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Abstract

We obtain some results concerning a triangular array of positive

integers that is obtained by presenting Pascal’s triangle in left-justified

fashion, and then looking at diagonals that ascend from left to right.

1. Introduction

Consider the infinite triangular array of which the first 15 rows are

given below:
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. . . . (n-Fk
The entry in the nth row, in the kth position from the left, is ( L j,

where 0 < k < [%} We might mention that this array can be obtained

from Pascal’s triangle by looking at diagonals that ascend from left to
right. In addition, Pascal’s triangle can be obtained from this array by
looking at diagonals that descend from left to right. The entries in this
triangular array have a number of interesting properties. First of all, it is

&
Z(”; ]=Fn+1, M

k=0

known that

where F,, denotes the nth Fibonacci number (See [3, p. 179, identity
(54)]). Secondly, let t(n) denote Ramanujan’s tau function, which may be

defined for x € C,|x| <1 by

Z w(n +1)x" = H (1 - ™). @)
n=0 n=1

If p is prime and n > 2, then

a
(p") = 2 (—1)k(n,;k)p”kr(p)”’2k 3)
k=0

(See [1, identity (4.1)]). In this note, we derive some additional properties
of this array.

2. Preliminaries

If p is prime and n € N, then we define o,(n) =k if p*In but

p*1 | n. We also define t,(n) to be the sum of the digits of n to the base
p, that 1s,

r r

n = Zaipi - t,(n) = Zai.

1=0 =0
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If 1 < k <n, then

)+ ()0

sinA—sinB:2cos(A;Bjsin(A;B) 5)
cos TE(Z’Z;L 1) = sin Tc(n3+ 2) for all integers n (6)
t,(R)+t,(n-k)—t,(n)
ool (1)) - @
p-1

Remarks. (4) is known as Pascal’s Identity; (5) is a trigonometric
identity that may be used in the proof that the derivative of sin x is cos x.
(6) is easily verified by letting n=0,1,2 (mod 3). Regarding (7), see
[2, p. 69].

3. The Main Results
Our first theorem concerns the effect of putting alternating signs on

the adjacent entries in each row of our triangular array, namely:

Theorem 1.

% (_Dk(n l; k

k=0

0 if n=2(mod3)

1 if n =1 (mod 3)
=g =
) {—1 if n =0 (mod3).

Proof. (Induction on n.) We will prove an equivalent, more compact

H

V(") pem

k=0

statement, namely

The statement is easily verified for n =1. Invoking (4), we have

() -]
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Therefore
_ — n 1
;( 1)]( ]j Z( 1)}( J) PZO( 1)]( + )

Making a change of variable in the leftmost sum, we have
> (- > (" > (") > (")
that is,
n-—j n-1-j n+l-j
<1)f[ - (1)}( - <1)f[ |
By the induction hypothesis, we have

%(sinn(n;l) : j Z( 1)](n+1 ]j

Jj20

Invoking (5), we have

]n+1 J i( n(2n +1) . E)zi n(2n +1)
Z( -1) ( j 75 2COS—6 sin & @COS—6 .
JZ20
The conclusion now follows from (6).

As a result of Theorem 1, we are able to deduce several corollaries.
The first corollary concerns the sums of the even-indexed, and of the odd-
indexed terms in each row of the array.

Corollary 1.
[n} n -2k 1

(a) Z( )= 5 Enr +0)
[nT_z} n-1-2k 1

® 3 ("5 )= 5 Fun -0,

where ¢ is defined as in Theorem 1.
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Proof. This follows from (1) and from Theorem 1.

Corollary 2. Let r(n) denote the number of odd terms in the nth row

of our triangular array. Then

(n) = {O (mod2) if n =2 (mod3)
"l (mod 2) otherwise.

Proof. This follows immediately from Theorem 1.

Our next result also concerns the parity of the entries in our

triangular array.

Theorem 2. 2|(2n _kl - kj for all k such that 1 < k < 2" —1.

Proof. We will actually prove a stronger result, namely

02((2n _kl - kn = ty(k)

for 1<k<2"'-1. Now
t2(k)+ t2(2n -1- k) = tz(Zn —1) =n

for all £ such that 1 < £ < 2" —1 because when & is added to 2" -1-k,

there is no carry. Therefore we have
t9(2" =1 - k) = n —ty(k);
t9(2" =1 - 2k) = n — t5(2k).
But #5(2k) =t5(k), which implies

t2(2n -1- 2k) = t2(2n -1- k) =n- t2(k) (8)

Now according to (7), we have

02((2” —kl - kD — ty(R) + 152" —1 - 2k) — 15(2" —1 - k).

The conclusion now follows from (7).
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Our final result is as follows:
Theorem 3. If n>1, then (Sn k_ kj = 0, 2 (mod 3) for all k such that

3" -1
5

1<k<

Proof: First we note that

=1
. . 2k -1 k
Therefore it suffices to show that b1 # (-1)" (mod 3) for all £>1.
We have
2k +1) 4k +2(2k -1 hence
E ) k+1 k-1
ok +1) k+2(2k-1
B

We will use induction on k. First observe that ((1)] =1# (-1)! (mod 3).

2k -1

b1 ) £ (-1)* (mod 3).

Now assume (

If k =0 (mod 3), then (9) implies
2k +1 E22/?/—1 -1 2k -1 (mod 3).
k k-1 k-1

1
)i (—1)k (mod 3) by induction hypothesis, it follows that

Since (21@ -
k-1

(Zkl: 1) " (_1)k+1 (mod 3).

It & = 1 (mod 3), then (9) implies (2kk+ 1) =0 (1! (mod3).
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If £ =2 (mod 3), then & = 3m + 2, so
2k -1\ (6m+3
E-1) (3m+1)

05 ([2;”1 ' i’D = L @aBm + 1)+ 13(8m + 2)~ 15(6m + )

Now

Since the ternary representation of ¢3(3n+1i) ends in i, where i € {1, 2}, it
follows that a carry occurs in the addition of ¢3(3m+1) and ¢3(3m + 2).

6m+3 2k -1 &
This implies that o5 >0, hence (k 1] =0 # (-1)*(mod 3).
3m+1 B
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