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Abstract

In this article a method for determining the structure of the 2-Sylow

subgroup of the class group of an imaginary bicyclic biquadratic number

field is described. As an application of our method, the structure of the

2-class group of all known imaginary bicyclic biquadratic extensions of

Q with class numbers 8 and 16 is determined.

1. Introduction

Given a bicyclic biquadratic field K, we wish to be able to determine

the structure of the class group of K whenever the structure of the class

groups of the three quadratic subfields is known. It is easy to show that

the odd part of the class group of K is the direct product of the odd parts

of the class groups of the quadratic subfields. However, the structure of
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the 2-Sylow subgroup, H, of the class group of K is much more difficult to

determine. All notations are defined in Section 2. Section 3 details a

method for determining H when the structure of the 2-class groups of the

quadratic subfields is known. Various examples are presented in Section
4 where specific difficulties such as the need to normalize the characters
of the real field, strong ambiguous and weak ambiguous classes are
addressed. We conclude the section with a description of the algorithm.
The final section contains a summary of tables of all known imaginary

bicyclic extensions of Q with class numbers 8 and 16, as well as the

specific structures of each. With one exception these tables are too long to
be included here. All results in this section were obtained by applying the
method given in Sections 3 and 4.

2. Notation

The following notations will be used throughout the remainder of this
article.

K : An imaginary bicyclic biquadratic extension of Q.

:,, 321 kkk  The quadratic subfields of K with 2k  real.

:,, 321 ddd  Square free integers with ( )ii dQk =  for .3,2,1=i

f : The conductor of K.

:,,, 321 HHHH  The 2-Sylow subgroups of the ideal class groups of

21,, kkK  and ,3k  respectively.

:,,, 321 hhhh  The 2-class numbers of 21,, kkK  and ,3k  respectively.

:ˆ
iH  The group of quadratic characters on the group .iH  Each element

of iĤ  corresponds to a genus in iH  for .3,2,1=i

:~
A  The ideal class determined by the ideal A.

:Ŝ  The subgroup of 321
ˆˆˆ HHH ××  consisting of all of those characters

that are consistent on each pair of 21, HH  and .3H

S : The subgroup of 321 HHH ××  with character group .Ŝ
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θ: The homomorphism of HHHH →×× 321
ˆˆˆ  defined by ( )321 ,, CCCθ

.321 CCC=

ker : The kernel of θ.

:0H  The image of θ.

t : The positive integer determined such that t2  is the product of all

the ramification indices of all the rational primes for the extension .QK

:it  The number of rational primes ramified in the extension Qki  for

.3,2,1=i

:ar  The rank of .321 HHH ××

:Hr  The rank of H.

:,,, srql  Distinct prime numbers.

( ):,, rql  An element of 321 HHH ××  determined by the ideal classes

of prime divisors of ql,  and r in 21, kk  and ,3k  respectively.

:ψ  The isomorphism from the multiplicative group { }1±  to the additive

group .2Z

:






b
a  The Kronecker symbol using the convention 





=







b
b 2
2

 for all

odd positive integers b.

:,,,,, zyxwvu  




ψ





ψ





ψ





ψ





ψ





ψ
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s
q ,,,,,  respectively.

:M  A 2Z -matrix determined by ^ˆ kerS ⋅ .

3. Class Group Structure of Imaginary

Bicyclic Biquadratic Extensions

In this section we discuss a general method for determining the

structure of the 2-class group, H, of any imaginary bicyclic biquadratic

field.
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Lemma 1. Let ( ) .,, 321 SCCC ∈  Then there is a prime p of Q which

has a prime divisor 0P  in K such that iii PPkP 00 == ∩p  with ip  and iC

in the same genus of ik  where ( ) 3210 PPPPp =  in K.

Proof. Since the characters on iC  in iĤ  are consistent with one

another for ,3,2,1=i  there is a prime p of Q which satisfies these

character values. Now p splits completely in K and so ( ) 3210 PPPPp =  in

K. Since the Galois group of QK  is transitive on the primes 210 ,, PPP

and 3P  there is a iσ  in ( )QKG  such that ( ) .0 ii PP =σ  Number the primes

21, PP  and 3P  so that iσ  fixes the subfield ik  of K. Let ii kP ∩0=p  for

.3,2,1=i  Then iji kPP ∩0=p  for some j. Since the Galois group of

ikK  is transitive on the factors of ip  and ( ) { }iikKG σ= ,1  we have

( ) ii PP =σ 0  and so, by the definition of ,iσ .00 iiii kPPkP ∩∩ ==p  Since

ip  and iC  have the same character values they are in the same genus.

Theorem 2. The homomorphism θ induces an isomorphism

12

2

2
~

+
−

i

i

i

H
kerS

S

∩
 for any integer .0≥i

Proof. Let ( )
iii

CCC 2
3

2
2

2
1 ,,   in 

i
S2  with ( ) .,, 321 SCCC ∈  By Lemma

1 we have a prime p in Q which splits completely in K and has a prime

divisor 0P  such that ,00 iiii kPPkP ∩∩ ==p  where ( ) 3210 PPPPp =  in

K with ip  and iC  in the same genus. Note that ( )
iii 2

3
2
2

2
1 ,, ppp  in 

i
S2  with

ip  and iC  being in the same genus of .ik  Now

( ) ( ) ( ) .~,,
11 22

0
22

0
2

321
2
3

2
2

2
1

2
3

2
2

2
1

++
∈===θ

iiiiiiiiii
HPpPppppppppp

Here ~ denotes equivalent ideal classes. Since 1−
iiCp   is in the principal

genus of 21 ~, iiii BCk −p  for some class iB  of .ik  Hence

( ) ( ),,,~,, 2
3

2
2

2
1

1
33

1
22

1
11 BBBCCC −−− ppp
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so

( ) ( ) ( ) .~~ 1
321

2
0

1
321321

2
3

2
2

2
1

−− CCCPCCCBBB ppp

Therefore

( ) ( ) 12
3

2
2

2
1

2
0

2
321

11
~ −++ iiiii

CCCPBBB

and .
122

3
2
2

2
1

+
∈

iiii
HCCC

Conversely, let 
11 22 ++

∈
ii

HC  and CP ∈0  be a prime ideal of degree

1 and index 1 over Q. Let ii kP ∩0=p  for .3,2,1=i  Then ,101 PP=p

202 PP=p  and ,303 PP=p  where ( ) .32100 PPPPpQP ==∩  Now ( )321 ,, ppp

S∈  and .~~ 22
0321 CPppp  Thus .~~

11 22
0

2
3

2
2

2
1

++ iiiii
CPppp  Therefore

.~
12

2

2 +
−

i

i

i

H
kerS

S

∩

Theorem 3. ( ).~
1

2

1
2

2

2

2

2
kerS

kerS

ambS

H

H i

i

i

i

i

∩
∩

∩ +

+

+

⋅−

Proof. Let ,...,,,, 321 kCCCCS =  and ( ) .11 =+kCo  Arrange the

iC  so that ( ) ( ) ( ) ( ).321 kCoCoCoCo ≥≥≥≥  Then, for any i where

( ),2 1Coi <  there exists an im  such that ( ) i
mi

Co 2>  and ( ) .21
i

mi
Co ≤+

Thus ....,,,, 22
3

2
2

2
1

2 i

i

iiii

mCCCCS =  Then we see that 22
2

2
~

1 ZZ
S

S
i

i

×−+

,2Z××  where the rank of the right-hand side is im  and ambS
i
∩2

222~ ZZZ ×××−  with the rank of the right side again being .im  Now,

by Theorem 1,

.~

1

12

1

2

2

2

2

2

2

kerS

S

kerS

S

H

H

i

i

i

i

i

i

∩

∩

+

++

+

−
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Using a simple order argument we now see that

kerS
kerS

S

S

S

kerS

kerS

S i

i

i

i

i

i

i

i

∩
∩

∩

∩

1
1

1

1
2

2

2

2

2

2

2

2 +
+

+

+

⋅=⋅

.
12

2

2
kerS

kerS

ambS i

i

i

∩
∩

∩ +
⋅=

The isomorphism follows since both groups are elementary.

The rank of H can easily be computed using the following theorem
which is proved in our earlier article [9].

Theorem 4. Let m denote the rank of .ˆˆ rekS ⋅  Then









−=−−

−=−−

−=−−

=−−+=

.3253

.4263

.5273

2

trifmt

trifmt

trifmt

mtrr

a

a

a

aH

Below we give an example of how this theorem is applied. Lemma 1 of

[9] shows the rank of Ŝ  is 2−t  and Kubota [8] shows the rank of rek ˆ  is

1−t  or 2−t  according as the unit index of K is 1 or 2. Let Sn ˆrank=

rek ˆrank+  and M be an arn ×  2Z -matrix whose rows correspond to

generators of rekS ˆˆ ⋅  by means of the isomorphism ψ. Then m is the rank

of M.

Note that the characters of the real field will often have to be
normalized in order to ensure that 1−  lies in the principal genus. This is

done by multiplying one column where 1−  has a negative character by

each of the other columns where 1−  also has a negative character. The

initial choice of column does not matter. The following example illustrates
this as well as the technique for finding .Hr

Example. Let ( ) ( )lqQklqrsQk =−= 21 ,  and ( )rsQk −=3  with

( )4mod3≡≡≡ rql  and ( ).4mod1≡s  Here the unit index is 1, 4=t

and .4=ar  Normalizing the character of the real field, the table of
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consistent characters is

−−+−−−−
−−+−−++
+++++−−
+++++++
srlqsrql

Here Ŝ  is generated by ( )0,0,0,0,0,1,1  and by ( )1,1,0,1,1,0,0

representing a + by a 0 and a – by a 1. Moreover, ker is generated by

( ) ( ) ( ){ }.,1,,1,1,,1,1, rrql  Since in 2k  the character lq  is always + it will

just generate a column of zeroes in our matrix and so can be deleted.

Thus our columns will correspond to ql,  and r in 1k  and r in .3k  So our

matrix is
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M

11

01

0

1100

0011























++++

++++

++=

vwvywy

wwuxx

yxzyx

11

011

0

1100

0011























++

+

+

00

00

00

1100

0011

~

ywyw

wwu

yzy ,

000
00
00

0010
0001

~























+ yw

wu

yz

where the first two rows correspond to the generators of Ŝ  and the last

three rows correspond to generators of ker. We have deleted one character

from each subfield since the product of the characters for a quadratic field
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is +1. The first three columns correspond to characters for ,1k  determined

by ql,  and r, and the last column to a character for ,3k  determined by r.

Elementary row and column operations lead us to the final two matrices
from which we can conclude that













==≠==≠

==
==≠==≠

====

=

1.or1,or1or1,either  if4

zero.all  not,,or 
0andor0andeither if3

.0 if2

zuywywzu

ywzu
zuywywzu

zywu

m

Now 4=ar  and 4=t  so .6 mrH −=  Let



















++++

++++

++

=

wvywy

wwuxx

yxzyx

A

11

11

and 2Z=γ -rank of A. Then 1H  has exactly γ−3  cyclic factors of order

greater than 2. Also 3H  has order 2 exactly when .1=v  When both 1H

and 3H  are elementary then 8=h  and 3=m  or 4, so 222~ ZZZH ××−

or .42 ZZ ×  The following table gives the values of m in the cases when

both 1H  and 3H  are elementary.

410111

400111

401011

300101

411001

401001

411110

410110

300110

411000

301000

310000

mzyxwu
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When ,2=m  so ,4=Hr  1H  has either 1 or 2 cyclic factors of order

greater than 2 according as 1=v  or 0. Thus kh 16=  or ,64k  where 1≥k

is a power of 2. When ,1== kv  H is elementary of rank 4. When 0=v

it is easily seen that

kerSambS ∩∩

has order 2 and that kerS ∩2  has order 4 or less. Thus H has between 1

and 3 cyclic factors of order 2.

Now we are ready to describe a method for computing the structure of

H for any imaginary bicyclic biquadratic field K. The following

proposition will be helpful.

Proposition 1. Let jb 2=  for some ,1>j  where ihb |  for some

.3,2,1=i  Also, let .2ST =  If ( )2
3

2
2

2
1 ,, bbb CCC  is in ,2 ambT b ∩  then

( ) ( )1,,1,1,1, 2
2

2
1

bb CC  and ( )2
3,1,1 bC  are in .4 ambT b ∩

Proof. Let ( ) ( )2
3

2
2

2
1

2
321 ,,,, bbbb CCCCCC =  be in .2 ambT b ∩  Then

2b
iC  is ambiguous for each i. Since 2

1C  is in the principal genus of ,1k

( )1,1,2
1C  is in T, so ( ) ( ) 42

1
2

1 1,1,1,1, bb CC =  is in .4 ambT b ∩  A similar

argument is true for ( )1,,1 2
2
bC  and ( ).,1,1 2

3
bC

4. Examples and Statement of Algorithm

Now we would like to compute H for a variety of cases in order to get

a feel for the algorithm. The first is straight-forward, while the others will

demonstrate some of the slightly more complicated scenarios.

Example. Let 182,406 21 =−= dd  and .3773 −=d  Here 31 ~ HH −

28~ ZZ ×−  and .~ 22 ZH −  The ker is {( ) ( ) ( ) ( ),26,2,1,2,2,1,13,1,1,1,1,1

( ) ( ) ( ),1,2,2,26,1,2,2,1,2 ( ) ( ) ( ) ( ) ( ),13,2,7,1,2,7,26,1,7,2,1,7,13,2,2
( ),1,1,14 ( ) ( ) ( )}.26,2,14,2,2,14,13,1,14
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The table of consistent characters is

+−−−−+−−

+−−−−+++

−−+−−−+−

−−+−−−−+

−+−++−+−

−+−++−−+

++++++−−

++++++++

−⋅− 2913113722972

Note that we have normalized the characters of the real field and that in

3k  the –1 denotes the character 





 −

n
1

 determined by the ramified prime

2. In 1k  we find that 2 has the character values – + – and that 7 is in the

principal genus. Thus the character values – + – represent a genus with
elements of order two and the other non-principal genera contain only
classes with elements of order eight. In these latter genera, the fourth
power of any element is in the principal genus and is ambiguous, so it can

be represented by 7. In ,3k  the character of 2 has values + – – and 13 is

in the principal genus. Thus + – – represent a genus with elements of
order two and the other non-principal genera contain only classes with
elements of order eight. In these latter genera, the fourth power of any
element in the principal genus and is ambiguous and so can be
represented by 13. The following table reflects this information.

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )13,41,17,4

13,41,11,1
1,11,11,1
1,11,17,4
13,41,11,1
13,41,17,4
1,11,17,4
1,11,11,1

2913113722972 ⋅⋅−⋅⋅⋅⋅−
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In this table each ( )ba,  with 1>a  means that in the corresponding

genus there is an element of order a2  whose ath power is in the class

represented by a divisor of b. This is also true when 1=a  except in the

case of the principal genus and the principal genus contains no class of
order 2. In this exceptional case the principal genus has a class of order 1
whose square is the identity class. Thus, in this example, we see that

ambS ∩4  is given by ( ) ( )13,1,1,1,1,7  and that kerS ∩4  is ( ) .13,1,1

Thus 24

4
~ Z

kerS

ambS −
∩
∩  and .~ 216

8
Z

H

H −  Hence there is a factor of 16Z  in H.

Now we see that for the square everything remains the same. So ∩2S

( ) ( )13,1,1,1,1,7=amb  and ( ) .13,1,12 =kerS ∩  Thus, 
kerS

ambS

∩
∩

2

2

,~ 2Z−  so Theorem 3 shows .~ 228

4
ZZ

H

H ×−  One 2Z  is determined by the

factor of 16Z  that we already have, but the other one indicates there is a

factor of 8Z  in H.

Using the methods already described, we can determine that the rank

of H is three and the order is .28  Thus we have one more factor of order

2. Clearly then, .~ 2816 ZZZH ××−

Things worked out in a very straight-forward manner in this example
because each iH  had at most one non-elementary factor. This meant

that, once we identified the genera that contained the ambiguous classes,
we knew the order of the classes of the other genera. If there are two or
more non-elementary factors of unequal order in some ,iH  then this will

not be the case. To determine ambSm ∩  for any ,2 jm =  where j is a

whole number, we must know not only the minimum order of a class in
each genus but also the ambiguous class in the principal genus which it
generates.

Let q be an unramified prime whose character values place its prime
divisors in a genus that does not contain ambiguous classes. Say ,q  a

prime divisor of q in ,ik  belongs to a class of order m. Then 2mq  belongs

to an ambiguous class in the principal genus. Assume that p  is an
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ambiguous ideal in this class (this is always the case when ik  is

imaginary). Then ( )1~2pqm  is a principal ideal of .ik  If ( ),2 ydx i
m +=pq

where x and y are both integers or half of integers then .222 pqydx m
i =−

Conversely, assume ,2 222 pqydx ml
i =−  where ,0=l  unless ≡id

( )4mod1  and then 0=l  or 2 and ( ) .1,gcd =qpx  If p ramifies in the

field ik  and if the prime divisor p  in ik  is not principal then the prime

divisors of q  in ik  belong to classes of order m.

For each ramified (p) in the principal genus the key to solving such
problems will be to find an x and y in Z and a prime q  in a non-principal

genus such that .222 m
i pqydx =−  The genus which contains the divisors

of q  contains the classes of order m.

A slight complication occurs if the class group ik  contains one or more

factors of odd order. In this case the right-hand side of the equation may

be ,gmq  where g is an odd divisor of the class number .ik

Example. For our next problem let 2482,18761 21 =−= dd  and

.87383 −=d  Here 2424321 ~,~ ZZHZZH ×−×−  and .~ 4163 ZZH ×−

First note that the ker is ( ) ( ) ( ) ( ){ ( ),2,1,2,34,34,1,17,17,1,2,2,1,1,1,1

( ),1,2,2 ( ),34,17,2 ( ) ( ) ( ),17,2,73,34,1,73,17,34,2 ( ),2,17,73 ( ),1,34,73

( ),34,1,146 ( ),34,2,146 ( ),1,17,146 ( )}.2,34,146  The table of consistent

characters is

−−++−−−+−
+−−+−−+++
+++−+−+−−
−+−−+−−−+
+−−−−++−−
−−+−−+−−+
−+−+++−+−
+++++++++

−− 25717273172257731

Note that in this case the characters of the real field did not have to be

normalized. Finding the ambiguous classes in the principal genus, we see
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that in 1k  the divisors of 2 and of 73 are both in the principal genus, in

2k  it is the divisors of 2 and, in ,3k  the divisors of 2 and of 17. In ,2k  17

is in the genus with character values + – –.

It is necessary in this case, for both of the imaginary fields, to find the

quadratic representations of a prime in the non-principal genera. It will

be sufficient to find two such primes (perhaps even in the same genus)

where some power of each is in the same ambiguous class as the divisors

of 2, 73, or 146 in 1k  and as 2, 17 or 34 in .3k  For 1k  we get

( ) 222 5973318761473 ⋅=⋅+⋅

.139218761141 22 ⋅=+

Since we find that both 59 and 139 have characters – – +, we know this
genus contains classes of order four which square to an ambiguous class
containing divisors of 2 (and 73). The other non-principal genera must
have classes of order thirty-two whose sixteenth power is an ambiguous
class containing divisors of 146 (since 73 was also seen to be a square).

For 3k  we get
22 10128738108 ⋅=+

.47172873851 222 ⋅=⋅+

Here 101 and 47 have characters – + – and so we know this genus
contains classes of order four which square to an ambiguous class
containing divisors of 2 (and 17). So the other non-principal genera must
have classes of order sixteen whose eighth power is in an ambiguous class
containing divisors of 34. Thus, using the quadratic representations, we
get the following table

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )34,82,2146,16
34,82,21,1
1,12,22,2
2,22,2146,16

34,81,12,2
34,81,1146,16
2,21,1146,16
1,11,11,1

25717273172257731 ⋅⋅−⋅⋅⋅⋅−
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Again, in this table each ( )ba,  means that in that genus there is an

element of order 2a whose ath power is in the class represented by a

divisor of b. Thus, in this example, we see that ambS ∩16  is given by

( )1,1,146  and that kerS ∩16  is ( ) .1,1,1  Thus 216

16
~ Z

kerS

ambS −
∩
∩  and

.~ 264

32
Z

H

H −  Hence there is a factor of 64Z  in H. Now we see that for the

eighth power we have ( ) ( )34,1,1,1,1,1468 =ambS ∩  and kerS ∩8

( ) .1,1,1=  And so, 228

8
~ ZZ

kerS

ambS ×−
∩
∩  making .~ 2232

16
ZZ

H

H ×−   One

2Z  is determined by the factor of 64Z  that we already have, but the

other one indicates there is a factor of 32Z  in H. Clearly, since there are

no terms ( )ba,  in the above table with ambSambSa ∩∩ 84 ~,4 −=  so

we move on to .2S  Since ( ) ( ) ( )1,2,2,34,1,1,1,1,1462 =ambS ∩  and

( )1,2,22 =kerS ∩  we have 222

2
~ ZZ

kerS

bamS ×−
′

∩
∩  and .~ 228

4
ZZ

H

H ×−

Both of these are accounted for by the factors of H already obtained. So
all other factors of H are of order 2 or 4. Since it can be determined by

previous methods that H has rank 5 and 152=h  we see that 64~ ZH −

.22432 ZZZZ ××××

In our next example we will examine a special case for the real field:
weak ambiguous classes. While these do not happen very often, they do
occur and so must be dealt with. If in the real field the character values of
–1 are all positive and the norm of the fundamental unit is +1, then there
exists at least one ambiguous class which does not contain an ambiguous
ideal. Such a class is referred to as a weak ambiguous class. The number
of such classes occurring is the same as the number of classes generated
by taking the product of all strong ambiguous classes with any one of the
weak ambiguous classes. In other words, half of the ambiguous classes
will be weak. When this occurs we know that for some iw  in 2H  the

divisors of 2
iw  are in the principal genus. It is not always necessary to

know exactly what iw  is, only that it exists.
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Example. For our next problem let 14722,1326 21 =−= dd  and

.168873 −=d  Here 4422221 ~,~ ZZHZZZH ×−××−  and ,~ 843 ZZH ×−

where the class numbers of 1k  and 3k  have odd factors of 5 and 3,

respectively. These can put a slight twist on the calculations for the

quadratic representations. Next note that the ker is ( ) ( ){ ,39,17,1,1,1,1

( ) ( ) ( ) ( ) ( ) ( ) ( ),13,1,13,13,17,6,3,1,6,13,17,3,3,1,3,39,17,2,1,1,2

( ) ( ) ( ) ( ) ( ) ( ),39,1,34,3,17,26,13,1,26,1,17,17,39,1,17,3,17,13 ( )}.1,17,34

The table of consistent characters is

+−−+−−−−−−
++++−−−++−
−+−−+−++−−
−−+−+−+−+−
−+−−−+−+−+
−−+−−+−−++
+−−++++−−+
++++++++++

433133433172171332

Observe that again in this case the characters of the real field did not

have to be normalized. Finding the ambiguous classes in the principal

genus, we see that in 1k  all genera contain ambiguous classes, and in 2k

all discriminantal divisors are in the principal genus. However,

,2147223364 22 −=⋅−

so the divisors of 2 and 43317 ⋅  are in the principal class. Hence the

divisor of 17 is the only nonprincipal strong ambiguous divisor. Since

the norm of the fundamental unit here is +1 and the characters of –1

are all positive, there are two weak ambiguous classes. We find that

.19172147221517 222 ⋅=⋅−  The characters for 19 in 2k  are – + – . Thus

the divisor of (17) is a square of a class in this genus. Now there must be

two weak ambiguous classes. Let 1w  and 2w  be their representatives

whose divisors are in the principal genus. Then .~17 21 ww  Now, in 3k
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the all ambiguous divisors are in the principal genus. Using the quadratic

representations for 3k  we get

22 131316887186 ⋅=+

.12713216887377 222 ⋅=⋅+

Here 131 and 127 give the character values – + – and + + +. Hence we get

the following table

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )13,4,21,1

1,1,21,1
3,217,21,1

13,417,21,1
3,217,21,1

13,417,21,1
13,41,11,1
1,11,11,1

433133433172171332

1

1

1

1

w

w

w

w

⋅⋅−⋅⋅⋅⋅⋅−

Again, in this table each ( )ba,  means that in that class there is an

element of order 2a whose ath power is in the class represented by a

divisor of b. Thus, in this example, we see that ambS ∩4  is given by

( )13,1,1  and that kerS ∩4  is ( ) .1,1,1  Thus 24

4
~ Z

kerS

ambS −
∩
∩  and

.~ 216

8
Z

H

H −  Hence there is a factor of 16Z  in H. Now we see that for

the second power we have ( ) ( ) ( ),3,17,1,1,,1,13,1,1 11
2 wwambS =∩

( ) ( ) ( ) ( )3,17,1,1,,1,13,1,13,17,1 1w=  and ( ) .39,17,12 =kerS ∩  And

so, 222

2
~ ZZ

kerS

ambS ×−
∩
∩  making .~ 228

4
ZZ

H

H ×−  One 2Z  is determined

by the factor of 16Z  that we already have, but the other one indicates

there is one factor of 8Z  in H. So all other factors of H are of order 2 or 4.

Since it can be determined by previous methods that H has rank 4 and

,211=h  we see that .~ 44816 ZZZZH ×××−
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Example. For our final problem let 31897,388841 21 =−= dd  and

.64973 −=d  Here 16441 ~ ZZZH ××−  (the class group also has an odd

factor of order 3), 422 ~ ZZH ×−  and .~ 883 ZZH ×−  Next note that the ker

is ( ) ( ){ ( ) ( ) ( ) ( ) ( ),146,1,34,1,17,17,73,1,17,146,17,2,2,1,2,73,17,1,1,1,1

( ) ( ) ( ) ( ) ( ) ( ),1,1,257,2,17,178,146,1,178,1,17,89,73,1,89,2,17,34

( ) ( ) ( )}.146,17,514,2,1,514,73,17,257

The table of consistent characters is

−+−−+−−−−−
−+−++++−+−
+−−+−−++−−
+−−−−+−++−
−−++−−+−−+
+++−+−−+−+
−−+−−+−−++
++++++++++

−− 89731257731725789171

Note that again in this case the characters of the real field did not have to

be normalized. Finding the ambiguous classes in the principal genus, we

see that in 1k  and 3k  all ambiguous classes are in the principal genus. In

2k  the divisors of 17 are in the genus with character values – – + and the

divisors of 257 are principal. Since the norm of the fundamental unit here

is +1 and the characters of –1 are all positive, there must be a weak

ambiguous class in the principal genus. We find that 22 43884155301 ⋅+

.1362917 2⋅=  The characters for 13629 in 1k  are + – – +. Also +26230

.84689838841 22 ⋅=⋅  The characters for 846 in 1k  are – + + –. Finally,

.2123884111 42 ⋅=+  Since the divisors of 21 are in the principal genus,

we get .1194214388414870 222 ⋅=⋅+  The characters for 1194 in 1k

are + + – –. Thus (2) is a eighth power of elements in this genus. In 2k

there is a weak ambiguous class that is a square of elements from each of

the two genera with character values + – – and – + –. Using the quadratic
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representations for 3k  we get:

22422 57264971,107733649797820 ⋅=+⋅=⋅+

and

.29757464972219 222 ⋅=⋅+

Here 107 and 297 give the character values – – + and + – –. Hence we get

the following table

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )146,4,21513,2
146,4,12,8
73,4,12,8
73,4,289,2
2,4,117,2
1,1,22,8
2,4,22,8
1,1,11,1
89732577322578917

w

w

w

w

w

w

w

w

⋅−⋅⋅⋅⋅−

Thus, in this example, we see that ambS ∩8  is given by ( )1,1,2  and

that kerS ∩8  is ( ) .1,1,1  Thus 28

8
~ Z

kerS

ambS −
∩
∩  and .~ 232

16
Z

H

H −  Hence

there is a factor of 32Z  in H. Now we see that for the fourth power we

have ( ) ( ) ( )73,1,1,2,1,1,1,1,24 =ambS ∩  and ( ) .2,1,24 =kerS ∩

And so, 224

4
~ ZZ

kerS

ambS ×−
∩
∩  making .~ 2216

8
ZZ

H

H ×−  One 2Z  is determined

by the factor of 32Z  that we already have, but the other one indicate there

is a factor of 16Z  in H. For the squares there is no change, but Theorem 3

shows H has a factor of .8Z  Now all other factors of H are of order 2 or 4.

Since it can be determined by previous methods that H has rank 6 and

,216=h we see that

.~ 22481632 ZZZZZZH ×××××−
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In certain cases it may be necessary to determine which genera of the

real quadratic field contain the weak ambiguous classes. To do this one

needs to know an ideal that is contained in a weak ambiguous class. A

simple method for doing this is described in [10, p. 19]. Let ∆  denote the

discriminant of this field and write .4 22 ba +=∆  Then the ideal I with Z

basis [ ( ) ]2, ∆+ba  generates a weak ambiguous class and has norm a.

We now state our algorithm:

1. Compute ker. The generators of ker are of the form ( ) ( ),,1,,1,, llll

( )ll,,1  and ( ) ( ),,1,1,1,1, mm  where l is a common prime divisor of the

discriminants of the two quadratic fields with subscripts corresponding to

the position of the l’s. The terms involving m (not necessarily prime) are

defined similarly, but it is a principal divisor of .2k  Set ( ).1=H

2. Make a table of the consistent characters for K. This will be

referred to as the genus table for K. In our examples we made a separate

( )ba,  table corresponding to the genus table. Here it will be easier to

describe if we instead think of this as a labeling of the genus table. Label

the principal genus of each field as ( ).1,1

3. For each of the three quadratic subfields, determine in which genus

each ambiguous class is contained. For the real quadratic this may

include weak ambiguous classes denoted by w. Label the corresponding

entry in the genus table as ( ).1,1

4. If none of the iH ’s has more than one cyclic factor of order greater

than 2, label the remaining entries (if any) for the field ik  as ( ),,2 pj

where the largest cyclic factor of iH  has order 12 +j  and p is in the

nonprincipal ambiguous class that is the principal genus. If this is a weak

ambiguous class set .wp =  Let J2  be the maximum first coordinate of

any entry in the table. Go to step 8. Otherwise set .1=j

5. For each iH  with two or more cyclic factors of order greater than 2,

determine a basis for the ambiguous classes that are in the principal
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genus. Here, if necessary, a weak ambiguous class will be denoted by c,

where c is the norm of the ideal described above. The other weak classes

by ,cp ⋅  where a divisor of p is a strong ambiguous class in the principal

genus. For each such ambiguous class let m denote the norm of an ideal

in this class. Solve the equation ,222 zmydx i ⋅±=⋅±  where the first

sign is negative exactly when 2=i  and the second sign is always positive

when 1=i  or .3=i  A method of Lagrange as explained by Hasse in [6]

can be used for this purpose.

6. Determine the generic characters for each z. If this is not all 1+ ’s

label the corresponding genus of the quadratic subfield as ( ),,2 mj  where

m appears in the equation giving z or 0mm =  when .1>j  If a product

of some z’s for a particular field belongs to the principal genus, let

0z  denote the product of these z’s and 0m  denote the product of the

corresponding m’s solve the equation .2
0

22 zzydx i ⋅±=⋅±  Do this for

all such products and all three fields. Increase j by 1.

7. Repeat step 6 until no product of z’s are in the principal genus for

any of the three quadratic subfields. There may still be unlabeled genera.

In this case there should be labeled genera whose product is this genus.

Let j2  denote the maximum of the first coordinates in this product and m

the product of the second coordinates of all terms where this maximum

value of the first coordinate occurs with square factors deleted. Label the

genus as ( ).,2 mj  A short cut is possible when an iH  has a unique cyclic

factor of maximum order .2s  When half of the genera of ik  have been

labeled, the other half can be labeled as ( ( ) ),,2 1 bs−  where b has a divisor

that is ambiguous and does not correspond to a genera containing classes

of smaller order. This can substantially reduce the number of quadratic

equations that must be solved. When all ramified primes divide the

discriminant of one of the quadratic subfields ik  and 2 is not totally

ramified only half of the genera for ik  occur in .Ŝ  If a genus for ik  that

would normally be labeled ( )mj ,2  with 2≥j  does not occur in ,Ŝ  then
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the principal genus of ik  needs to be labeled as ( ).,2 1 mj−  Set J2  equal

to the maximum of all the first coordinates of all labels in the genus table.

8. Use the genus table to compute ambS
J
∩2  and .2 kerS

J
∩  Let

the quotient of the groups have order .2 1f  Then 
2

2 1

+

+

JH

H
J

 has 21 ff +  cyclic

factors of ,2Z  where 22 f  is the order of .
12 kerS

J
∩

+
 Let 3f  denote the

number of cyclic factors already in H (Initially both 2f  and 3f  will be 0).

Then 321 fff −+  will be the number of cyclic factors of order 22 +J  that

are now added to H. Decrease J by 1.

9. While 0>J  repeat step 8.

10. Compute the rank and order of H. The remaining factors all have

order 4 or 2 and the number of each is now easily determined.

We would like to close this section with two examples with much larger

class groups that have been done both by hand and by computer. If

,14722,6411481 21 =−= dd  ,294389823283 −=d  then

,~ 51241 ZZH ×−

,~ 442 ZZH ×−

644223 ~ ZZZZH ×××−

and

.~ 2288128512 ZZZZZZH ×××××−

If

08687249131925557762726691 −=d

,17942492917942911179424673 ⋅⋅−=

,147222 =d

,338890014668572020785038286233 −=d
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then

,~ 25641 ZZH ×−

,~ 442 ZZH ×−

1642223 ~ ZZZZZH ××××−

and

32512~ ZZH ×− .2288 ZZZZ ××××

5. Fields With Class Numbers 8 and 16

Complete lists of all imaginary, bicyclic, biquadratic fields of class
numbers 1 and 2 have already been given in [2] and [5]. Moreover, in our
recent article [9] we gave an essentially complete list of all such fields
with class number 4 and determined the structure of the 2-class group of
each field. Here, we give an essentially complete list of all such fields with
class numbers 8 and 16 as well as determine the structure of the
2-class group of each field. In order to determine all such fields of class

number ,2n  we use the well-known class number formula

,
2 321
0 hhh

q
h =

where 10 =q  or 2 is a unit index. Hence if ,2nh =  then .2 1
1

+≤ nh  To

accomplish our goal here we need complete lists of all imaginary

quadratic fields of class number n2  for .5≤n  Stark [12, 13] has given

such lists for 0=n  and 1 and Arno [1] a list for .2=n  While complete

lists of imaginary quadratic fields of class numbers 8, 16 and 32 are
unknown, Buell [3, 4] has computed the class number of all such fields
with discriminant greater than 2.2 million. Moreover, Hoffstein’s [7]
bounds on the L-series show that there is at most one more imaginary
quadratic field of class numbers 16,8  or 32 with discriminant less than

2.2 million. Therefore, Buell’s lists are essentially complete.

When ,8=h  the rank of the 2-class group determines its structure.

But when 16=h  there are two possible structures of rank 2. Here we
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apply the methods of this article to distinguish between the two

possibilities. The structure of the class group of the quadratic subfields

was usually obtained from Oriat’s [11] tables. A summary of these results

appear in the following table.

structure no. least conductor greatest conductor

222 ZZZ ×× 132 168, 21, 2, 42 233905, 163, 233905, 1435

42 ZZ × 469 120, 6, 15, 10 297005, 955, 59401, 1555

8Z 585 195, 15, 65, 39 930241, 163, 930241, 5707

2222 ZZZZ ××× 26 1320, 2, 330, 165 18204, 37, 4551, 123

422 ZZZ ×× 423 552, 46, 3, 138 626665, 403, 626665, 1555

44 ZZ × 281 420, 5, 105, 21 602497, 427, 602497, 1411

82 ZZ × 1152 264, 33, 2, 66 1304645, 1555, 260929, 4195

16Z 719 555, 555, 5, 111 3844681, 163, 3844681, 23587

Since there are only 26 fields with class number 16 and class group of

rank 4, the complete table is given below.

Fields where 2222~ ZZZZH ×××−

f 1d− 2d 3d− f 1d− 2d 3d−

1320 2 330 165 5187 3 1729 5187

1848 42 11 462 5208 6 217 1302

1848 21 22 462 5304 13 1326 102

1848 2 231 462 6105 11 6105 555
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2652 13 663 51 6460 19 1615 85

2760 30 46 345 7315 19 385 7315

2856 2 714 357 7755 11 705 7755

3080 70 22 385 8835 15 589 8835

3795 11 345 3795 8932 7 319 2233

4420 13 1105 85 11305 19 11305 595

4488 2 561 1122 11715 11 1065 11715

5016 2 1254 627 14763 3 4921 14763

5115 11 465 5115 18204 37 4551 123
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