# MULTIVARIATE EXTENDED GENERALIZED DISTRIBUTIONS OF ORDER $k$ 

GREGORY A. TRIPSIANNIS ${ }^{1}$, AFRODITI A. PAPATHANASIOU ${ }^{1}$ and ANDREAS N. PHILIPPOU ${ }^{2}$<br>${ }^{1}$ Department of Medical Statistics<br>Faculty of Medicine<br>Democritus University of Thrace<br>68100 Alexandroupolis, Greece<br>${ }^{2}$ Department of Mathematics<br>University of Patras<br>Patras, Greece


#### Abstract

In a generalized sequence of order $k$, which is an extension of independent trials with multiple outcomes, we introduce the multivariate extended generalized distributions of order $k$, which generalize the multivariate generalized negative binomial distribution of Jain [3], the multivariate extended negative binomial distribution of order $k$ of Philippou and Antzoulakos [11] and the multivariate generalized negative binomial distribution of order $k$, type I , of Tripsiannis et al. [19]. This new distribution includes as special cases six new multivariate extended distributions of order $k$ and gives rise in the limit to multivariate extended generalized logarithmic series and Poisson distributions of order $k$. Moments of these distributions are obtained and graphs are presented.


2000 Mathematics Subject Classification: 62E15, $62 \mathrm{H} 10,60 \mathrm{C} 05$.
Keywords and phrases: distributions of order $k$, extended, generalized, lattice paths, negative binomial, logarithmic series, Poisson, Haight, Takács, binomial-delta, negative binomial-delta, mean, variance-covariance, graphs.

Received October 19, 2006

## 1. Introduction

In five pioneering papers, Philippou and Muwafi [12], Philippou et al. [15], Philippou [9] and Philippou et al. [13, 14] introduced the study of univariate and multivariate distributions of order $k$, based on outcomes of independent and identical binary trials or trials with multiple outcomes. Since then, the subject matter received a lot of attention from many researchers. For comprehensive reviews at the time of publication we refer to Johnson et al. [6, 7]. Based on a generalized sequence of order $k$, which is an extension of independent trials with multiple outcomes, Philippou and Antzoulakos [11] derived the multivariate extended negative binomial and logarithmic series distributions of order $k$, generalizing the respective work of Aki [1] on univariate extended distributions of order $k$.

Recently, Tripsiannis et al. [19] introduced the multivariate generalized negative binomial and Polya distributions of order $k$, type I, as the distribution of a first-passage event in a sequence of independent trials with multiple outcomes, generalizing to the multivariate case the work of Tripsiannis et al. [17]. These two distributions include as special or limiting cases several known and new distributions of the same order and type. Jain and Consul [4], Jain and Gupta [5] and Consul and Jain [2] introduced and studied the generalized negative binomial, logarithmic series and Poisson distributions, respectively, while Jain [3] extended these distributions to the multivariate case.

In the present paper, we extend several results of Tripsiannis et al. [17, 19], Philippou and Antzoulakos [11], Aki [1], Jain [3], Jain and Consul [4], Jain and Gupta [5] and Consul and Jain [2]. In Section 2, we derive a multivariate generalized negative binomial distribution of order $k$, say $M E G N B_{k}(\cdot)$, which generalizes the multivariate generalized negative binomial distribution of Jain [3] to distributions of order $k$, the multivariate extended negative binomial distribution of order $k$ of Philippou and Antzoulakos [11] to generalized distributions, and the multivariate generalized negative binomial distribution of order $k$, type I, of Tripsiannis et al. [19] to the case of dependent trials. We do it by counting multidimensional lattice paths in a generalized sequence of
order $k$ and employing a first passage approach (see Theorem 2.1 and Definition 2.2). We next obtain two limiting cases of $M E G N B_{k}(\cdot)$ (see Propositions 2.1 and 2.2), which provide, respectively, multivariate generalized logarithmic series and Poisson distributions of the same order (see Definitions 2.3 and 2.4). Means and variances-covariances of these distributions are obtained in Section 3. In Section 4, we introduce, as special cases of $M E G N B_{k}(\cdot)$, six new multivariate distributions of order $k$, and we relate asymptotically $M E G N B_{k}(\cdot)$ to the multivariate Poisson $\left(M P_{k, I}\left(\lambda_{1}, \ldots, \lambda_{m}\right)\right)$ distribution of order $k$, type I, of Philippou et al. [13]. Finally, graphs of $M E G N B_{k}(\cdot)$ are presented (Figure 4.1). We mention that all the corresponding univariate generalized distributions of order $k$ are also new.

In order to avoid unnecessary repetitions, we mention here that in this paper $x_{11}, \ldots, x_{m k}$ are non-negative integers as specified. In addition, whenever sums and products are taken over $i$ and $j$, ranging from 1 to $m$ and from 1 to $k$, respectively, we shall omit these limits for notational simplicity.

## 2. Multivariate Extended Generalized Distributions of Order k

In the present section we obtain two multivariate extended distributions of order $k$, by employing the generalized sequence of the same order of Philippou and Antzoulakos [11], which we introduce next.

Definition 2.1. An infinite sequence $\left\{Y_{n}\right\}_{n=0}^{\infty}$ of $\{0,1, \ldots, m\}$-valued random variables is said to be the generalized sequence of order $k$ with parameters $q_{11}, \ldots, q_{m k}\left(0<q_{i j}<1(1 \leq i \leq m\right.$ and $1 \leq j \leq k), q_{1 j}$ $+\cdots+q_{m j}<1$ ), if
(1) $Y_{0} \neq 0$ almost surely, and
(2) $P\left(Y_{n}=i \mid Y_{0}=y_{0}, Y_{1}=y_{1}, \ldots, Y_{n-1}=y_{n-1}\right)=q_{i j}(1 \leq i \leq m)$,
for any positive integer $n$, where $j=r-k[(r-1) / k], r$ is the smallest positive integer which satisfies $y_{n-r} \neq 0$, and $[x]$ denotes the greatest integer in $x$.

It follows from the definition that

$$
P\left(Y_{n}=0 \mid Y_{0}=y_{0}, Y_{1}=y_{1}, \ldots, Y_{n-1}=y_{n-1}\right)=p_{j} \quad(1 \leq j \leq k)
$$

where

$$
p_{j}=1-\sum_{i} q_{i j}(1 \leq j \leq k)
$$

and $j$ is as above.
The generalized sequence of order $k$ reduces to the case of independent trials with $m+1$ possible outcomes, if $p_{1}=\cdots=p_{k}=p=$ $1-\sum_{i} q_{i}$, and to the binary sequence of the same order of Aki [1], for $k=1$. Furthermore, according to the case of independent trials, $Y_{n}$ is sometimes called nth trial and the outcomes " 0 " and " $i$ " $(1 \leq i \leq m)$ are called success $(S)$ and failure of type- $i\left(F_{i}\right)$, respectively.

In the following theorem, we employ a first passage approach to derive the multivariate extended generalized negative binomial distribution of order $k$.

Theorem 2.1. Let $\left\{Y_{n}\right\}_{n=0}^{\infty}$ be a generalized sequence of order $k$ with parameters $q_{11}, \ldots, q_{m k}$, and consider the random variables $X_{i j}(1 \leq i \leq m$ and $1 \leq j \leq k)$ and $L_{k}(k \geq 1)$ denoting, respectively, the number of events

$$
e_{i j}=\underbrace{S \cdots S}_{j-1} F_{i} \text { and } \tilde{e}_{k}=\underbrace{S \cdots S}_{k} .
$$

Let $X_{i}(1 \leq i \leq m)$ be a random variable denoting the number of failures of type-i and the total number of successes which precedes directly the occurrences of failures of type-i, but do not belong to any success run of length $k$, that is, $X_{i}=\Sigma_{j} j X_{i j}$. Trials are continued until $n+\sum_{i} \sum_{j} \mu_{i} X_{i j}$ ( $n>0$ and $\mu_{i} \geq-1$ ) non-overlapping success runs of length $k$ appear for the first time, that is, at any trial $t\left(1 \leq t \leq \Sigma_{i} X_{i}+k\left(n+\sum_{i} \Sigma_{j} \mu_{i} X_{i j}\right)-1\right)$, the condition $A=\left\{L_{k}^{[t]}<n+\sum_{i} \sum_{j} \mu_{i} X_{i j}^{[t]}\right.$, where $X_{i j}^{[t]}$ and $L_{k}^{[t]}$ are the numbers of events $e_{i j}$ and $\widetilde{e}_{k}$, respectively, in the first $t$ trials $\}$, is satisfied.

Then, for $x_{i}=0,1, \ldots,(1 \leq i \leq m)$,

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, \ldots, X_{m}=x_{m}\right) \\
= & \sum_{\Sigma_{j}} \frac{n}{n+\sum_{i} \sum_{j}\left(1+\mu_{i}\right) x_{i j}}\binom{n+\sum_{i} \sum_{j}\left(1+\mu_{i}\right) x_{i j}}{x_{11}, \ldots, x_{m k}, n+\sum_{i} \sum_{j} \mu_{i} x_{i j}} \\
\times & \left(p_{1} \cdots p_{k}\right)^{n+\sum_{i} \sum_{j} \mu_{i} x_{i j}} \prod_{i} \prod_{j} q_{i j}^{x_{i j}} \prod_{s=1}^{k-1} p_{s}^{\sum_{i} \sum_{j=s+1}^{k} x_{i j}},
\end{aligned}
$$

where $p_{j}=1-\sum_{i} q_{i j}(1 \leq j \leq k)$.
Proof. For any fixed non-negative integers $x_{1}, \ldots, x_{m}$ a typical element of the event $\left(X_{1}=x_{1}, \ldots, X_{m}=x_{m}\right)$ is a sequence of $\sum_{i} X_{i}$ $+k\left(n+\sum_{i} \sum_{j} \mu_{i} X_{i j}\right)$ outcomes of the letters $F_{1}, \ldots, F_{m}$ and $S$, such that the event $e_{i j}$ appears $x_{i j}(1 \leq i \leq m$ and $1 \leq j \leq k)$ times and the event $\widetilde{e}_{k}$ appears $n+\sum_{i} \sum_{j} \mu_{i} x_{i j}$ times, satisfying the condition $A$ and $\sum_{j} j x_{i j}$ $=x_{i}(1 \leq i \leq m)$.

Fix $x_{i j}(1 \leq i \leq m$ and $1 \leq j \leq k)$ ( $n$ and $\mu_{i}(1 \leq i \leq m)$ are fixed) and denote the event $e_{i j}(1 \leq i \leq m$ and $1 \leq j \leq k)$ by a step in $Z_{i j}$ direction and the event $\tilde{e}_{k}$ by a step in $Z_{0}$ direction. Therefore, we represent a sequence of $x_{i j}$ events $e_{i j}(1 \leq i \leq m$ and $1 \leq j \leq k)$ and $n+\sum_{i} \sum_{j} \mu_{i} x_{i j}$ events $\widetilde{e}_{k}$ by an $(m k+1)$-dimensional lattice path from the origin to $\left(n+\sum_{i} \sum_{j} \mu_{i} x_{i j}, x_{11}, \ldots, x_{m k}\right)$, which does not touch the hyperplane $z_{0}=n+\sum_{i} \sum_{j} \mu_{i} x_{i j}$ except at the point $\left(n+\sum_{i} \sum_{j} \mu_{i} x_{i j}, x_{11}, \ldots, x_{m k}\right)$. Then the number of such lattice paths is

$$
\frac{n}{n+\sum_{i} \sum_{j}\left(1+\mu_{i}\right) x_{i j}}\binom{n+\sum_{i} \sum_{j}\left(1+\mu_{i}\right) x_{i j}}{x_{11}, \ldots, x_{m k}, n+\sum_{i} \sum_{j} \mu_{i} x_{i j}}
$$

(see Sen and Jain [16]) and each one of them has probability

$$
\left(p_{1} \cdots p_{k}\right)^{n+\sum_{i} \Sigma_{j} \mu_{i} x_{i j}} \prod_{i} \prod_{j} q_{i j}^{x_{i j}} \prod_{s=1}^{k-1} p_{s}^{\sum_{i} \sum_{j=s+1}^{k} x_{i j}}
$$

The theorem then follows, since the non-negative integers $x_{i 1}, \ldots, x_{i k}$ $(1 \leq i \leq m)$ may vary subject to $\sum_{j} j x_{i j}=x_{i}(1 \leq i \leq m)$.

By means of the transformations $x_{i j}=n_{i j}$ and $x_{i}=n_{i}+\sum_{j}(j-1) n_{i j}$ ( $1 \leq i \leq m$ and $1 \leq j \leq k$ ), the multinomial theorem and relation (10) of Sen and Jain [16], it may be seen that the above derived probability function is a proper probability distribution. Even though $n$ is an integer, the argument still holds true for any positive real number $n$.

For $k=1$, this distribution reduces to the multivariate generalized negative binomial distribution (see Jain [3]), and, for $\mu_{i}=0(1 \leq i \leq m)$, it reduces to the multivariate extended negative binomial distribution of order $k$ (see Philippou and Antzoulakos [11]). Furthermore, for $p_{1}=\cdots=$ $p_{k}=p$, it reduces to the multivariate generalized negative binomial distribution of order $k$, type I (see Tripsiannis et al. [19]). We therefore introduce the following.

Definition 2.2. A random vector (rv) $\mathbf{X}=\left(X_{1}, \ldots, X_{m}\right)$ is said to have the multivariate extended generalized negative binomial distribution of order $k$, with parameters $n, \mu_{1}, \ldots, \mu_{m}, q_{11}, \ldots, q_{m k}\left(n>0, \mu_{i} \geq-1\right.$ $(1 \leq i \leq m)$ all integers, $0<q_{i j}<1 \quad(1 \leq i \leq m), \sum_{i} q_{i j}<1 \quad(1 \leq j \leq k)$ and $p_{j}=1-\sum_{i} q_{i j}$ ), to be denoted by $\operatorname{MEGN} B_{k}\left(n ; \mu_{1}, \ldots, \mu_{m} ; q_{11}, \ldots, q_{m k}\right)$, if, for $x_{i}=0,1, \ldots(1 \leq i \leq m)$,

$$
\begin{aligned}
P(\mathbf{X}=\mathbf{x})= & \sum_{\Sigma_{j} x_{i j}=x_{i}} \frac{n \Gamma\left(n+\sum_{i} \sum_{j}\left(1+\mu_{i}\right) x_{i j}\right)}{\Gamma\left(n+\sum_{i} \Sigma_{j} \mu_{i} x_{i j}+1\right) \Pi_{i} \Pi_{j} x_{i j}!}\left(p_{1} \cdots p_{k}\right)^{n+\Sigma_{i} \Sigma_{j} \mu_{i} x_{i j}} \\
& \times \prod_{i} \prod_{j} q_{i j}^{x_{i j}} \prod_{s=1}^{k-1} p_{s}^{\sum_{i} \sum_{j=s+1}^{k} x_{i j}} .
\end{aligned}
$$

For $m=1$, this distribution reduces to a new distribution of order $k$, which we call extended generalized negative binomial distribution of order $k$ with parameters $n, \mu, p_{1}, \ldots, p_{k}\left(n>0, \mu \geq-1\right.$ is an integer, $0<p_{j}<1$ and $\left.q_{j}=1-p_{j}(1 \leq j \leq k)\right)$ and we denote it by $\operatorname{EGNB}_{k}\left(n ; \mu ; p_{1}, \ldots, p_{k}\right)$, since, for $\mu=0$, this distribution reduces to the (shifted) extended negative binomial distribution of order $k$ of Aki [1] and, for $k=1$, it reduces to the generalized negative binomial distribution (see Jain and Consul [4]), with $\beta=\mu+1$. Furthermore, for $p_{1}=\cdots=p_{k}=p$, it reduces
to the (shifted) generalized negative binomial distribution of order $k$, type I, of Tripsiannis et al. [17].

It is well known that the multivariate generalized logarithmic series distribution may be obtained as a limit of the multivariate generalized negative binomial distribution (see Jain [3]). We shall extend this result to the multivariate extended generalized negative binomial distribution of order $k$, and we shall name the limit accordingly.

Proposition 2.1. Let $\mathbf{X}_{n}(n>0)$ be $m \times 1$ ru's distributed as $\operatorname{MEGNB}_{k}\left(n ; \mu_{1}, \ldots, \mu_{m} ; q_{11}, \ldots, q_{m k}\right)$, set $a=-\left[\log \left(p_{1} \cdots p_{k}\right)\right]^{-1}$ and assume that $n \rightarrow 0$. Then, for $x_{i}=0,1, \ldots,(1 \leq i \leq m)$ and $\sum_{i} x_{i}>0$, we have

$$
\begin{aligned}
& P\left(X_{n 1}=x_{1}, \ldots, X_{n m}=x_{m} \mid \sum_{i} X_{n i}>0\right) \\
\rightarrow & a \sum_{\Sigma_{j}} \frac{1}{\sum_{i x_{i j}=x_{i}} \sum_{j}\left(1+\mu_{i}\right) x_{i j}}\binom{\sum_{i} \sum_{j}\left(1+\mu_{i}\right) x_{i j}}{x_{11}, \ldots, x_{m k}, \sum_{i} \sum_{j} \mu_{i} x_{i j}}\left(p_{1} \cdots p_{k}\right)^{\Sigma_{i} \sum_{j} \mu_{i} x_{i j}} \\
& \times \prod_{i} \prod_{j} q_{i j}^{x_{i j}} \prod_{s=1}^{k-1} p_{s}^{\sum_{i} \Sigma_{j=s+1}^{k} x_{i j}} .
\end{aligned}
$$

For $k=1$, this distribution reduces to the usual multivariate generalized logarithmic series distribution (see Jain [3]), and, for $\mu_{i}=0(1 \leq i \leq m)$, it reduces to the multivariate extended logarithmic series distribution of order $k$ (see Philippou and Antzoulakos [11]). Furthermore, for $p_{1}=\cdots=p_{k}=p$, it reduces to the multivariate generalized logarithmic series distribution of order $k$, type I (see Tripsiannis et al. [19]). We therefore introduce the following definition.

Definition 2.3. A rv $\mathbf{X}=\left(X_{1}, \ldots, X_{m}\right)$ is said to have the multivariate extended generalized logarithmic series distribution of order $k$, with parameters $\mu_{1}, \ldots, \mu_{m}, q_{11}, \ldots, q_{m k}\left(\mu_{i} \geq-1(1 \leq i \leq m)\right.$ all integers, $0<q_{i j}<1(1 \leq i \leq m$ and $1 \leq j \leq k), \Sigma_{i} q_{i j}<1(1 \leq j \leq k)$ and $p_{j}=1$ $\left.-\sum_{i} q_{i j}\right)$, to be denoted by $\operatorname{MEGL}_{k}\left(\mu_{1}, \ldots, \mu_{m} ; q_{11}, \ldots, q_{m k}\right)$, if, for $x_{i}=0,1, \ldots,(1 \leq i \leq m)$ and $\sum_{i} x_{i}>0, P(\mathbf{X}=\mathbf{x})$ is equal to the limit given in Proposition 2.1.

For $m=1$, this distribution reduces to a new distribution of order $k$, which we call extended generalized logarithmic series distribution of order $k$ with parameters $\mu, p_{1}, \ldots, p_{k}\left(\mu \geq-1\right.$ is an integer, $0<p_{j}<1$ and $\left.q_{j}=1-p_{j}(1 \leq j \leq k)\right)$ and we denote by $E G L S_{k}\left(\mu ; p_{1}, \ldots, p_{k}\right)$, since, for $\mu=0$, this distribution reduces to the extended logarithmic series distribution of order $k$ of Aki [1] and, for $k=1$, it reduces to the generalized logarithmic series distribution (see Jain and Gupta [5]), with $\beta=\mu+1$. Also, for $p_{1}=\cdots=p_{k}=p$, it reduces to the generalized logarithmic series distribution of order $k$, type I, of Tripsiannis et al. [17].

It is well known that the multivariate generalized Poisson distribution may be obtained as a limit of the multivariate generalized negative binomial distribution (see Jain [3]). This result readily extends as follows.

Proposition 2.2. Let $\mathbf{X}_{n} \quad(n>0)$ be an $m \times 1$ rv's distributed as $\operatorname{MEGN} B_{k}\left(\mu_{1}, \ldots, \mu_{m} ; q_{11}, \ldots, q_{m k}\right)$, and assume that $n q_{i j} \rightarrow \theta_{i j}\left(\theta_{i j}>0\right)$ and $\mu_{v} q_{i j} \rightarrow \lambda_{i j v}\left(\left|\lambda_{i j v}\right|<1\right)$ for $1 \leq i, v \leq m$ and $1 \leq j \leq k$, as $q_{i j} \rightarrow 0$ $(1 \leq i \leq m$ and $1 \leq j \leq k), \quad \mu_{i} \rightarrow \infty$ and $n \rightarrow \infty$. Then, for $x_{i}=0,1, \ldots$, $(1 \leq i \leq m)$, we have

$$
\begin{aligned}
& P\left(\mathbf{X}_{n}=\mathbf{x}\right) \\
& \rightarrow \sum_{\sum_{j}} \frac{\theta_{11}}{\prod_{i j}=x_{i}} \prod_{i} x_{i j}! \\
&\left.x_{11}+\sum_{v} \lambda_{11 v} \sum_{j} x_{v j}\right)^{x_{11}-1}\left(\theta_{12}+\sum_{v} \lambda_{12 v} \sum_{j} x_{v j}\right)^{x_{12}} \\
& \times \cdots \times\left(\theta_{m k}+\sum_{v} \lambda_{m k v} \sum_{j} x_{v j}\right)^{x_{m k}} e^{-\sum_{i} \sum_{j} \theta_{i j}-\sum_{\mathrm{v}}\left[\left(\sum_{i} \sum_{j} \lambda_{i j v}\right)\left(\sum_{j} x_{v j}\right)\right]}
\end{aligned}
$$

For $k=1$, this distribution reduces to the multivariate generalized Poisson distribution (see Jain [3]) and for $\lambda_{i j v}=0 \quad(1 \leq i, v \leq m$ and $1 \leq j \leq k$ ), it reduces to the multivariate Poisson distribution or multivariate extended Poisson distribution of order $k$ (see Philippou et al. [13]). We therefore introduce the following definition.

Definition 2.4. A rv $\mathbf{X}=\left(X_{1}, \ldots, X_{m}\right)$ is said to have the multivariate extended generalized Poisson distribution of order $k$, with
parameters $\theta_{11}, \ldots, \theta_{m k}, \lambda_{111}, \ldots, \lambda_{m k m}\left(\theta_{i j}>0\right.$ and $\left.\left|\lambda_{i j v}\right|<1\right)(1 \leq i, v \leq m$ and $1 \leq j \leq k)$, to be denoted by $\operatorname{MEGP}_{k}\left(\theta_{11}, \ldots, \theta_{m k} ; \lambda_{111}, \ldots, \lambda_{m k m}\right)$ if, for $x_{i}=0,1, \ldots, \quad(1 \leq i \leq m), \quad P(\mathbf{X}=\mathbf{x})$ is equal to the limit given in Proposition 2.2.

For $m=1$, this distribution reduces to a new distribution of order $k$, which we call extended generalized Poisson distribution of order $k$ with parameters $\theta_{1}, \ldots, \theta_{k}, \lambda_{1}, \ldots, \lambda_{k}\left(\theta_{j}>0\right.$ and $\left.\left|\lambda_{j}\right|<1\right)(1 \leq j \leq k)$, to be denoted by $E G P_{k}\left(\theta_{1}, \ldots, \theta_{k} ; \lambda_{1}, \ldots, \lambda_{k}\right)$, since, for $k=1$, this distribution reduces to the generalized Poisson distribution (see Consul and Jain [2]), and for $\theta_{j}=\theta$ and $\lambda_{j}=\lambda \quad(1 \leq j \leq k)$, it reduces to the generalized Poisson distribution of order $k$, type I, of Tripsiannis et al. [17]. Also, for $\lambda_{j}=0(1 \leq j \leq k)$, it reduces to the multiparameter or extended Poisson distribution of order $k$ (see Aki [1] and Philippou [10]).

## 3. Characteristics of the Multivariate Extended Generalized Distributions of Order $\boldsymbol{k}$

In this section, we obtain the means and variances-covariances of the multivariate extended generalized distributions of order $k$, treated in Section 2. We first recall the following definitions from the work of Tripsiannis et al. [18].

Definition 3.1. A rv $\mathbf{X}=\left(X_{1}, \ldots, X_{m}\right)$ is said to have the multivariate generalized negative binomial distribution of order $k$, with parameters $n, \mu_{1}, \ldots, \mu_{m}, Q_{11}, \ldots, Q_{m k} \quad\left(n>0, \mu_{i} \geq-1(1 \leq i \leq m)\right.$ all integers, $0<Q_{i j}<1 \quad(1 \leq i \leq m$ and $1 \leq j \leq k), \quad \sum_{i} \sum_{j} Q_{i j}<1$ and $P=$ $\left.1-\sum_{i} \sum_{j} Q_{i j}\right)$, to be denoted by $\operatorname{MGNB}_{k}\left(n ; \mu_{1}, \ldots, \mu_{m} ; Q_{11}, \ldots, Q_{m k}\right)$ if, for $x_{i}=0,1, \ldots, \quad(1 \leq i \leq m)$,

$$
\begin{aligned}
& P(\mathbf{X}=\mathbf{x}) \\
= & \sum_{\Sigma_{j}} \frac{n \Gamma\left(n+\sum_{i} \sum_{j}\left(1+x_{i}\right.\right.}{} \frac{\left.n x_{i j}\right)}{\Gamma\left(n+\sum_{i} \sum_{j} \mu_{i} x_{i j}+1\right) \prod_{i} \prod_{j} x_{i j}!} P^{n+\sum_{i} \Sigma_{j} \mu_{i} x_{i j}} \prod_{i} \prod_{j} Q_{i j}^{x_{i j}} .
\end{aligned}
$$

Definition 3.2. A rv $\mathbf{X}=\left(X_{1}, \ldots, X_{m}\right)$ is said to have the multivariate generalized logarithmic series distribution of order $k$, with parameters $\mu_{1}, \ldots, \mu_{m}, Q_{11}, \ldots, Q_{m k}\left(\mu_{i} \geq-1(1 \leq i \leq m)\right.$ all integers, $0<Q_{i j}<1(1 \leq i \leq m$ and $1 \leq j \leq k), \Sigma_{i} \Sigma_{j} Q_{i j}<1$ and $\left.P=1-\sum_{i} \Sigma_{j} Q_{i j}\right)$, to be denoted by $\operatorname{MGLS}_{k}\left(\mu_{1}, \ldots, \mu_{m} ; Q_{11}, \ldots, Q_{m k}\right)$, if, for $x_{i}=0,1, \ldots$ $(1 \leq i \leq m)$ and $\sum_{i} x_{i}>0$, where $a=-(\log P)^{-1}$,

$$
\begin{aligned}
& P(\mathbf{X}=\mathbf{x}) \\
= & a \sum_{\sum_{j} x_{i j}=x_{i}} \frac{1}{\sum_{i} \sum_{j}\left(1+\mu_{i}\right) x_{i j}}\binom{\Sigma_{i} \Sigma_{j}\left(1+\mu_{i}\right) x_{i j}}{x_{11}, \ldots, x_{m k}, \Sigma_{i} \Sigma_{j} \mu_{i} x_{i j}} P^{\Sigma_{i} \Sigma_{j} \mu_{i} x_{i j}} \prod_{i} \prod_{j} Q_{i j}^{x_{i j}} .
\end{aligned}
$$

By setting $Q_{i 1}=q_{i 1}$ and $Q_{i j}=p_{1} \cdots p_{j-1} q_{i j}\left(0<q_{i j}<1,0<\sum_{i} q_{i j}<1\right.$ and $p_{j}=1-\sum_{i} q_{i j}$ ) for $1 \leq i \leq m$ and $1 \leq j \leq k$, which imply $P=p_{1} \cdots p_{k}$, we observe that

$$
\operatorname{MGN} B_{k}\left(n ; \mu_{1}, \ldots, \mu_{m} ; Q_{11}, \ldots, Q_{m k}\right)=\operatorname{MEGN} B_{k}\left(n ; \mu_{1}, \ldots, \mu_{m} ; q_{11}, \ldots, q_{m k}\right)
$$

and
$\operatorname{MGLS}_{k}\left(\mu_{1}, \ldots, \mu_{m} ; Q_{11}, \ldots, Q_{m k}\right)=\operatorname{MEGLS}_{k}\left(\mu_{1}, \ldots, \mu_{m} ; q_{11}, \ldots, q_{m k}\right)$.
Then, the following two propositions are direct consequences of Propositions 2.2 and 4.4 of Tripsiannis et al. [18].

Proposition 3.1. Let $\mathbf{X}=\left(X_{1}, \ldots, X_{m}\right)$ be a rv following the multivariate extended generalized negative binomial distribution of order $k$. Then, the mean and variance-covariance are given by
(i) $E\left(X_{i}\right)=\frac{n}{p_{1} \cdots p_{k}-\sum_{i} \sum_{j} \mu_{i} p_{1} \cdots p_{j-1} q_{i j}} \sum_{j} j p_{1} \cdots p_{j-1} q_{i j}, \quad(1 \leq i \leq m)$,
(ii) $\operatorname{Var}\left(X_{i}\right)=\frac{n}{p_{1} \cdots p_{k}-\sum_{i} \sum_{j} \mu_{i} p_{1} \cdots p_{j-1} q_{i j}}$

$$
\begin{aligned}
& \left(\sum_{j} j^{2} p_{1} \cdots p_{j-1} q_{i j}+\frac{1}{p_{1} \cdots p_{k}-\sum_{i} \sum_{j} \mu_{i} p_{1} \cdots p_{j-1} q_{i j}}\right. \\
& \times\left[2 \mu_{i}+1+\frac{\sum_{i} \Sigma_{j}\left(1+\mu_{i}\right) \mu_{i} p_{1} \cdots p_{j-1} q_{i j}}{p_{1} \cdots p_{k}-\sum_{i} \Sigma_{j} \mu_{i} p_{1} \cdots p_{j-1} q_{i j}}\right] \\
& \left.\left(\sum_{j} j p_{1} \cdots p_{j-1} q_{i j}\right)^{2}\right), \quad(1 \leq i \leq m),
\end{aligned}
$$

(iii) $\operatorname{Cov}\left(X_{i}, X_{s}\right)=\frac{n}{\left(p_{1} \cdots p_{k}-\sum_{i} \sum_{j} \mu_{i} p_{1} \cdots p_{j-1} q_{i j}\right)^{2}}$

$$
\begin{aligned}
& \left(\mu_{i}+\mu_{s}+1+\frac{\sum_{i} \sum_{j}\left(1+\mu_{i}\right) \mu_{i} p_{1} \cdots p_{j-1} q_{i j}}{p_{1} \cdots p_{k}-\sum_{i} \sum_{j} \mu_{i} p_{1} \cdots p_{j-1} q_{i j}}\right) \\
& \times\left(\sum_{j} j p_{1} \cdots p_{j-1} q_{i j}\right)\left(\sum_{j} j p_{1} \cdots p_{j-1} q_{s j}\right),(1 \leq i \neq s \leq m) .
\end{aligned}
$$

Proposition 3.1 reduces to the mean and variance-covariance of the (i) multivariate generalized negative binomial distribution (see Sen and Jain [16]), for $k=1$, (ii) multivariate extended negative binomial distribution of order $k$ (see Philippou and Antzoulakos [11]), for $\mu_{i}=0(1 \leq i \leq m)$ and (iii) multivariate generalized negative binomial distribution of order $k$, type I (see Tripsiannis et al. [19]), for $p_{1}=\cdots=p_{k}=p$.

Proposition 3.2. Let $\mathbf{X}=\left(X_{1}, \ldots, X_{m}\right)$ be a rv following the multivariate extended generalized logarithmic series distribution of order $k$. Then, the mean and variance-covariance are given by
(i) $E\left(X_{i}\right)=\frac{n}{p_{1} \cdots p_{k}-\sum_{i} \Sigma_{j} \mu_{i} p_{1} \cdots p_{j-1} q_{i j}} \sum_{j} j p_{1} \cdots p_{j-1} q_{i j},(1 \leq i \leq m)$,
(ii) $\operatorname{Var}\left(X_{i}\right)=\frac{a}{p_{1} \cdots p_{k}-\sum_{i} \Sigma_{j} \mu_{i} p_{1} \cdots p_{j-1} q_{i j}}$

$$
\begin{aligned}
& \left(\sum_{j} j^{2} p_{1} \cdots p_{j-1} q_{i j}+\frac{1}{p_{1} \cdots p_{k}-\sum_{i} \sum_{j} \mu_{i} p_{1} \cdots p_{j-1} q_{i j}}\right. \\
& \times\left[2 \mu_{i}+1+a+\frac{\sum_{i} \sum_{j}\left(1+\mu_{i}\right) \mu_{i} p_{1} \cdots p_{j-1} q_{i j}}{p_{1} \cdots p_{k}-\sum_{i} \Sigma_{j} \mu_{i} p_{1} \cdots p_{j-1} q_{i j}}\right] \\
& \left.\quad\left(\sum_{j} j_{1} \cdots p_{j-1} q_{i j}\right)^{2}\right), \quad(1 \leq i \leq m)
\end{aligned}
$$

(iii) $\operatorname{Cov}\left(X_{i}, X_{s}\right)=\frac{a}{\left(p_{1} \cdots p_{k}-\sum_{i} \sum_{j} \mu_{i} p_{1} \cdots p_{j-1} q_{i j}\right)^{2}}$

$$
\begin{aligned}
& \left(\mu_{i}+\mu_{s}+1+a+\frac{\sum_{i} \sum_{j}\left(1+\mu_{i}\right) \mu_{i} p_{1} \cdots p_{j-1} q_{i j}}{p_{1} \cdots p_{k}-\sum_{i} \sum_{j} \mu_{i} p_{1} \cdots p_{j-1} q_{i j}}\right) \\
& \times\left(\sum_{j} j p_{1} \cdots p_{j-1} q_{i j}\right)\left(\sum_{j} j p_{1} \cdots p_{j-1} q_{s j}\right),(1 \leq i \neq s \leq m) .
\end{aligned}
$$

For $k=1$, Proposition 3.2 reduces to the mean and variancecovariance of the multivariate generalized logarithmic series distribution (see Proposition 4.4 of Tripsiannis et al. [18], for $k=1$ ), and for $\mu_{i}=0$ ( $1 \leq i \leq m$ ), it reduces to the characteristics of the multivariate extended logarithmic series distribution of order $k$ (see Philippou and Antzoulakos [11]). Furthermore, for $p_{1}=\cdots=p_{k}=p$, it provides the characteristics of the multivariate generalized logarithmic series distribution of order $k$, type I (see Tripsiannis et al. [19]).

The mean and variance-covariance of the multivariate extended generalized Poisson distribution of order $k$ can be easily obtained as a limit of the respective characteristics of the multivariate extended generalized negative binomial distribution of the same order.

Proposition 3.3. Let $\mathbf{X}=\left(X_{1}, \ldots, X_{m}\right)$ be a ru following the multivariate extended generalized Poisson distribution of order $k$. Then, the mean and variance-covariance are given by
(i) $E\left(X_{i}\right)=\frac{\sum_{j} j \theta_{i j}}{1-\sum_{i} \Sigma_{j} \lambda_{i j i}},(1 \leq i \leq m)$,
(ii) $\operatorname{Var}\left(X_{i}\right)=\frac{1}{1-\sum_{i} \Sigma_{j} \lambda_{i j i}}\left[\sum_{j} j^{2} \theta_{i j}+\frac{\sum_{j} j \theta_{i j}}{1-\sum_{i} \Sigma_{j} \lambda_{i j i}}\right.$

$$
\left.\left(2 \sum_{j} j \lambda_{i j i}+\frac{\left(\sum_{j} j \theta_{i j}\right)\left(\Sigma_{i} \Sigma_{j} \lambda_{i j i}^{2} / \theta_{i j}\right)}{1-\Sigma_{i} \Sigma_{j} \lambda_{i j i}}\right)\right], \quad(1 \leq i \leq m)
$$

(iii) $\operatorname{Cov}\left(X_{i}, X_{s}\right)=\frac{\left(\sum_{j} j \theta_{i j}\right)\left(\sum_{j} j \theta_{s j}\right)}{\left(1-\sum_{i} \sum_{j} \lambda_{i j i}\right)^{2}}$

$$
\left(\frac{\lambda_{i j i}}{\theta_{i j}}+\frac{\lambda_{s j s}}{\theta_{s j}}+\frac{\sum_{i} \sum_{j} \lambda_{i j i}^{2} / \theta_{i j}}{1-\sum_{i} \Sigma_{j} \lambda_{i j i}}, \quad(1 \leq i \neq s \leq m) .\right.
$$

For $k=1$, Proposition 3.3 reduces to the mean and variancecovariance of the multivariate generalized Poisson distribution (see Proposition 4.5 of Tripsiannis et al. [18], for $k=1$ ). Also, for $\lambda_{i j v}=0$ ( $1 \leq i, v \leq m$ and $1 \leq j \leq k$ ), it reduces to the characteristics of the multivariate Poisson distribution (see Philippou et al. [13]).

For $m=1$, Propositions 3.1-3.3 provide the means and variances of the respective univariate distributions of order $k$.

> 4. Special and Limiting Cases
> of $M E G N B_{k}\left(n ; \mu_{1}, \ldots, \mu_{m} ; q_{11}, \ldots, q_{m k}\right)$

In the present section, we note that the multivariate extended generalized negative binomial distribution of order $k$ reduces to six new multivariate extended distributions of order $k$ for appropriate choices of its parameters.

Case I. The $\operatorname{MEGN} B_{k}\left(n ; \mu_{1}, \ldots, \mu_{m} ; q_{11}, \ldots, q_{m k}\right)$, for $\mu_{i}=1 \quad(1 \leq i \leq m)$ and $q_{i j} / p_{j}=P_{i j} \quad(1 \leq i \leq m$ and $1 \leq j \leq k)$ so that $q_{i j}=P_{i j} / Q_{j}$ and $p_{j}=1 / Q_{j}$, where $Q_{j}=1+\sum_{i} P_{i j}$, and $n$ is replaced by $n m k$ and $x_{i j}$ by $x_{i j}-n$, reduces to a new multivariate distribution which we call multivariate extended Haight distribution of order $k$ with parameters $n$, $P_{11}, \ldots, P_{m k}$.

Case II. The $\operatorname{MEGNB} B_{k}\left(n ; \mu_{1}, \ldots, \mu_{m} ; q_{11}, \ldots, q_{m k}\right)$, for $q_{i j} / p_{j}=P_{i j}$ $(1 \leq i \leq m$ and $1 \leq j \leq k)$ so that $q_{i j}=P_{i j} / Q_{j}$ and $p_{j}=1 / Q_{j}$, where $Q_{j}=1+\sum_{i} P_{i j}$, and $n$ is replaced by $k \sum_{i} \mu_{i}$ and $x_{i j}$ by $x_{i j}-1$, reduces to a new multivariate distribution which we call multivariate extended Takács distribution of order $k$ with parameters $\mu_{1}, \ldots, \mu_{m}, P_{11}, \ldots, P_{m k}$.

Case III. The $\operatorname{MEGNB}_{k}\left(n ; \mu_{1}, \ldots, \mu_{m} ; q_{11}, \ldots, q_{m k}\right)$, for $\mu_{i}=d_{i}-1$, and $n$ is replaced by $n k \sum_{i} d_{i}$ and $x_{i j}$ by $x_{i j}-n$, reduces to a new multivariate distribution which we call multivariate extended binomialdelta distribution of order $k$ with parameters $n, d_{1}, \ldots, d_{m}, p_{1}, \ldots, p_{k}$.

Case IV. The $\operatorname{MEGNB}_{k}\left(n ; \mu_{1}, \ldots, \mu_{m} ; q_{11}, \ldots, q_{m k}\right)$, for $q_{i j} / p_{j}=P_{i j}$ $(1 \leq i \leq m$ and $1 \leq j \leq k)$ so that $q_{i j}=P_{i j} / Q_{j}$ and $p_{j}=1 / Q_{j}$, where $Q_{j}=1+\sum_{i} P_{i j}$, and $n$ is replaced by $n k \sum_{i} \mu_{i}$ and $x_{i j}$ by $x_{i j}-n$, reduces to a new multivariate distribution which we call multivariate extended negative binomial-delta distribution of order $k$ with parameters $n, \mu_{1}, \ldots, \mu_{m}, P_{11}, \ldots, P_{m k}$.

Case V. The $\operatorname{MEGN} B_{k}\left(n ; \mu_{1}, \ldots, \mu_{m} ; q_{11}, \ldots, q_{m k}\right)$, for $q_{i j} / p_{j}=P_{i j}$ $(1 \leq i \leq m$ and $1 \leq j \leq k)$ so that $q_{i j}=P_{i j} / Q_{j}$ and $p_{j}=1 / Q_{j}$, where $Q_{j}=1+\sum_{i} P_{i j}$, reduces to a new multivariate distribution which we call multivariate extended negative binomial-negative binomial distribution of order $k$ with parameters $n, \mu_{1}, \ldots, \mu_{m}, P_{11}, \ldots, P_{m k}$.

For $k=1$, the above five new multivariate distributions of order $k$ reduce to the corresponding usual multivariate distributions (see Sen and Jain [16]) and for $P_{i j}=P_{i}(1 \leq j \leq k)\left(p_{j}=p(1 \leq j \leq k)\right.$, for Case III), they reduce to the corresponding, type $I$, multivariate distributions of order $k$ of Tripsiannis et al. [19]. Furthermore, for $m=1$, they reduce to new univariate extended distributions of order $k$.

Case VI. In $\operatorname{MEGN} B_{k}\left(n ; \mu_{1}, \ldots, \mu_{m} ; q_{11}, \ldots, q_{m k}\right)$, let $\mu_{i}=-1(1 \leq$ $i \leq m)$ and interchange $p_{j}$ and $q_{j}(1 \leq j \leq k)$. Then, for $x_{i}=0,1, \ldots, k n$, $(1 \leq i \leq m)$

$$
\begin{aligned}
P(\mathbf{X}=\mathbf{x})= & \sum_{\sum_{j} j x_{i j}=x_{i}}\binom{n}{x_{11}, \ldots, x_{m k}, n-\sum_{i} \sum_{j} x_{i j}}\left(q_{1} \cdots q_{k}\right)^{n-\sum_{i} \sum_{j} x_{i j}} \\
& \times \prod_{i} \prod_{j} p_{i j}^{x_{i j}} \prod_{s=1}^{k-1} q_{s}^{\sum_{i} \sum_{j=s+1}^{k} x_{i j}}
\end{aligned}
$$

which reduces to the usual multinomial distribution with parameters $n$, $p_{1}, \ldots, p_{k}$, (see Patil et al. [8, p. 14]), for $k=1$, and to the multinomial distribution of order $k$, type I , of Tripsiannis et al. [19], for $p_{i j}=p_{i}$ $(1 \leq j \leq k)$. We say that the rv $\mathbf{X}$ has the extended multinomial distribution of order $k$, with parameters $n, p_{11}, \ldots, p_{m k}$ and denote it by $E M_{k}^{*}\left(n ; p_{11}, \ldots, p_{m k}\right)$. Also, for $m=1$, it reduces to a new distribution of order $k$, which we call extended binomial distribution of order $k$, with parameters $n, p_{1}, \ldots, p_{k}$ and denote it by $E B_{k}^{*}\left(n ; p_{1}, \ldots, p_{k}\right)$.

Next, we establish a proposition which relates asymptotically $M E G N B_{k}(\cdot)$ to the multivariate Poisson $\left(M P_{k}\left(\lambda_{11}, \ldots, \lambda_{m k}\right)\right)$ distribution of order $k$.

Proposition 4.1. Let $\mathbf{X}_{n}(n>0)$ and $\mathbf{X}$ be two rv's distributed as $\operatorname{MEGNB}_{k}\left(n ; \mu_{1}, \ldots, \mu_{m} ; q_{11}, \ldots, q_{m k}\right)$ and $M P_{k}\left(\lambda_{11}, \ldots, \lambda_{m k}\right)$, respectively, and assume that $q_{i j} \rightarrow 0(1 \leq i \leq m$ and $1 \leq j \leq k)$ and $n q_{i j} \rightarrow \lambda_{i j}\left(\lambda_{i j}>0\right.$, $1 \leq i \leq m$ and $1 \leq j \leq k)$, as $n \rightarrow \infty$. Then, for $x_{i}=0,1, \ldots(1 \leq i \leq m)$, we have

$$
P\left(\mathbf{X}_{n}=\mathbf{x}\right) \rightarrow P(\mathbf{X}=\mathbf{x})
$$

Figure 4.1 presents the graphs of $M E G N B_{k}(\cdot)$, for selected values of its parameters.

$$
q_{11}=0.05, \quad q_{12}=0.05
$$

$q_{11}=0.025, \quad q_{12}=0.05$
$q_{21}=0.025, \quad q_{22}=0.05$


$$
q_{11}=0.05, \quad q_{12}=0.075
$$

$$
q_{21}=0.05, \quad q_{22}=0.05
$$

$$
q_{21}=0.05, \quad q_{22}=0.075
$$


$q_{11}=0.075, \quad q_{12}=0.075$
$q_{21}=0.075, \quad q_{22}=0.075$




Figure 4.1. Bivariate extended negative binomial distribution of order 2, for $n=5, \mu_{1}=1$ and $\mu_{2}=2$.

## References

[1] S. Aki, Discrete distributions of order $k$ on a binary sequence, Ann. Inst. Statist. Math. 37 (1985), 205-224.
[2] P. C. Consul and G. C. Jain, On a generalization of the Poisson distribution, Techn. 15 (1973), 791-799.
[3] G. C. Jain, On power series distributions associated with Lagrange expansion, Biom. Zeit. 17 (1975), 85-97.
[4] G. C. Jain and P. C. Consul, A generalized negative binomial distribution, SIAM J. Appl. Math. 21 (1971), 501-513.
[5] G. C. Jain and R. P. Gupta, A logarithmic type distribution, Trabajos. Estadist. 24 (1973), 99-105.
[6] N. L. Johnson, S. Kotz and N. Balakrishnan, Discrete Multivariate Distributions, Wiley, New York, 1997.
[7] N. L. Johnson, S. Kotz and A. W. Kemp, Univariate Discrete Distributions, Wiley, New York, 1992.
[8] G. P. Patil, M. T. Boswell, S. W. Joshi and M. V. Ratnaparkhi, Dictionary and Classified Bibliography of Statistical Distributions in Scientific Work-1: Discrete Models, MD: International Co-operative Publishing House, Fairland, 1984.
[9] A. N. Philippou, Poisson and compound Poisson distributions of order $k$ and some of their properties, (in Russian, English summary), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklova (LOMI) 130 (1983), 175-180.
[10] A. N. Philippou, On multiparameter distributions of order $k$, Ann. Inst. Statist. Math. 40 (1988), 467-475.
[11] A. N. Philippou and D. L. Antzoulakos, Multivariate distributions of order $k$ on a generalized sequence, Statist. Probab. Lett. 9(5) (1990), 453-463.
[12] A. N. Philippou and A. A. Muwafi, Waiting for the $k$-th consecutive success and the Fibonacci sequence of order $k$, Fibonacci Quart. 20 (1982), 28-32.
[13] A. N. Philippou, D. L. Antzoulakos and G. A. Tripsiannis, Multivariate distributions of order $k$, Statist. Probab. Lett. 7 (1988), 207-216.
[14] A. N. Philippou, D. L. Antzoulakos and G. A. Tripsiannis, Multivariate distributions of order $k$, part II, Statist. Probab. Lett. 10 (1990), 29-35.
[15] A. N. Philippou, C. Georghiou and G. N. Philippou, A generalized geometric distribution and some of its properties, Statist. Probab. Lett. 1 (1983), 171-175.
[16] K. Sen and R. Jain, A multivariate generalized Polya-Eggenberger probability model- First passage approach, Commun. Statist.-Theory Meth. 26 (1997), 871-884.
[17] G. A. Tripsiannis, A. A. Papathanasiou and A. N. Philippou, Generalized distributions of order $k$ associated with success runs in Bernoulli trials, Int. J. Math. Math. Sci. 13 (2003), 801-815.
[18] G. A. Tripsiannis, A. N. Philippou and A. A. Papathanasiou, Multivariate generalized distributions of order $k$, Commun. Statist.-Theory Meth. 32(9) (2003), 1725-1735.
[19] G. A. Tripsiannis, A. N. Philippou and A. A. Papathanasiou, Multivariate generalized run-related distributions, Adv. \& Appl. in Stat. 7(1) (2007), 141-156.

