponential model as a
model for a system where the lifetimes of the two components may
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depend on each other. In particular, many authors studied for Freund’s
bivariate exponential model. Kunchur and Munoli [6] obtained minimum
variance unbiased estimator for the system reliability. Hanagal [5]
suggested an estimator of system reliability from stress-strength
relationship. Cho and Baek [3] derived a probability matching prior for
Freund’s bivariate exponential model.

In this paper, we focus on Bayesian multiple comparisons problem

for K Freund’s bivariate exponential populations. The test of equality of

the failure rates more than two populations relies on likelihood ratio

test statistic which is distributed as approximately 2χ -distribution. And

classical tests only decide whether the null hypothesis will be rejected or

not. When the null hypothesis is rejected, we do not know which

hypothesis is best for describing the equality of parameters.

Bayesian approach to resolve the multiple comparisons problem

selects the model with the highest posterior probability. And we can

compute all the posterior probabilities of the hypotheses under

consideration. In many cases, noninformative priors for the parameters

are used. Since noninformative priors are typically improper, the priors

are only up to arbitrary constants which affects the values of Bayes

factors. Berger and Pericchi [1] and O’Hagan [8] introduced the intrinsic

Bayes factor (IBF) and fractional Bayes factor (FBF), respectively, to

remove the arbitrariness. These approaches have shown to be quite

useful in several statistical areas.

In this paper, we propose a Bayesian multiple comparisons procedure

for failure rates in K bivariate exponential models based on FBF. We

compute the FBF for all comparisons and posterior probability for all

models as best model. Finally, we give a numerical example to illustrate

our procedure.

2. Preliminaries

Let us consider K Freund’s bivariate exponential populations with

parameters ( )....,,, 21 Kθθθ=Θ  And let NMM ...,,1  be models under

consideration. The random sample ( ) ( ) ( )( )nn yxyxyx ,...,,,, 11=  have a
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likelihood function ( )yxLi ,|θ  under model ....,,1, NiMi =  Let ( ) =ii yx ,

(( ) ( ))
ii ininii yxyx ,...,,, 11  be an 1×in  vector of independent observations

on iθ  with density ( ) ....,,1,...,,1,, iiijij njKiyxf ==θ|  The parameter

vectors θ are unknown. Let ( )θπi  be a prior distribution of model ,iM

and let ip  be the prior probabilities of model .iM  Then the posterior

probability that the model iM  is true is given as

( ) ,,
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where ijB  is the Bayes factor of model jM  to model iM  defined by
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The computation of jiB  needs specification of the prior distribution

( )θπi  and ( ).θπ j  Usually, one can use the noninformative prior which is

improper. Let N
iπ  be the noninformative prior for model .iM  Then the

use of improper prior ( )⋅πN
i  in (1) causes the jiB  to contain arbitrary

constants.

To solve this problem, O’Hagan [8] proposed the procedure for

Bayesian model selection problem based on FBF as follows. ijB  based on

noninformative prior ( )⋅πN
i  is given as

( )
( )

( ) ( )

( ) ( )
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Hence the FBF of model jM  versus model iM  is given as

( )
( ) ,

,,
,,

yxbq
yxbq

B
i

jF
ji = (3)
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where ( )
( ) ( )

( ) ( )∫
∫

Θ

Θ

θθπ|θ

θθπ|θ
=

i

i

dyxL

dyxL
yxbq

N
i

b
i

N
ii

i
,

,
,,  and b specifies a fraction of

the likelihood which is to be used as a prior density. One frequently

suggested choice is ,nmb =  where m is the size of the minimal training

sample.

The multiple comparisons of K populations is to make inferences

concerning relationships among the iθ ’s based on ( )., YX

Let ( ){ }KiRiK ...,,2,1,:...,,, 21 =∈θθθθ=Ω  be the K-dimensional

parameter space. Equality and inequality relationships among the iθ ’s

induce statistical hypotheses such  that subsets of Θ, that is, 11 :ΩM

{ },: 21 Ki θ==θ=θθ=  { }KiM θ==θ≠θθ=Ω 2122 ::  and so

on up to { }.:: 21 KiNNM θ≠≠θ≠θθ=Ω  The hypotheses ,: rrM Ω

,...,,2,1 Nr =  are disjoint, and .1 Ω=Ω= r
N
r∪

The elements of Θ themselves with positive probability, will reduce

to some Kr ≤  distinct values. That is, the model can be classified

( )Krr ...,,1=  distinct groups. Let superscript ∗  be distinct values of the

parameters and let ∗∗ θθ r...,,1  denote the set of distinct iθ ’s. We need to

define the configuration notation.

Definition (Configuration). The set of indices { }KSSS ...,,1=

determines a classification of the data { }Kθθ=Θ ...,,1  into r distinct

groups or clusters; the jn  be number of observations in group j share the

common parameter value .∗θ j  Now, we define jK  as the set of indices of

observations in group j; that is, { }.: jSiK ij ==  Let ∑
∈

=
jKi

ij nK  be

total number of observations in group j.

There is a one to one correspondence between hypotheses and

configurations. Therefore the Bayes factor for multiple comparisons can

easily be computed by this configuration notation.
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Suppose that a model is classified r distinct groups. Then the

likelihood function is given by

( ) ( )
{ }

∏ ∏ ∏
= ∈ =

∗∗ θ|=|θθ
r

t Kii

n

j
tijijr

t

i

yxfyxL
1 : 1

1 .,,...,, (4)

Since the noninformative prior for the model is ( ),...,,1
∗∗ θθπ r

N
r  the

FBF is given by

( )
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Thus if a model iM  is classified ir  distinct groups and a model jM  is

classified jr  distinct groups, then the FBF of jM  versus iM  is given by
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3. Bayesian Multiple Comparisons

Let ( )YX ,  be random variables of Freund’s bivariate exponential

model with parameters ( ).,,, ζ′ζδ′δ  Then the joint probability density

function is given as

( )
( )[ ]

( )[ ]





>>δ′−ζ+δ−δ′−ζδ′

>>ζ′−ζ+δ−ζ′−ζ′δ
=ζ′ζδ′δ

.0,exp

,0,exp
,,,:,

yxyx

xyxy
yxf (6)

In this paper, we assume ( ) ( )η≡ζ′=δ′θ≡ζ=δ ,  so that the lifetimes

of two components are equal failure rates.
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Suppose that a model kM  is classified kr  distinct  groups. Then the

noninformative prior for (( ) ( ))∗∗∗∗ ηθηθ
kk rr ,...,,, 11  is given by

(( ) ( ))
( ) ( )

,1,...,,,
11

11 ∗∗∗∗
∗∗∗∗

η⋅θη⋅θ
∝ηθηθπ

kk
kk

rr
rr

N
k

....,,,...,,0 11 ∞<ηηθθ< ∗∗∗∗
kk rr (7)

And likelihood function is given by

(( ) ( ) )yxL
kk rrk ,,...,,, 11 |ηθηθ ∗∗∗∗

( ) ( ( ) ( ))∏ ∑∑
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where tK  is the number of the set of indices ,tK  ( ) =AI

{( ) }ijij yxji <|,  and ( ) {( ) }., ijij yxjiBI >|=  Then the elements of FBF

for model kM  are computed as follows:

(( ) ( )) (( ) ( ))∫ ∫
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and
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Hence, ( )yxbq ,,  is given as ( ) .,,
2
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k
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Thus if a model iM  is classified ir  distinct groups and a model jM  is

classified jr  distinct groups then the FBF of jM  versus iM  is given by

( )
( )
( ) .

,,
,,

,
21

21

ii

jj

i

jF
ji SS

SS
yxbq
yxbq

yxB == (9)

Hence the FBF for all comparisons can be computed by equation (3).
Using these FBF, we can calculate the posterior probability for hypothesis

KiMi ...,,1, =  by (1). Thus, we can select the hypothesis with highest

posterior probability in Bayesian multiple comparisons based on FBF.

4. A Numerical Example

A numerical example of the multiple comparisons for the failure rates
in Freund’s bivariate exponential populations is presented in this section
using simulated data. We consider 4 bivariate exponential populations
each with size 4...,,1,15 == ini  and ( )5.2,0.2  for ( )11, ηθ  and

( ) ( )5.3,0.3,, 22 ηθ  for ( )33, ηθ  and ( ),, 44 ηθ  respectively. Then the

numbers of possible hypotheses for multiple comparisons are 15. And we
note that the true hypothesis may be .: 4321True θ=θ≠θ=θM  The
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simulated data are given by Table 1. Also the calculated posterior
probabilities for all possible models are given by Table 2.

Table 1. The simulated data

populations simulated data

(0.6125, 0.3652) (0.2797, 0.0347) (2.0817, 0.3510) (1.2561, 0.0734)

I (1.5567, 1.6094) (1.3048, 0.1797) (0.8251, 0.1291) (0.0016, 0.0162)

(0.2420, 0.2950) (0.5699, 0.1534) (0.3935, 0.1765) (0.6988, 0.4840)

(0.1087, 1.0277) (2.0381, 0.0883) (0.0748, 0.4610)

(0.7826, 0.3742) (0.0859, 0.2121) (0.0795, 1.0365) (0.0476, 0.6160)

II (0.0283, 0.4952) (0.9406, 0.2076) (0.0619, 0.7031) (0.6819, 0.3618)

(0.0606, 1.5147) (0.3477, 0.6982) (0.4719, 0.4616) (0.6665, 1.0410)

(0.0711, 0.1559) (0.3404, 0.5933) (0.7818, 0.1696)

(0.2617, 0.0605) (0.1521, 0.0761) (0.0480, 0.0488) (0.6542, 0.3424)

III (0.0328, 0.5424) (0.6271, 0.1671) (0.0788, 0.2292) (0.5153, 0.7975)

(0.7732, 0.1334) (0.0391, 0.1262) (0.3260, 1.1081) (0.0199, 0.0224)

(0.4709, 0.2846) (0.1697, 0.3694) (0.0459, 0.0915)

(0.2368, 0.0854) (0.0626, 0.4331) (0.0733, 0.0213) (0.4786, 0.3526)

IV (1.3102, 0.5169) (0.2856, 0.0031) (0.0528, 0.2206) (0.0478, 0.0358)

(0.1723, 0.0237) (0.0885, 0.3408) (0.1272, 0.3380) (0.0470, 0.2693)

(0.0484, 0.1448) (0.0837, 0.1519) (0.7934, 0.4022)

Table 2. Calculated posterior probabilities for each model

rM ( )yxMP r ,| rM ( )yxMP r ,| rM ( )yxMP r ,|

4321 θ=θ=θ=θ 0.0112 2431 θ≠θ=θ=θ 0.0066 4321 θ=θ=θ≠θ 0.0472

4321 θ≠θ=θ=θ 0.0464 4231 θ=θ≠θ=θ 0.0064 4321 θ≠θ=θ≠θ 0.0604

3421 θ≠θ=θ=θ 0.0138 4231 θ≠θ≠θ=θ 0.0189 3421 θ≠θ=θ≠θ 0.0256

4321 θ=θ≠θ=θ 0.3513 3241 θ=θ≠θ=θ 0.0048 4321 θ=θ≠θ≠θ 0.1693

4321 θ≠θ≠θ=θ 0.1566 3241 θ≠θ≠θ=θ 0.0060 4321 θ≠θ≠θ≠θ 0.0755
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From Table 2, it is to be noted that the hypotheses ,4321 θ=θ≠θ=θ

4321 θ=θ≠θ≠θ  and 4321 θ≠θ≠θ=θ  have the large posterior

probabilities 0.3513, 0.1693 and 0.1566, respectively. Thus the data lend

greatest support to equalities for 21 θ=θ  and 43 θ=θ  being different

from the others.

So far, the multiple comparisons procedure was carried out for K

Freund’s bivariate exponential populations based on FBF. Also, the
method can be extended to a bivariate exponential populations with
incomplete data or multivariate exponential populations as well, with
moderate effort.
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