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Abstract

We investigate the analogous Gauss-Kuzmin type problem for a class of

series representations for real numbers known as Lüroth series. We

obtain significant asymptotic formulas for their digits and study some

applications of the law of large numbers for the associated Markov chain

which lead to important ergodic properties. Our approach is given in the

context of the theory of stochastic dependence with complete

connections.

1. Introduction

At first, we define a general algorithm introduced in Galambos [1] as

follows. Let ( ) ...,2,1,0 =>α jnj  be a sequence of strictly decreasing

functions of natural numbers n such that, for each j, ( ) 11 =α j  and

( ) ,0→α nj  as .∞→n  Let also ( )njγ  be another sequence of positive
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functions of n with the property that, for ,2≥n

( ) ( ) ( ).1 nnn jjj γ≤α−−α (1.1)

Then for an arbitrary real number ,10 ≤< x  we define the integers

( )xdd jj =  and the real numbers ...,2,1, =jx j  by the algorithm

( ) ( )1,1 −α≤<α= jjjjj dxdxx (1.2)

{ ( )} ( ).1 jjjjjj ddxx γα−=+ (1.3)

By the assumptions (1.1) and (1.2), it is implied that .10 1 ≤< +jx

Putting

( ) ( ) ( ) ( ) ( ) ( )NNNNN ddddddy α⋅γγ++α⋅γ+α= −− 1111221111 (1.4)

repeated application of (1.2) and (1.3) yields

( ) ( ) ( ) .12211 +⋅γγ⋅γ=− NNNN xdddyx (1.5)

Since by assumption, we have that ( ) ,0>γ nj  (1.4) and (1.5) imply

xyN <<0

and thus ( )xyy NN =  has a finite limit ( )xy  as ,+∞→N  that is, for

each x the infinite series

( ) ( ) ( ) ( ) ( ) ( ) ( ) +α⋅γ⋅γ+α⋅γ+α= 332211221111 ddddddxy (1.6)

always converges and
( ) .0 xxy ≤< (1.7)

Definition 1.1. The infinite series (1.6) of ( )xy  is called the ( )γα, -

expansion of x.

Here the letters α and γ stand for the sequences ( )njα  and ( ),njγ

respectively. Also we have to notice that the ( )γα, -expansion ( )xy  of x is

not guaranteed to equal x and indeed, there are cases where the equality
(1.7) fails. Such an example is given by Vervaat [11, pp. 101].

In order to give a necessary and sufficient condition for ( ) ,xxy =  we

shall need the following definitions:
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Definition 1.2. The vector ( )Nkkk ...,,, 21  with positive integer

components is called realizable with respect to the ( )γα, -expansion of

real numbers if and only if there is at least one x in ( ]1,0  such that

( ) .1, Njkxd jj ≤≤=

Definition 1.3. An infinite sequence …,, 21 kk  of positive integers is

called realizable with respect to the ( )γα, -expansion if and only if for

each N, ( )Nkkk ...,,, 21  is realizable.

The next theorem provides the suitable condition for all integers

,1,1 Njdj ≤≤≥  under which ( ) ,xxy =  for all ( ].1,0∈x

Theorem 1.4. The ( )γα, -expansion ( )xy  of x satisfies the relation

( ) ,xxy =  for each x in ( ]1,0  if and only if, for any realizable sequence

…,, 21 kk

[ ( ) ( ) ( ) ( ) ( )( )] .01lim 112211 =α−−α⋅γγ⋅γ −−+∞→ NNNNNNN
kkkkk …

We shall study a special case of the above-mentioned algorithm by

specifying the functions ( )njα  and ( ).njγ

1.1. The Balkema-Oppenheim expansion

Let ( ) ( )nnj α≡α  be independent of j. Let further ( )nh  be a positive

integer valued function of n for .2≥n  Then we define, for each ,1≥j

( ) ( ) ( ) ( ){ } ( )( ) .2,1 ≥αα−−α=γ≡γ nnhnnnnj (1.1.1)

It is obvious that the resulting series

( ) ( ) ( ) ( ) ( ) ( ) ( ) +α⋅γ⋅γ+α⋅γ+α= 321211 ddddddxy (1.1.2)

is identical to (1.6) except that the subscripts for α and γ should be

dropped. The ( )γα, -expansion (1.1.2) of real numbers is called Balkema-

Oppenheim expansion.

The special case of ( )
n

n 1=α  leads to

( ) ( ) ( ).1−=γ nnnhn
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Hence we have the following ( )γα, -expansion of ( ]1,0∈x

( ) ( )
( )

( ) ( )
( ) ( ) +⋅

−−
⋅

+⋅
−

+=
32211

21

211

1

1

1
11

1
1

1
ddddd

dhdh
ddd

dh
d

xy (1.1.3)

with ,2,11 ≥−>+ jjj ddd  for any .1≥j

The Balkema-Oppenheim ( )γα, -expansion (1.1.2) or its special case

(1.1.3), ( )xy  of x satisfies the equality ( ) xxy =  since Theorem 1.4 is

directly applicable. In particular by putting ( ) ,1=nh  for ,2≥n  we take

the following ( )γα, -expansion of every real number in the left-open,

right-closed unit interval ( ]1,0

( ) ( ) ( ) ( ) +⋅
−−

+⋅
−

+=
322112111

1
11

11
1

11
ddddddddd

xy (1.1.4)

( ),..., 21 dd≡

with jd  natural numbers such that ,2≥jd  for any ,1≥j  which is called

Lüroth series (see, e.g., [10], Satz 48).

Moreover, every real number ( ]1,0∈x  has α unique representation

in the form of a Lüroth series (1.1.4). This means that there exists a

one-to-one correspondence between the elements ( ]1,0∈x  and the

sequences ( ) ,2,....,, 21 ≥nddd  ....,2,1=n  Specifically x is rational if

and only if its sequence of digits ...,,, 321 ddd  terminates or is periodic.

We should note that the above expansion can be generated by the

operator ( ] ( ]1,01,0: →T  defined by the relation

( ) .1111











+−⋅





 −



=

x
x

x
xT (1.1.5)

In fact if ( ) 



=
x

xd 1
1  and ( )

( )
,1

11 







=≡ ++

xT
xdd

nnn  for ( ) ,0≠xT n  we

obtain a unique finite or infinite representation for any real number

( ]1,0∈x  as the one given by (1.1.4).



w
w
w
.p
ph

m
j.c

om

ON THE APPLICATION OF DEPENDENCE WITH … 413

In addition we should mention that the digits ...,2,1, =ndn  may be

considered as random variables on ( ]1,0  equipped with the σ-algebra

( ]1,0B  of all Borel subsets in ( ].1,0  These are almost surely defined with

respect to any probability measure on ( ]1,0B  assigning probability 0 to

the set of rationals in ( ]1,0  (in particular with respect to the ordinary

Borel-Lebesgue measure λ).

Define by

( )
( ) ∑

=

+=
n

k kn

n
qdxq

xP

21
,11 (1.1.6)

where ( ) ( ) kkkk dddddq ⋅−−= −− 11 1111 …  the nth convergent of x and

put

( )121 ,...,,, ddddS nnn −=

( ) 1

1
1

11

−
⋅

−
+=

nnnn dddd

( ) ( ) ( ) .1
111

1

12211 ddddddd nnnn
⋅

−−−
++

−− …
(1.1.7)

The aim of the present paper is to give the asymptotical properties of

the sequences of ( ) ( )nnnn Sd ,  by using the approach of stochastic

dependence with complete connections.

The paper is organized as follows. In Section 2, we prove the existence
of a random system with complete connections associated with the
expansion (1.1.4) and identify its limit probability measure. In Section 3,
we solve the version of the Gauss-Kuzmin type problem for the Lüroth
series by using the theory of random systems with complete connections.
Section 4 deals with the law of large numbers for the chain of infinite
order of the above random system providing asymptotical properties for

the digits ...,2,1, =ndn  Finally in Section 5 by using the law of large

numbers for the associated Markov chain of the suitable constructed
random system with complete connections we arrive at results on
approximation theory.
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2. Construction of the Random System

with Complete Connections

We are interested on the Lüroth expansion (1.1.4) for any irrational

number ( ]1,0∈x  and define by

( ) ( ) ( ) ( )( ) ( )xdxdxdxd
x

nnnn
n

1

1
1

11

−
⋅

−⋅
+=ϕ

( ) ( )( ) ( ) ( )( ) ( )xdxdxdxdxd nnnnn 211

1
11

1

−−−
⋅

−⋅⋅−⋅
+

( ) ( )( ) ( ) ( )( ) ( ) .1
11

1

122 xdxdxdxdxd nn
⋅

−⋅−⋅
++

…
(2.1)

It is obvious that ( )( )nn ⋅ϕ  is a sequence of real random variables defined

on ( ],1,0  which satisfies the recursive relation

( ) .1,
1

11

111
1 ≥φ⋅

−
+=ϕ

+++
+ n

ddd n
nnn

n (2.2)

In the next we shall need the following (for the proof, see, Galambos

[1]):

Proposition 2.1. The digits ( ) ,1, ≥⋅ ndn  are stochastically

independent and identically distributed random variables with respect to

Lebesgue measure λ with

( ) ( ) .2,
1

≥
−
1==λ k

kk
kdn

The relations (2.1), (2.2) and Proposition 2.1 lead us to the

consideration of a random system with complete connections (RSCC)

{(( ] ( ]) ( )( ) },,,,,,1,0 1,0 PuAA PB (2.3)

where

( ) ( ) ( ) ( ) ( ] ,2,1,0,
1

1,,
1

11, ≥∈
−

=⋅
−

+= nx
nn

nxPx
nnn

nxu

{ }...,3,2=A  and ( )AP  is the power set of A.
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Let us now define for each real-valued function f on ( ]1,0  the

following positive numbers

( ]
( ) ( )

( ]

( ) ( )
.sup,sup

21

21

1,01,0 21 xx
xfxf

fsxff
xxx −

−
==

∈≠∈

Then the set ( ]( )1,0L  of all real-valued functions defined on ( ]1,0  such

that ( )fsf ,  are finite positive numbers is a Banach space with respect

to norm ( ).fsff +=  We shall prove the following:

Theorem 2.2. The random system (2.3) is an RSCC with contraction

while its Markov operator is regular with respect to ( ]( ).1,0L

Proof. According to Norman’s definition (see [10]) and since

( ) ( )
( ) ,2,1

1
1,

,0
,

≥<
−

== n
nndx

nxdu
dx

nxdP

we obtain that the random system (2.3) is an RSCC with contraction.

Furthermore in order to prove that the associated Markov operator U is

regular with respect to ( ]( ),1,0L  we have to prove the existence of a point

( )1,00 ∈x  such that

( ) ,0lim 0 =−∑∞→ nn
xx

for any ( ],1,0∈x  where ( )∑n
x  denotes the support of the measure

( )..,xQn  (see Grigorescu and Iosifescu [3]). Here Q is the transition

probability measure of the associated Markov chain, which is defined by

(1.1.7) (or its equivalent recursive relation (2.2)).

Let x be an arbitrarily fixed number in ( ].1,0  Then by defining

,1,
6
1

3
1, 11 ≥⋅+== + nxxxx nn (2.4)

we obtain that ( ).1,0∈nx  Letting ∞→n  in (2.4), we take that 
5
2

0 =x

and the proof is complete.
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By using the above Theorem and Theorem 3.4.5 of Grigorescu and
Iosifescu [3], we deduce that the RSCC (2.3) is uniformly ergodic and as a

consequence there exists a unique limit probability measure on ( ]1,0B

which is identified by the following:

Theorem 2.3. The limit probability measure of the RSCC (2.3) is

identical to the Lebesgue measure λ.

Proof. By virtue of uniqueness of the limit probability measure we
have to show that it satisfies the equality

( ) ( ) ( )∫ λ=λ⋅
1

0
,, BdxBxQ (2.5)

for all ( ],1,0B∈B  where ( ).,.Q  is defined by

( ) ( )

( )

∑
∈

≥

=

Bnxu
n

nxPBxQ

,
2

.,,

In fact it suffices to verify (2.5) only for ( ],,0 tB =  where t ranges over

the rationals of ( ].1,0

Let us fix ( ].1,00 ∈t  Then the inequality

( ) 01
1 t
nn

xn ≤
−⋅
+−

is satisfied by the integers n such that

( ) ( ) ( ].1,0,1
2

1411

0

0
2

00 ∈+










 −⋅−+++
≥ x

t
xttt

n

If

( ) ( ) ( ],1,0,
1

1:2min 000 ∈






 ≤

−⋅
+−≥=≡ xt

nn
xnnxnn

then we get that

( ]( ) ( )
( )

( ) .
1

1
1

1,0,
1

0

1

0

1

0 0
0

0
∫ ∫ ∫∑ −

=













−
=

≥

dx
xn

dx
nn

dxtxQ
xnn

(2.6)
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Furthermore since

( ) ( )
,11

2
14111

00

0
2

00

0
+<

−⋅−+++
≤

tt
xttt

t
(2.7)

we may find 0x  such that

( ) ( )
.1

2
1411

00

00
2

00




=

−⋅−+++
tt

xttt

Therefore, we obtain that

( ) .
1

1

00

00
0 −⋅

+−
=

nn
xn

t

In the next by further equalities like (2.6), we take

( )∫ ∫ −⋅+⋅
−

=+
−

0

00

1

0
0

0
000

11
1

11
1

1x

x
x

n
x

n
dx

n
dx

n

( ) ( ]( )00
00

00 ,0
1

1
tt

nn
xn

λ==
−⋅
+−

=

and the proof is complete.

3. The Gauss-Kuzmin Type Problem

Let us now define the nth rank remainder of the Lüroth expansion
(1.1.4) given by the relation

( ) ( ) ( ) ( )( ) ( ) .1
1

11
1

+⋅
−⋅

+=
+ xdxdxdxd

xr
nnnn

n (3.1)

If µ is an arbitrary monatomic probability measure on ( ],1,0B  then we

may define the function

( ) ( ) ( ),, 1 xrxFxF nnn <µ=µ= + (3.2)

for any ( ].1,0...,,2,1,0 ∈= xn  It is obvious that ( ) ( ]( ).,00 xxF µ=

Since xrn << +20  if and only if

( ) ,
1

111
111

1
1

x
ddd

r
d nnn

n
n

⋅
−⋅

+<<
+++

+
+
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we may take the following associated Gauss equation

( ) ( )∑
≥

+ 










−






 ⋅

−
+=

2
1 .1

1
11

k
nnn k

Fx
kkk

FxF (3.3)

Assuming that 0F ′  exists and is bounded (that is, the measure µ has

bounded density), we obtain by induction that ,1, ≥′ nFn  exist and are

bounded too.

By taking the derivative of (3.3), we arrive at

( ) ( ) ( )∑
≥

+ 





 ⋅

−
+′⋅

−
=′

2
1 ,

1
11

1
1

k
nn x

kkk
F

kk
xF (3.4)

for any ( ].1,0...,,2,1,0 ∈= xn

If ( ) ( ) ( ],1,0...,,2,1,0, ∈=≡′ xnxfxF nn  then relation (3.4) becomes

( ) ( ) ( ) .
1

11
1

1

2
1 ∑

≥
+ 





 ⋅

−
+⋅

−
=

k
nn x

kkk
f

kk
xf (3.5)

So ,1 Uffn =+  where U denotes the associated Markov operator of RSCC

(2.3). Then

( ) ( )∫ ==
x

n
n ndttfUxF

0
0 .,1,0, … (3.6)

Here ( ) ( ) ( ].1,0,00 ∈′= xxFxf

Now we can solve the Gauss-Kuzmin type problem for the Lüroth
series representation given by the following:

Theorem 3.1. If the density ( ]( ),1,00 LF ∈′  then there exist two

positive constants c and 1<q  such that for each ( ] ...,,2,1,0,1,0 =∈ nx

we have

( ) ( ) ,1 xqxr n
n ⋅⋅θ+=<µ (3.7)

where ( )xn,θ=θ  with .c≤θ

Proof. Let 0F ′  be a Lipschitz function. Then ( ]( )1,00 Lf ∈  and

( ) ( ) ( ) ( )∫ ∫ ==′=λ=∞
1

0

1

0
0000 .11FdxxFdxxffU
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Then by virtue of Theorem 2.2 and Lemma 3.1.22 of Grigorescu and

Iosifescu [3] and by writing ,∞−= UUT  we take

( ) ( ) ( ) ( ) ,,1000
nnn qxnxfTxfUxfU ⋅θ+=+= ∞

where 10 << q  and ,c≤θ  for .0>c  Then (3.7) follows from (3.2) and

(3.6) and the proof is complete.

4. Asymptotical Behaviour of the Digits

On account of Theorems 2.2 and 2.3 it is possible to apply the law of
large numbers to the chain of infinite order of RSCC (2.3), which is the
sequence of digits ( )nnd  defined by (1.1.5) (see [5]).

So if we consider a real measurable function g defined on ( ]1,0  and

put ...,,2,1,1 =≡ − nTgf n
n  where T is the transformation defined as

in (1.1.5), we can take the following theorem which is a generalization of
Kolmogorov’s law of large numbers giving a connection between the
measures λ and xP (see Theorem 2.2.12 of Iosifescu and Theodorescu [4]).

The interpretation of xP  for irrational numbers x is similar to that given

in [4].

Theorem 4.1. Assume that g is integrable ( ) .,
1

0





 ∞<∫ dxxgisthat

Then the series nf
n

k
i 












∑
=1

 converges ..ePx α−  to ( ),gEλ  for every ∈x

( ],1,0  where

( ) ( ) ( )∫ λ⋅=λ
1

0
.dxxggE

Now we are ready to obtain some asymptotical results concerning the
sequence ( ) .nnd

Proposition 4.2 (Relative frequency of digits). Let k be any positive
integer with .2≥k  Then

( )∑
=
≤

α−
−

=
∞→

kjd
nj

eP
kk xn

..,
1

11lim
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Proof. If we apply Theorem 4.1 to { },1 kdIg ==  where { }kd =1

( ) ,
1

11,1






−
+=

kkkk
 we obtain

{ } ( ) ( ) ( ) ( )
( )

{ }∑ ∫ ∫ ∫
=
≤ =

−+
=∞→

≥
−

=λ=λ=λ⋅=

kjd
nj kd

kkk

k
kdn

k
kk

dxdxdxI
1

0

111

11
1

.2,
1

11lim

Proposition 4.3 (Geometric means of digits). For any ( ],1,0∈x  we

have

( )










−⋅

=⋅ ∑
≥

∞→
2

21 1
logexplim

k

n
nn kk

kddd …

( ) .25.1,
1

log

2
11 








≈=

−⋅∑
≥k

cwherec
kk

kHere

Proof. Since

{ } ( )





−
+==

1
11,1

1 kkkk
kd

by applying Theorem 4.1 to ,log 1dg =  we obtain

( ) ( ) ( )
( )

{ }∑ ∫ ∑∫
≥ = ≥

−+
λ λ=λ=

2 2

111

1
1

1
loglog

k kd k

kkk

k
dxkdxkfE

( )∑
≥

−⋅
=

2

.
1

log

k
kk

k

But

( )∑ ∑ ∏
= = =

=












=⋅=⋅

n

k

n

k

n
n

n

k
kkk ddd

n
d

n
f

n
1 1

1
1

1

loglog1log11 …

.log 1
n

ndd …=

So

( )∑
≥

∞→ −⋅
=

2
1 1

logloglim
k

n
nn kk

kdd …  or ( ) 









−⋅

= ∑
≥

∞→
2

1 1
logexplim

k

n
nn kk

kdd …

and the proof is complete.
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5. Approximation Theory

In this section, we study the problem of approximation of an

irrational number ( ]1,0∈x  by the nth convergent of the corresponding

Lüroth series representation. We shall focus on the sequence ( ) ,nnS

where nS  is defined as in (1.1.7).

From the relation (1.1.7) it follows that

( ) ,1,
1

11
1 ≥⋅

−⋅
+= − nS

ddd
S n

nnn
n  with .00 ≡S (5.1)

Since ( ),,1 nnn dSuS −=  where u is defined by (2.3), we have that the

sequence ( )nnS  is the associated Markov chain of the RSCC (2.3). So

according to Proposition 2.1.4 of Iosifescu and Theodorescu [4], for any

( ]1,0∈x  there exists a probability xP  (with the same interpretation as

in the previous paragraph) such that the associated Markov chain of the

RSCC (2.3) is exactly the sequence ( ) .nnS  This gives us the possibility to

state for an arbitrary real continuous function x defined on ( ]1,0  a strong

law of large numbers for the sequence ( )( )nnSh  with respect to xP
~

. (See

Theorem 2.2.15 of Iosifescu and Theodorescu [4].)

Theorem 5.1. For any ( ]1,0∈x  and real continuous function h

defined on ( ],1,0  we have

( ) ( ) ( )∑ ∫
=

−
∞→

α−λ=
n

k
xkn

ePdxxhShn
1

1

0

1 ..
~

,lim

So in order to prove asymptotical results regarding the chain ( )nnS  it

suffices to specify the form of function h.

Proposition 5.2. For any ( ],1,0∈x

∑
=

−
∞→

α−=
n

k
xkn

ePSn
1

1 ..
~

,
2
1lim
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Proof. By applying Theorem 5.1 to ( ) ,xxh =  we have

( )∑ ∫ ∫
=

−
∞→

==λ=
n

k
kn

xdxdxxSn
1

1

0

1

0

1 .
2
1lim

Proposition 5.3. For any ( ],1,0∈x

∑
=

−
∞→

α−−=
n

k
xkn

ePSn
1

1 ..
~

,1loglim

Proof. By using Theorem 5.1 for ( ) ( ] ,0,1,0,log >ε∈⋅= ε xxxxh

we have that

( )∑ ∫
=

εε−
∞→

α−λ=
n

k
xkkn

ePdxxxSSn
1

1

0

1 ..
~

,logloglim

Letting ,0→ε  we get

( )∑ ∫
=

−
∞→

α−λ=
n

k
xkn

ePdxxSn
1

1

0

1 ..
~

,logloglim (5.2)

By partial integration the right member of (5.2) becomes equal to 1−  and
the proof is complete.

Corollary 5.4. For any ( ],1,0∈x  we have

( )
( ) ..~,1loglim 1 eP
xq
xP

xn x
n

n
n

α−−≤−−
∞→

Proof. According to the definition (1.1.6) of the nth convergent of x,

we have that

( )
( ) ( ) ( ) .1,

1
1

1
∏
=

≥⋅
−⋅

=−
n

k

n

kkn

n nxT
ddxq

xP
x

Since ( ) ,1≤xT n  for any ( ],1,0∈x  we obtain

( )
( ) ( )∏

=
−⋅

≤−
n

k kkn

n
ddxq

xP
x

1

.
1

1



w
w
w
.p
ph

m
j.c

om

ON THE APPLICATION OF DEPENDENCE WITH … 423

But kS  defined by the recursive relation (5.1) satisfies the inequality

( ) .
1

1
−⋅

≥
kk

k dd
S

Therefore,

( )[ ]∑ ∑
= =

∞→∞→
−⋅−≥

n

k

n

k
kknkn

dd
n

S
n

1 1

1log1limlog1lim

or

( )
( ) ( )[ ]∑

=
∞→∞→

−≤−⋅⋅−≤−
n

k
kknn

n
n

dd
nxq

xP
x

n
1

11log1limlog1lim

and the proof is complete.

Remark 1. Theorem 5.1 does not enable us to find the order of
approximation of a real number by its Lüroth expansion. This result is
obtained by applying the associated ergodic theorem for the measure-
preserving and ergodic transformation T defined by (1.1.5) (see Jager and
Vroedt [6]).

By virtue of this theorem it follows that

( )
( ) .log1lim 1d
xq
xP

x
n n

n
n

−=





 −

∞→

Therefore,
( )
( ) ,~ 1 nd

n

n e
xq
xP

x ⋅−−  a.e., where .03.21 ≈d

Remark 2. A random system with complete connections is a special
case of infinite order chain [2, 8]. An alternative way for investigating
higher-order Markov chains is the construction of multiple Markov chains
through collections of directed circuits and positive weights named as
higher-order circuit chains [7, 9].
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