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Abstract

Pythagorean Triples are well-known examples of integer solutions to

sums of two squares giving another square. It is well known that

Pythagorean Triples may be generated parametrically. It is somewhat

less well known that they may also be generated via matrices. In this

note we describe how matrix generators may be used to produce all the

Diophantine solutions of a square being a sum of squares when the

number of squares in the sum is between 3 and 9. For 83 ≤≤ n  all the

Diophantine solutions may be obtained via matrix multiplication from a

single type of initial solution. For 9=n  two different types of initial

solutions are required.

1. Introduction

Diophantine equations requiring a sum of squares to be a square
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correspond to integer solutions of equations of the form

.222
1 rxx n =++ (1)

When ,2=n  the nontrivial, positive solutions correspond to Pythagorean

Triples. Generating Pythagorean Triples parametrically is a standard

topic in elementary number theory. Generation of Pythagorean Triples

via matrix generators has been known for some time, but recently has

been popularized [2]. When 3=n  or 4=n  the parametric generation of

the Diophantine solutions to Equation (1) is also known [3, 4]. Recently,

matrix generators for the case 3=n  were determined [3]. Our interest

in Diophantine solutions to sums of squares being square resulted from

our search for Perfect Parallelepipeds [3]. A Perfect Parallelepiped

is a relaxed version of a Perfect Cuboid. More specifically, a Perfect

Parallelepiped is a parallelepiped in 3ℜ  with all three edges, all six face

diagonals and all four body diagonals having an integer length [1].

Whether such a parallelepiped exists is an open question. While the edge

coordinates need not be integer, our searches for Perfect Parallelepipeds

in 3ℜ  and 4ℜ  used integer coordinates. Hence, our interest in

Diophantine solutions to sums of squares that are square.

It is convenient to express integer solutions to 222
1 rxx n =++  as

vectors since we will be generating solutions via matrix arithmetic.

Diophantine solutions of Equation (1) correspond to integer vectors

,...,,1 nxxu =  where ru =  is an integer. Thus, solutions to

Equation (1) arise from integer length integer vectors. Two-dimensional

integer length positive integer vectors correspond to Pythagorean

Triples. These triples can all be generated from 1,0,1  by coordinate

interchanges, sign changes, and multiplication by the matrix

.
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That gives rise to the algebraic structure on Pythagorean Triples known
as the Barning Tree [2]. In [3] it is seen that
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gives rise to the 3-dimensional integer length integer vectors in a similar
manner, although negative entries are both allowed and utilized there.
The main result in this note shows that matrices related to 3J  generalize

these results for .93 ≤≤ n  While the case 3=n  is not new, the argument

used here is simpler; in particular, it does not require the case analysis
used in [2, 3].

2. Notation and Examples

It will be convenient for our purposes to express Diophantine

solutions to Equation (1) in the form rxxu n ,...,, 1=+  which we call

extended coordinates. Extended coordinate vectors are demarked with a

superscript “plus” on their name. Since +u  gives a solution to Equation

(1), the length of the vector 1...,, xxu n=  is .r  The coordinates

1...,, xxn  are called the ordinary coordinates and we view +u  as being in

nZ  even though we formally list 1+n  coordinates. In particular, when

describing the length of an extended coordinate vector, we mean the

length of its ordinary coordinates, so we can write .ru =+  Notice that

we have listed the ordinary coordinates with indices in descending order.
This will be convenient for the proofs of our theorems. We illustrate this
terminology and notations as follows. The Pythagorean Triple

5,4,3=+u  is viewed as an integer length integer vector in 2Z  and we

write .5=+u  For another example, the integer length integer vector

2,2,1=u  can be written in extended coordinates as 3,2,2,1=+u

or .3,2,2,1 −=+u
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Some illustrations producing familiar Pythagorean Triples using B
include the following:
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When ,3>n  we extend the 3J  matrix by leaving it in the lower right

as a block, putting an 3−n  by 3−n  identity matrix, ,3−nI  in the upper

left and zeros elsewhere. That is, nJ  is the partitioned matrix
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In the following examples we see that when we multiply an integer
length integer vector by ,nJ  the result is an integer length integer vector.

That is, we see that multiplication by these matrices of an extended
coordinate vector giving a solution to Equation (1) yields a solution to
Equation (1).

.
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3. Matrix Generators

In this section we show that for each ,93 ≤≤ n  multiplication by

,nJ  together with ordinary coordinate interchanges and sign changes,



w
w

w
.p

ph
m

j.c
om

MATRIX GENERATION OF THE DIOPHANTINE SOLUTIONS … 73

generates all of the solutions to Equation (1) in these dimensions. We
begin by establishing some useful properties.

Proposition 1. Let 3≥n  be an integer and let rxxu n ,...,, 1=+

give a Diophantine solution to Equation (1). Then the following hold.

(a) For all choices of plus or minus sign, rxxn ±±± ,...,, 1  also give

solutions to Equation (1).

(b) Any permutation of ordinary coordinates of +u  gives a solution to

Equation (1).

(c) +uJn  also gives a solution to Equation (1).

Proof. Part (a) follows since the square of a number is the same as
the square of its opposite. Part (b) follows since the order of terms does
not affect the sum of the terms. For part (c), direct computation yields

that .2,,,,...,, 3213231214 xxxrxxrxxrxxrxxuJ nn +++++++++=+

We can directly check that

( ) ( ) ( )232
2

31
2

21
2
4

22 xxrxxrxxrxxuJ nn +++++++++++=+

( ) ,2 2
321 xxxr +++=

where we need to use the fact that 222
1 rxx n =++  since we have

assumed Equation (1) holds.

Proposition 2. (a)

.

2111

1011

1101

1110

1
3























−−−

−

−

−

=−J

(b) ,3
1

3 SSJJ =−  where

.

1000

0100

0010

0001























−

−

−

=S



w
w

w
.p

ph
m

j.c
om

JORDAN O. TIRRELL and CLIFFORD A. REITER74

(c)
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Proof. Parts (a) and (b) may be verified by direct computation. Part

(c) follows from (a) and (b) using partitioned matrices.

As is usual, an integer vector is primitive if the greatest common

divisor of its coordinates is 1.

Proposition 3. Suppose +u  and +v  are solutions to Equation (1) and

that +u  may be obtained from +v  by a sequence of coordinate sign changes,

rearrangements of ordinary coordinates, and multiplications by .nJ  Then

the process is reversible in the sense that +v  may be obtained from +u  by

a sequence of coordinate sign changes, rearrangements of ordinary

coordinates, and multiplications by .nJ  Moreover, the greatest common

divisor of the coordinates of +u and +v  will be the same. In particular,

+u is primitive if and only if +v  is primitive.

Proof. First notice that coordinate sign changes and ordinary

coordinate interchanges are reversible processes. In light of Proposition

2(c), the reverse of multiplication by nJ  is sign changes followed by

multiplication by nJ  followed by sign changes. The reversibility result

follows. Next we remark that since +u  gives a solution to Equation (1),

the greatest common divisor of the ordinary coordinates is the same as

the greatest common divisor of the extended coordinates. Also, sign

changes and ordinary coordinate rearrangements preserve the greatest

common divisor. Since the coordinates of +uJn  are an integer linear

combination of the coordinates of ,+u  it is clear that any common divisor

of +u  is a common divisor of .+uJn  In light of Proposition 2, we can

multiply 1−
nJ  to see the converse is true.
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We are now prepared to prove our main theorem for dimensions
.83 ≤≤ n

Theorem 4. Any primitive n-dimensional integer length integer vector

in extended coordinates, where ,83 ≤≤ n  can be generated by starting

with the trivial vector in extended coordinates

1,1,0...,,0

and performing a sequence of ordinary coordinate interchanges, sign

changes, and multiplications by .nJ

Proof. We will begin by assuming that we have a primitive

Diophantine solution to Equation (1), rxxu n ,...,, 1=+  with 83 ≤≤ n

and that the solution is nontrivial in the sense that at least two ordinary

coordinates are nonzero. We will show that we can construct a shorter

vector that also gives a solution to Equation (1). Since a sequence of such

length reductions must be finite, we see we will eventually construct a

vector with only one nonzero ordinary coordinate, which can be changed

to 1,1,0...,,0  via sign changes and ordinary coordinate interchanges.

Given the reversibility in Proposition 3, that will complete our proof.

First, we note that by making sign changes and rearranging ordinary

coordinates, we may obtain a vector of the same length with ordered

coordinates. Namely, we may assume that rxxu n ,...,, 1=+  satisfies

.0 1234 rxxxxxn <≤≤≤≤≤≤  The nontriviality condition means

that 01 >x  and .02 >x  Now let rxxxxxv n ,,,,...,, 1234 −−−=+  be the

solution with the last three ordinary coordinates having changed signs.

We claim that +vJn  is a solution with a strictly smaller length. By direct

computation we see that

3213231214 2,,,,...,, xxxrxxrxxrxxrxxvJ nn −−−−−−−−−=+

which yields a vector with length .2 321 xxxr −−−  It suffices to show

that this is less than r. If ,02 321 <−−− xxxr  then showing the length is

less than r amounts to showing rxxx 3321 <++  which is true since for
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all ., rxk k <  If ,02 321 >−−− xxxr  then showing the length is less

than r amounts to showing .321 xxxr ++<  We know that 22
4 nxx ++

313221 222 xxxxxx ++<  because the left side has at most five terms

(since ),8≤n  each of which is less than or equal to each of the six terms

of the form jixx  on the right, due to the ordering of the coordinates and

where we are certain the inequality is strict since there is an extra sixth

term 021 >xx  on the right hand side. Therefore,

 22
4

2
3

2
2

2
1

2
nxxxxxr +++++=

313221
2
3

2
2

2
1 222 xxxxxxxxx +++++<

( )2321 xxx ++=

and hence

321 xxxr ++<

as required to complete the proof.

Notice that the theorem is constructive. That is, process in the proof

can be repeatedly applied to the obtain a sequence of vectors of decreasing

lengths ending in the trivial vector. If we let ++ vu ~  denote that the

vectors are the same up to changing signs and rearranging ordinary

coordinates. Then consider the following example. The vectors ,40,38,22

107,89,40,38,22~107,89 −−−  give solutions to Equation (1). Then

we see

47,29,22,22,20~47,29,20,22,22107,89,40,38,224 −−−=−−−J

21,20,4,4,3~21,3,4,4,2047,29,22,22,204 −−=−−−J

14,13,3,3,3~14,13,3,3,321,20,4,4,34 −−=−−−J

9,8,3,2,2~9,8,2,2,314,13,3,3,34 −−=−−−J
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5,4,2,2,1~5,4,1,2,29,8,3,2,24 −−=−−−J

2,1,1,1,1~2,1,1,1,15,4,2,2,14 −−=−−−J

1,1,0,0,0~1,0,0,0,12,1,1,1,14 =−−−J  as expected.

Notice that rearranging ordinary coordinates can be accomplished by

multiplying by a permutation matrix that leaves the last coordinate fixed

and changing signs can be accomplished by multiplying by a diagonal

matrix with –1 at the coordinates to be changed and 1 at the other

diagonal positions. Those observations along with the properties of ,nJ

that we have previously shown, prove the following.

Corollary 5. For dimensions 83 ≤≤ n  there is a finite collection, S,

of matrices consisting of ,nJ  the permutation of ordinary coordinate

matrices and the sign change matrices such that every primitive solution

to Equation (1) may be produced from 1,1,0...,,0  by a sequence of

multiplications from matrices in S.

Corollary 6. Let 83 ≤≤ n  and S be as in Corollary 5. Then every

Diophantine solution to Equation (1) may be produced from ss,,0...,,0

by a sequence of multiplications from matrices in S. For nonzero solutions,

the number s is the greatest common divisor of the coordinates.

Proof. We have observed that the greatest common divisor is

preserved by multiplication by .nJ  The same is true for ordinary

coordinate interchanges and sign changes. Thus, the corollary follows

from recognizing the zero solution and dividing nonzero solutions by

their greatest common divisor, s, applying Corollary 5 to the resulting

primitive solutions and then multiplying by s.

Lastly we turn to the case when ,9=n  where we begin to see the

complications that occur for higher dimensions.

Theorem 7. Any primitive 9-dimensional integer length integer vector

in extended coordinates can be generated by starting with either the vector

1,1,0,0,0,0,0,0,0,0  or ,3,1,1,1,1,1,1,1,1,1  and performing a

sequence of ordinary coordinate interchanges, sign changes, and

multiplications by .9J



w
w

w
.p

ph
m

j.c
om

JORDAN O. TIRRELL and CLIFFORD A. REITER78

Proof. The outline of the proof is the same as for Theorem 4. We will

begin by assuming that we have a primitive Diophantine solution to

Equation (1) with at least two nonzero ordinary coordinates; namely

rxxu ,...,, 19=+  with ,1289 rxxxx <≤≤≤  where the last inequality is

strict since we have assumed there at least two nonzero coordinates. We

claim that unless +u  is the particular vector 3,1,1,1,1,1,1,1,1,1=+w

that we will be able to produce a shorter solution. Thus, we will be able to

obtain a shorter solution unless we encounter +w  or there is only one

nonzero ordinary coordinate, and in that case we encounter ,0,0,0,0,0

.1,1,0,0,0  As before, proving this claim will suffice for the proof of the

theorem due to the reversibility of the allowed operations.

Like before, we consider ,9
+vJ  where .,,,,...,, 12349 rxxxxxv −−−=+

The resulting length is .2 321 xxxr −−−  It suffices to show that this is

less than r. If ,02 321 <−−− xxxr  then showing the length is less than

r amounts to showing rxxx 3321 <++  which again is true since for all

., rxk k <  If ,02 321 >−−− xxxr  then showing the length is less than r

amounts to showing .321 xxxr ++<  We know that

313221
2
9

2
4 222 xxxxxxxx ++≤++ (2)

because the left side has six terms, each of which is less than or equal to

each of the six terms of the form jixx  on the right. However, by the

ordering of the terms, we know 2xxk ≤  for .4...,,8,9=k  If any of those

was a strict inequality, then 21
2 xxxk <  and Equation (2) would also

be a strict inequality. Otherwise, .23489 xxxxx ====  If ,12 xx <

then 21
2 xxxk <  and Equation (2) would also be a strict inequality. Thus,

either Equation (2) is strict or 1921 ==== xxx  (since the solution

is primitive). Thus, either the vector is +w  or 3221
2
9

2
4 22 xxxxxx +<++

312 xx+  and in that case we can produce a shorter solution in the same

way as in Theorem 4. This completes the proof.
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There are analogs for Corollaries 5 and 6 for the case when 9=n  so

that nonprimitive solutions can be handled and, of course, there are two

possible initial vectors that are used with a finite collection of matrices in

this case.

We remark that +w  is stable under the reduction process of “change

the last three signs” and then “multiply by ”.9J  However, an entire new

family of solutions is produced by this vector when other combinations of

ordering and sign changes are allowed. In particular, we observe the

following:

3,1,1,1,1,1,1,1,1,13,1,1,1,1,1,1,1,1,19 =−−−J

.9,5,5,5,1,1,1,1,1,13,1,1,1,1,1,1,1,1,19 =J

It is straightforward to check that multiplication of an extended

coordinate vector with all odd coordinates by 9J  gives rise to an extended

coordinate vector with all odd coordinates, and likewise for coordinate

interchanges and sign changes. In light of the reversibility of these

operations, we see that the family of primitive solutions arising from the

two initial vectors 1,1,0,0,0,0,0,0,0,0  and 3,1,1,1,1,1,1,1,1,1

can be identified at a glance: the former have coordinates with mixed

parity while the later have all coordinates with odd parity.

In higher dimensions the situation becomes more complicated. For

example, when 10=n  we have extensions of the two previously seen

initial vectors 1,1,0,0,0,0,0,0,0,0,0  and 3,1,1,1,1,1,1,1,1,1,0

but also see 25,8,8,8,8,8,8,8,8,8,7  which does not appear to be in

the same class as the other initial conditions. In fact, with respect to the

reduction process of ordering, changing the signs of the last three

ordinary coordinates, and then multiplying by ,10J  that vector leads to a

two cycle where the other vector is .26,9,9,9,8,8,8,8,8,8,7
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