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Abstract 

The study is motivated by the importance of assessing small-area 
variation for the development and implementation of medial and 
educational interventions to reduce disparities in breast cancer 
survival. The Data were collected state-wide and post-stratified to the 
county level by Iowa SEER program. We propose a Bayesian 
hierarchical model for Weibull distribution by incorporating conditional 
autoregressive priors for transformed rate parameters to analyze 
spatial-temporal effects on breast cancer survival. Gibbs-Poole-
Stockmeyer algorithm on the sparse adjacency matrix enhances 
efficiency of Gibbs sampler in the simulation study. Results of breast 
cancer survivals for aged 65 or older women in Iowa are presented. 
Comments and further discussions are given. 

1. Introduction 

Breast cancer is the second leading cause of cancer death among 
women in the United States and estimated 41,619 death in 2003. About 
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80% of the breast cancer deaths are among women age 65 years or older 
[15]. These women have a lower survival rate and are less likely to 
receive recommended treatment relative to young women [11]. 
Regardless of age, survival from breast cancer varies geographically 
in Europe [5, 10]. Among large geographical areas in the United States, 
5-year survival rates in this age group varied among Surveillance, 
Epidemiology, and End Results (SEER) registries from 71% (Iowa) to 80% 
(Hawaii) [4]. 

Because cancer survival is believed to be influenced by both 
community as well as individual characteristics, yet most research 
focuses on either the individual or his/her environment. Some works were 
done by other researchers, Goldstein [8] and Reader [13]. Our study is 
motivated by the importance of assessing small-area variation for the 
development and implementation of medial and educational interventions 
to reduce disparities in survival. We used the Iowa SEER database and 
determine if geographic disparities exist at smaller areas. There are 5918 
patients registered excluding dead individuals when starting from 1991 
in the record. Also basic information like age, race, survival time, county, 
census tract and related treatment after breast cancer incidence is 
included. Thus, a hierarchical Bayesian modeling strategy could be used 
for the analysis. We adopt a linear mixed model of the logarithm of the 
rate parameters in a Weibull distribution. Smith [14] pointed out 
frequentist methods such as maximum likelihood estimates in a Weibull 
model are notoriously difficult with small sample sizes. Although the total 
sample size from the Iowa SEER data sets is quite large, the data at the 
county-by-year-by-age group level have many zeroes. This greatly 
complicates a conventional Weibull survival model. Later, Berger and 
Sun [1] used Bayesian analysis for Weibull distributions with competing 
risk models and stress-strength models. Hierarchical linear mixed models 
have recently been used to model response times in psychology studies by 
Lu et al. [12]. 

In this paper, we propose a Bayesian hierarchical model to capture 
necessary features of spatial-temporal models related to breast cancer 
survival. Because age plays a key role in breast cancer survival, it is also 
incorporated into our model. The spatial effects are modeled with 
conditionally autoregressive priors in [2] due to the belief of possible 
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correlations among adjacent geographical sites. The paper is organized as 
follows: Section 2 introduces the notation and description of data first and 
then model in detail. Section 3 summarizes simulation and results. 
Finally, some comments of some current studies are given in Section 4. 

2. Data and Models 

2.1. The data 

We focus on one of SEER programs in Iowa with K counties with 
.99=K  Assume that for each county i, there are in  subjects under study 

associated with jth individual in county i. We observed a survival time ijt  

of breast cancer after diagnosed and a fixed censoring time .ijc  So there 

are total 59181 =++= Knnn  breast cancer female patients aged 65 

or older recorded in the Iowa SEER program from 1992 to 1999. Assume 
that ijt ’s are independent with Weibull ( )ijW λα,  distribution, whose 

density and survival function are given by 

( ) ( ),exp, 1 α−α λ−αλ=λα| tttf ijijij  

and 

( ) ( ) ,0,exp, >λ−=λα| α tttS ijij  

respectively. The exact survival time ijt  will be observed only if .ijij ct <  

Note that the hazard function of ijt  is 

( ) ,, 1−ααλ=λα| tth ijij  

which is a special case of Cox-proportional hazard model [3]. The data in 
this framework will be represented by the n pairs of random variables 
( ),, ijijy ∆  where ( ),,min ijijij cty =  and 1=∆ij  if ,ijij ct ≤  and 0, 

otherwise. Note that if ,1=∆ij  person j in county i died before time ,ijc  

so ijt  is the survival time after diagnosis. On the other hand if ,0=∆ij  

the person is either still alive or out of investigation at the time ijc  after 

diagnosis. 

Alternatively, we could use the type of nonparametric approach for 
estimating survival functions. Such approach is computationally feasible 
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in [9] with the type of transformations of the parameters. However, it is 
rather difficult to study the geographical variation and spatial effect. In 
our model, we use the parametric approach in details below. As 
convention, we usually take logarithm of the rate parameters as 

( ).log ijijV λ=  The density and survival function can be rewritten as 

( ) [ ( ) ].expexp, 1 α−α −α=α| tVVtVtf ijijijij  

Then, the likelihood function of ( )
KKnVV ...,,11=V  and α based on 

( )∆,y  is 

( )∆,, yV |αL  

{[ ( )] [ ( )] }∏∏
= =

∆−∆ α|×α|=
K

i

n

j
ijijijij

i
ijij VySVyf

1 1

1,,  

{ ( [ ( ) ( ) ( )] )}∏∏
= =

α−−α++α∆=
K

i

n

j
ij

V
ijijijij

i
ij yeyyV

1 1

logloglogexp  

( [ ( ) ( ) ( )] ) ,logloglogexp
1 1 











−−α++α∆= ∑∑
= =

α
K

i

n

j
ij

V
ijijijij

i
ij yeyyV  (1) 

where ( )
KKnyy ...,,11=y  and ( )....,, 011 KKn∆∆=∆  

2.2. The linear mixed model 

For transformed rates V, we propose to use a linear mixed model to 

the logarithm of the rate parameters, 

....,,1,...,,1,,1,0 iijijijij njKiV ==ε+′+β′= Wxx  (2) 

Here ,,0 ijx  including constant, is the age of person j in county i, β is the 

regression coefficients, ij,1x  is vector of indicators for spatial location, 

and W represents multilevel spatial effects such as county and census 

tract effects. ijε  represents any other effects not included in the model. 

Sometimes, these random noises are interpreted as frailties in survival 

models. Note that the first row of ij,0x  could be 1 so that constant is 

included. If we define ( ) ,...,, ,11,
′=

KKnqqq xxX  for 1,0=q  with error 
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terms ( ) ,...,,11
′εε=

KKnå  model (2) can be written in a matrix form, 

.10 ε++β= WXXV  (3) 

We assume that the error term ijε ’s are i.i.d. normally distributed with 

variance .0δ  Then (3) is equivalent to follow a multivariate normal 

distribution 

( ) ( ).,~,, 0100 nnN IWXXWV δ+βδβ|  (4) 

2.3. A CAR model for spatial correlation 

To state the prior in the model in general form, we consider spatially 

correlated county effects ( ) ....,,1
′= KZZZ  The location of ,iZ  

corresponding to a county in the proposed model, is assumed to have at 

least one neighboring location. These locations define a so-called 

adjacency matrix C, and KK ×  matrix with elements ,ikc  where 1=ikc  

if regions i and k are adjacent, and 0=ikc  otherwise. By definition, 

.0=iic  Let iN  be the neighborhood of region i, that is, the set of all 

regions k for which .1=ikc  We assume that the conditional 

autoregressive model (CAR) defined by the conditional densities 

( ) ( ) ,
2
1exp

2
1, 













 ρ−

πδ
−

πδ
=≠| −iiki ZZikZZf  (5) 

where ,0>δ  and ∑ ∈− =
iNk ki ZZ .  

Correlation parameter ρ measures the dependencies of two adjacent 

locations. When ,0=ρ  we know that ( )′= KZZ ...,,1Z  are independent. 

Thus ρ serves as an index of spatial dependence. It is shown that (5) is 

equivalent to the multivariate normal distribution in [16] 

( ) ( ( ) ),,~, 1−ρ−δρδ| CI0Z KN  (6) 

where I is the identical matrix. In other words, Z is multivariate normal 

with mean 0 and variance matrix ( ) .1−ρ− CI  To ensure the positivity of 
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( ) ,1−ρ− CI  ρ is restricted to 

,
max

1,
min

1








ϑϑ iiii
 (7) 

where Kϑ≤≤ϑ1  are eigenvalues of the adjacency matrix C. We will 

use conditional autoregressive process prior to model the spatially 

correlated random effects such as W in (2). 

2.4. The prior 

Since the shape parameter α in the Weibull model is often quite 

stable, we put a gamma prior for the shape parameter α, 

( ).,Gamma~ ααα ba  (8) 

In this paper, a Gamma ( )ba,  distribution has the density 

( ) ( ) ( ),exp1 btt
a

btf a
a

−
Γ

= −  for .0>t  

The prior is chosen because of its flexibility and convenience. 

Followed by the previous section, we assume that W follows a CAR 

prior, 

( ) ( ( ) ),,~, 1
11

−ρ−δδρ| CI0W KN  (9) 

where K is the number of counties in the SEER program, C is the 

adjacent matrix from neighboring spatial sites, for instance, counties, 

census tracts in the SEER program, 1δ  is the variation parameter and ρ 

is a correlation parameter among locations. For regression coefficients β, 

we use a multivariate normal prior, i.e., 

( ).,~ I0 τβ pN  (10) 

If τ is large, then we have a flat normal prior for β. Note that we assume 

that β and W are independent with each other. If we write ( )10, XXX =  

and  ( ) ,, ′′β′=γ W  model (2) becomes 

.åXV +γ=  (11) 
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Then the priors (9) and (10) with independence assumption are 
equivalent to prior on  γ as 

( ),,~ Ó0KpN +γ  where 
( )

.1
1









ρ−δ

τ
= −CI0

0I
Ó  (12) 

We could easily see that such a model is a hierarchical model 

( ) ( ),,~, 010 nnN IWXWV δδ|  

( ) ( ( ) ).,~,, 1
101

−ρ−δβρδβ| CIXW KN  (13) 

To complete the hierarchical model, we still need a prior on the 
variance parameters 0δ  and .1δ  We choose the prior on 0δ  as inverse 

type of priors, 

[ ] ( ).exp1
001

0
0

0
δ−

δ
∝δ

+
b

a
 (14) 

For the prior of ,1δ  we consider ,101 δδ=η  the noise and signal ratio. 

We propose to use the Pareto (1, 1) prior on ,1η  whose density is given by 

[ ]
( )

.
1 2

1
1

+η

1=η  (15) 

Note that a general case of Pareto ( )ba,  distribution has the density 

( ) .0,1 >= + xxabxf aa  

(15) is equivalent to assume that 

[ ]
( )

.
2

01

0
01

δ+δ

δ
=δ|δ  

The reasons of using such a prior can be found in [12]. For example, (15) 

is equivalent to assume that ( ).1,0uniform~
10

1
δ+δ

δ
 

Because of the restriction of ρ in (7), the prior of spatial correlation 
parameter ρ needs to be specified. We assume that ρ to be uniformly 
distributed on the interval of ( ),1,1 1 Kϑϑ  i.e., 

.1,1Unif~
1









ϑϑ
ρ

K
 (16) 
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If C is the adjacency matrix for counties in Iowa, we have 304.01 1 −≈ϑ  

and 196.01 ≈ϑK  [16]. For census tracts, 2817.01 1 −≈ϑ  and Kϑ1  

.1379.0≈  Then the CAR prior in (9) is proper. 

Therefore, the joint posterior density of ( )10,,,,,, ηδρβα WV  given 

( )∆,y  is 

[ ] ∝|ηδρβα ∆,,,,,,, 10 yWV  

( ) [ ] [ ] [ ] [ ] [ ] [ ] [ ],,,,,,, 10100 αρηδρηδ|ββδ||α WWVyV ∆L  (17) 

where all the above densities are given by (1), (4), (8), (9), (15) and (16), 
respectively. 

3. Simulation and Results 

3.1. G.P.S. algorithm 

The adjacency matrix C is a symmetric sparse matrix with few 
non-zero entries compared to the high matrix dimension. The 
computation will be burdened heavily because of the high dimensionality. 
Fortunately, sparse matrix with specific pattern and structure usually 
can be converted to a banded matrix, whose non-zero entries are confined 
to a diagonal band, comprising the main diagonal and zero or more 
diagonals on either side. Gibbs et al. [6] developed an algorithm named 
Gibbs-Poole-Stockmeyer algorithm to reduce the bandwidth of sparse 
symmetric matrices, which produces a vector storing new locations of 
counties in the banded matrix. The idea is to introduce a permutation 
matrix P such that PPW ′  has a small bandwidth defined by the 

maximum of the set { }.0: ≠− ijwji  Thus, the vector W is no longer 

with counties in alphabetical order. This permuted matrix leads to 
compact storage and reduced computation times for solving linear 
equations, matrix inverse or eigenvalue problems. Meantime, we have to 
permutate order of indices in matrix 1X  correspondingly. This procedure 

greatly promote the speed of computation especially when the dimension 
of W is very large. 

3.2. Simulation 

From survey database, age is coded continuously with range from 66 
to 104. We try to avoid grouping data because of missing observations in 
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categories of grouped ages by counties. Meanwhile, there is no specific 
clue to categorize age into groups, thus, we consider model age effect in 
continuous form. This would be reasonable because the main purpose of 
the study is to examine spatial effect by depleting other determinants. 

Implementation of the Gibbs sampler is straightforward. The full 

conditionals (given Appendix A) for γ have close forms and those for V, ρ, 

,1η  φ and α are log-concave. The adaptive rejection sampler of Gilks and 

Wild [7] is used. At the beginning of Gibbs sampling, we set both 1ω  and 

2ω  equalling to 2.0 and a flat prior on age effect with precision parameter 

.1500=τ  Hyper-parameter 0δ  is 0.5. The total number of iterations is 

1,00,000 with the first 10,000 samples discarded as burn-in. 

3.3. Results 

The posterior mean and standard error of ρ are listed in Table 1. The 

posterior density of ρ is given in Figure 1(c). It seems that ρ is slightly 

shifted and concentration toward the positive part but not strong, 

showing weak spatial correlation for the breast cancer survival rate. 

Meanwhile, the posterior mean of individual variation 0δ  is much larger 

than spatial variation ,1δ  indicating other possible covariates such as 

census tract and social-economic related factors may exist. 

Table 1. Posterior Means and Standard Deviations of ( )vv βαδρ ,,,  

 Posterior Mean Standard error 

ρ 0064.0−  0.118 

0δ  0.6324 0.2522 

1δ  0.0402 0.0272 

α 0.9864 0.0364 

0β  5607.3−  0.1355 

1β  0.5757 0.0390 
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Figures 2 and 3 present estimated county effects 99...,,1, =iWi  and 

hazard rates iλ  for county i in Iowa. The spatial pattern on the map is 

vague. One possibility leading to weak spatial correlation is that most 
counties have few observations, thus leading to potential inaccuracy of 
the estimation. Because there are around 87 percent of women alive at 
the end of study period, another reason arises from the large number of 
censoring in the Iowa SEER data. Figure 4 displays baseline survival 
functions for people aged 66, 76, 86 and 96, respectively. From Table 1, 
there is a positive age effect on hazard rates, which means older patients 
have lower breast cancer survival. It is consistent with conventional 
results. All the trace plots for sampled parameters are presented in 
Figure 5. 

3.4. Comment 

In this study, we model breast cancel survival based on Weibull 
distributions by incorporating spatial-temporal effects using Bayesian 
Hierarchical Model. 

• Census tracts. Census tracts are sub-county divisions closely related 
to social and economic status factors. We have tried to include smaller 
geographic areas of census tracts in the mixed model either jointly with 
counties, or separately. The difficulty in modeling highly censored 
survival data in the current model still remains for census tract level, or 
even worse, in which zero observations exist in many census tracts among 
total 782 census tract. Simulation results show weak spatial correlation 
under these subdivisions, however, with relatively large variation for 
individuals. The computation is very expensive, taking almost 13 minutes 
per iteration. In this high dimensional study, G.P.S. algorithm enhances 
the efficiency of sampler dramatically by cutting down simulation time to 
only 1 minute per iteration. 

• Thin-plate spline. Thin-plate spline is used as spatial smoothers for 
point-referenced data and can be easily implemented. White et al. [17] 
applied Bayesian version of thin-plate splines to success rates for turkey 
hunters in Missouri and performed more powerful to smooth spatial 
pattern data. Most important, it can solve the problem caused by lack of 
sufficient observations in geographical sites in the current model, 
especially in census tract level. We are currently implemented the thin-
plate spline model. 
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• Objective prior. We evaluated the robustness of Bayesian estimates 

by changing different hyper-parameters and scales for survival time and 

age. The results are very sensitive towards those settings. The current 

study applied subjective but rather vague prior on 0δ  which is 

controversial due to subjective selection. One possibility is to choose 

invariance prior corresponding to ( ) ( )0,0, 00 =ba  in (14). It turns out 

that the joint posterior is improper. Now, we are exploring objective 

priors for all unknown parameters in the Weibull model. We incorporate 

county and census tract effect alternatively. 
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Appendix A 

The full conditional distributions of the model parameters are needed 
to implement a Gibbs sampler. 

Lemma 1. Under the priors (4), (8), (12), (14), (15) and (16), we have 
following results. 

(a) Given ( ),,;,,,, 02 yWW ∆δβα  the conditional posterior of ijV  are 

independent with log-concave densities, 

[ ] ( ) ,
2
1exp,;,,, 2

0
0 






 γ′−

δ
−−∆∝δβα| α

ijijij
V

ijijij VteVV ij xyW ∆  (18) 

for ....,,1,...,,1 injKi ==  

(b) Given ( ),,;,,, 10 yV ∆ρηδ  the conditional posterior density of =γ  

( )′′β′ W,  is multivariate normal with mean vector ∗µ  and variance matrix 

,0
∗δ Σ  such that 

( ) ,11
0

−−∗ ′+δ= XXΣΣ  (19) 

.VX′= ∗∗ Σµ  (20) 

(c) The conditional posterior density of ρ given ( )01,, δηW  is 

[ ] ( )∏
= 






 ′

δ
ρη

ρϑ−∝δη|ρ
K

i
i

1 0

121
01 .

2
exp1,, CWWW  (21) 



w
w
w
.p
ph

m
j.c

om

HIERARCHICAL MODELS FOR DETECTING …  13

(d) Let .
~ γ−= XVV  The conditional posterior density of 0δ  given 

( )ρηγ ,,, 1V  is inverse gamma ( ),~
,~

00 ba  where 

( )KNaa ++=
2
1~

00  and [ ( )].~~
2
1~

100 CWWWWVV ′ρ−′η+′+= bb  (22) 

(e) The conditional posterior density of 1η  given ( )ρδ ,, 0W  is 

[ ]
( )

( ) .
2

exp
1

,,
0

1
2

1

2
1

01






 ρ−′

δ
η

−
+η

η
∝ρδ|η WCIWW

K

 (23) 

(f) The conditional density of ( )1log η=ϕ  given ( )ρδ ,, 0W  is log-

concave and given by 

[ ]
( )

( )
( ) .

2
exp

1
,,

02

12

0








ρ−′
δ

−
+

∝ρδ|ϕ
ϕ

ϕ

ϕ+
WCIWW e

e

e K
 (24) 

(g) The conditional posterior density of α given ( )yV ,; ∆  is log-

concave and given by 

[ ] ,
~

exp,;
1 1

~














−α−α∝|α ∑∑

= =

α
α

α
K

i

n

j

V
ij

a
i

ijetbyV ∆  (25) 

where 

∑∑
= =

αα −∆+=
K

i

n

j
ij

i

aa
1 1

,1~  

( ).log
~

1 1
∑∑
= =

αα ∆−=
K

i

n

j
ijij

i

tbb  

Proof. Proving (18) is easy. We also need to show it is log-concave. 

Because the second derivative of the logarithm of density (18) 

,1

0δ
−− α

ij
V

te ij  

is negative. The result holds. Parts (b), (d) and (e) can be verified easily 
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from (17). By (17), it is clear that the conditional posterior density of ρ is 

[ ] ( )






 ρ−′

δ
η

−ρ−∝δη|ρ WCIWCIW
0

121
01 2

exp,,  







 ′

δ
ρη′ρ−′∝ CWWOOOIO

0

121
11111 2

expϒ  

,
2

exp
0

121
1 






 ′

δ
ρη

ρ−∝ CWWI ϒ  

where ( )Kϑϑ= ...,,diag 11ϒ  and 1O  is the eigenvector matrix of C. 

Because 1ϒρ−I  is a diagonal matrix, (c) hold. 

The density (24) is log-concave by verifying the second derivative 

( )
( ) ,
21

2
02 δ
ρ−′

−
+

−
ϕ

ϕ

ϕ WCIWe

e

e  

which is always negative. Then (f) holds. 

Finally, the distribution functions (25) can be verified easily from 
(17). We take the second derivative of the logarithm of (25) and have 

( ),log
~

1 1

2
2 ∑∑

= =

αα −
α

−
K

i

n

j
ij

V
ij

i
ij tet

a
 

which is negative. The conclusion (g) follows. 
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Figure 1. Histogram of posterior densities of selected parameters 

( )210100010 ,,,,,,, WV ββαρδδ  for Iowa breast cancer data. 
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Figure 2. The map of posterior means of the county 

effects ,iW  99...,,1=i  for Iowa breast cancer data. 

 

 
Figure 3. The map of average hazard rates ,iλ  

99...,,1=i  of county for Iowa breast cancer data. 
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Baseline Survival Function 

 

Figure 4. The estimated baseline survival functions for patients aged 
66, 76, 86, 96 over 20 years period for Iowa breast cancer data. 
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Figure 5. The trace plots for selected parameters 

( )210100010 ,,,,,,, WV ββαρδδ  for Iowa breast cancer data. 
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