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1. Introduction

In five pioneering papers, Philippou and Muwafi [12], Philippou et al.
[15], Philippou [9] and Philippou et al. [13, 14] introduced the study of
univariate and multivariate distributions of order &, based on outcomes of
independent and identical binary trials or trials with multiple outcomes.
Since then, the subject matter received a lot of attention from many
researchers. For comprehensive reviews at the time of publication we
refer to Johnson et al. [6, 7]. Based on a generalized sequence of order k&,
which is an extension of independent trials with multiple outcomes,
Philippou and Antzoulakos [11] derived the multivariate extended
negative binomial and logarithmic series distributions of order £,
generalizing the respective work of Aki [1] on univariate extended

distributions of order k.

Recently, Tripsiannis et al. [19] introduced the multivariate
generalized negative binomial and Polya distributions of order k, type I,
as the distribution of a first-passage event in a sequence of independent
trials with multiple outcomes, generalizing to the multivariate case the
work of Tripsiannis et al. [17]. These two distributions include as special
or limiting cases several known and new distributions of the same order
and type. Jain and Consul [4], Jain and Gupta [5] and Consul and Jain
[2] introduced and studied the generalized negative binomial, logarithmic
series and Poisson distributions, respectively, while Jain [3] extended

these distributions to the multivariate case.

In the present paper, we extend several results of Tripsiannis et al.
[17, 19], Philippou and Antzoulakos [11], Aki [1], Jain [3], Jain and
Consul [4], Jain and Gupta [5] and Consul and Jain [2]. In Section 2, we
derive a multivariate generalized negative binomial distribution of order
k, say MEGN Byj(-), which generalizes the multivariate generalized

negative binomial distribution of Jain [3] to distributions of order k&,
the multivariate extended negative binomial distribution of order k of
Philippou and Antzoulakos [11] to generalized distributions, and the
multivariate generalized negative binomial distribution of order k&, type I,
of Tripsiannis et al. [19] to the case of dependent trials. We do it by

counting multidimensional lattice paths in a generalized sequence of



MULTIVARIATE EXTENDED GENERALIZED ... 213

order £ and employing a first passage approach (see Theorem 2.1 and
Definition 2.2). We next obtain two limiting cases of MEGN By (-) (see

Propositions 2.1 and 2.2), which provide, respectively, multivariate
generalized logarithmic series and Poisson distributions of the same order
(see Definitions 2.3 and 2.4). Means and variances-covariances of these
distributions are obtained in Section 3. In Section 4, we introduce, as

special cases of MEGN By, (-), six new multivariate distributions of order
k, and we relate asymptotically MEGN Bj(-) to the multivariate Poisson
(MPy, 1(Aq, ..., hp,)) distribution of order k, type I, of Philippou et al. [13].

Finally, graphs of MEGN Bj(-) are presented (Figure 4.1). We mention
that all the corresponding univariate generalized distributions of order &
are also new.

In order to avoid unnecessary repetitions, we mention here that in
this paper x;1, ..., X,,;, are non-negative integers as specified. In addition,

whenever sums and products are taken over i and j, ranging from 1 to m
and from 1 to k, respectively, we shall omit these limits for notational
simplicity.

2. Multivariate Extended Generalized Distributions of Order %

In the present section we obtain two multivariate extended
distributions of order k, by employing the generalized sequence of the
same order of Philippou and Antzoulakos [11], which we introduce next.

Definition 2.1. An infinite sequence {Y,}>_, of {0, 1, ..., m} -valued

random variables is said to be the generalized sequence of order k
with parameters g1, ..., ¢ (0 <q;; <1 (1 <i<m and 1< j<k), g

+od Gy < 1), if
(1) Yy #0 almost surely, and
@) P(Y, =ilYy =50, Y1 = ¥15 s Y1 = Y1) = q; 1 <i<m),
for any positive integer n, where j =r — k[(r —1)/k], r is the smallest

positive integer which satisfies y,_, # 0, and [x] denotes the greatest

integer in x.
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It follows from the definition that
P(Y, =0[Yy =50, Y1 =31, s Y1 =p1) =p; (<j<k),
where
pj=1-2;q; 1 <j<k),
and j is as above.

The generalized sequence of order %k reduces to the case of
independent trials with m + 1 possible outcomes, if p; =--- = p, = p =
1-2,q;, and to the binary sequence of the same order of Aki [1], for
k = 1. Furthermore, according to the case of independent trials, Y,, is
sometimes called nth trial and the outcomes “0” and “i” (1 <i < m) are
called success (S) and failure of type-i (F;), respectively.

In the following theorem, we employ a first passage approach to derive

the multivariate extended generalized negative binomial distribution of

order k.

Theorem 2.1. Let {Y,},_ be a generalized sequence of order k with
parameters qq1, ..., @y, and consider the random variables X;; (1<i<m
and 1 < j < k)and L;, (k > 1) denoting, respectively, the number of events

ej =S--SF; and ey = S-S
i1 JA
Let X; (1 <i < m) be arandom variable denoting the number of failures

of type-i and the total number of successes which precedes directly the
occurrences of failures of type-i, but do not belong to any success run of
length k, that is, X; =2 ;jX;;. Trials are continued until n + 2;%; 1; X;;
(n>0 and p; > -1) non-overlapping success runs of length k appear for

the first time, that is, at any trial t (1 <t < X; X; + k(n + X; 2 ;1;X;5) - 1),

the condition A = {L[,i] < n+ZiZjuiXi[;], where Xi[;] and L[lz] are the

numbers of events e;; and €y, respectively, in the first t trials}, is satisfied.
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Then, for x; = 0,1, .., (1 <i <m),
P(Xy = %1, o0y X,y = xp,)

_ n [ no+ 221+ py)ag; j
no+ X5+ ) x (X115 o Xps 1+ 2525 Wi

Xj jxij=x;

X(plpk)nJrzlz]“Lxl]HLH XUH}’ 1 sz s+1-7CLJ
where p; =1-2%;q;; (1 <j<k).

Proof. For any fixed non-negative integers xq, ..., x,, a typical
element of the event (X; = xq, ..., X,, = x,,,) is a sequence of X;X;
+k(n + X;Z;1;X;;) outcomes of the letters Fy, ..., Fy,, and S, such that
the event e;; appears x;; (1 <i <m and 1 < j < k) times and the event
e, appears n+X;2;ux; times, satisfying the condition A and X; jx;;

=x; 1<i<m).

Fix x;; (1 <i<mand1<j<k)(mandp; (1<i<m)are fixed) and
denote the event e; (1 <i <m and 1 < j < k) by a step in Z;; direction
and the event ¢, by a step in Z; direction. Therefore, we represent a
sequence of x;; events ¢; (1 <i<m and 1< j<Ek)and n+X;%;ux;
events ¢, by an (mk +1)-dimensional lattice path from the origin to
(n + X Xjuixjj, %11, - Xpypp), Which does not touch the hyperplane
2p = n+ X; X jp;x;; except at the point (n + X; X 1%, %11, -+ X ). Then
the number of such lattice paths is

n n+ X250+ )y
no+ X2+ )X \Xy1, s Xy B4+ 252 505

(see Sen and Jain [16]) and each one of them has probability

(py )n+2 Z]pLxL]HH x;] k-1 SZZ] —stl xu

The theorem then follows, since the non-negative integers x;;, ..., X3,

(1 <i < m) may vary subject to X;jx; = x; (1 <i < m).
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By means of the transformations x;; = n;; and x; = n; + £;(j — 1)n;;
(1 <i<m and 1< j < k), the multinomial theorem and relation (10) of

Sen and Jain [16], it may be seen that the above derived probability
function is a proper probability distribution. Even though n is an integer,
the argument still holds true for any positive real number n.

For k =1, this distribution reduces to the multivariate generalized
negative binomial distribution (see Jain [3]), and, for n; =0 (1 <i < m),

it reduces to the multivariate extended negative binomial distribution of
order k (see Philippou and Antzoulakos [11]). Furthermore, for p; = - =

DPp = D, it reduces to the multivariate generalized negative binomial
distribution of order &, type I (see Tripsiannis et al. [19]). We therefore
introduce the following.

Definition 2.2. A random vector (rv) X=(Xj,..., X,,) is said to have

the multivariate extended generalized negative binomial distribution of
order k, with parameters n, Wi, .., Ly, G115 oo Qmp (B> 0, p; > -1

(1 <i < m) all integers, 0 <q;; <1 (1<i<m), Yjq;; <1 A1<j<k)
and p; =1-2X;q;;), to be denoted by MEGN By, (n; 1y, .. W3 Q115 s Ak )s
if, for x; = 0,1, ... (1 <i<m),

PX - x) Z nl(n + X 251 + p)x;) ( 1~--pk)n+zizf'“ixii

p
Z,/xlj—xi C(n + Z; Zjpiacy + DIT; T ;!

T TL e
i j

For m =1, this distribution reduces to a new distribution of order &,
which we call extended generalized negative binomial distribution of order
k with parameters n, u, py, ..., pp (n > 0, u > -1 is an integer, 0 < pj <1
and ¢; =1- p; (1 < j < k)) and we denote it by EGNBy(n; u; py, ..., D)
since, for u =0, this distribution reduces to the (shifted) extended
negative binomial distribution of order & of Aki [1] and, for k=1, it

reduces to the generalized negative binomial distribution (see Jain and

Consul [4]), with B = p + 1. Furthermore, for p; =--- = pp = p, it reduces
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to the (shifted) generalized negative binomial distribution of order %, type

I, of Tripsiannis et al. [17].

It is well known that the multivariate generalized logarithmic series
distribution may be obtained as a limit of the multivariate generalized
negative binomial distribution (see Jain [3]). We shall extend this result
to the multivariate extended generalized negative binomial distribution

of order k, and we shall name the limit accordingly.
Proposition 2.1. Let X, (n>0) be mx1 ruv's distributed as

MEGNBy,(1; iy, ooy W Q115 s Gpe)s Set @ = —[log(py -+ pp)|™* and assume

that n — 0. Then, for x; = 0,1, ..., 1 <i <m) and X;x; > 0, we have
P(an =215 s X = Xy |zani > O)
T2+ py)x;

1
>a Y
Zj jxij:xi zlz](l W )xlj X115 == Xmk> zi Z} Hixg;

k
. i =178

For k =1, this distribution reduces to the usual multivariate

](pl e pp) 7N

generalized logarithmic series distribution (see Jain [3]), and, for

p; =0 (1 <i<m), it reduces to the multivariate extended logarithmic

series distribution of order k (see Philippou and Antzoulakos [11]).

Furthermore, for p; =:--=p, = p, it reduces to the multivariate

generalized logarithmic series distribution of order k&, type I (see

Tripsiannis et al. [19]). We therefore introduce the following definition.
Definition 2.3. A rv X =(Xj,..., X,,,) is said to have the multivariate

extended generalized logarithmic series distribution of order k, with

parameters i, ..., by, G115 - O (L = -1 (1 <7 < m) all integers,
0<gqj<1 (1<i<mand1<j<k), Xjg; <1(1<j<k)and p; =1
-2;qjj), to be denoted by MEGL Sy(t1, s W3 Q115 o k), if, for
¥ =0,1,...,1<i<m) and X;x; >0, P(X =x) is equal to the limit

given in Proposition 2.1.



218 GREGORY A. TRIPSIANNIS et al.

For m =1, this distribution reduces to a new distribution of order &,

which we call extended generalized logarithmic series distribution of order

k with parameters w, p;,..,pr (0> -1 is an integer, 0 < pj <1 and
qj =1-p; (1 <j<k)) and we denote by EGLS}(y; py, ..., bg), since,
for p = 0, this distribution reduces to the extended logarithmic series
distribution of order %k of Aki [1] and, for k£ =1, it reduces to the

generalized logarithmic series distribution (see Jain and Gupta [5]), with
B=un+1. Also, for p; == p, = p, it reduces to the generalized

logarithmic series distribution of order &, type I, of Tripsiannis et al. [17].

It 1s well known that the multivariate generalized Poisson
distribution may be obtained as a limit of the multivariate generalized
negative binomial distribution (see Jain [3]). This result readily extends

as follows.

Proposition 2.2. Let X, (n>0) be an mx1 rv’s distributed as
MEGN Bj,(u1, s b5 @115 - Ak )» and assume that nq;; — 0;; (8;; > 0)
and p,q;; = Aijy([hjjy| <1) for 1<i, v<m and 1< j <k, as q; >0
(1<i<m and 1<j<k), p; > o and n - o. Then, for x; =0,1,...,

(1<i<m), we have

P(Xn :X)

0 -1

- Z +(911 + Xy M1y 22y )T (019 + Xy Aoy X a0y )12
X Jxjj=x; HiHjxij'
_ zi Zj eij —Zv [(21 2] )\ijv ) (Z] Xvj )]

><"'X(emk +Zv7‘mkvzjxvj)xmke .

For %k =1, this distribution reduces to the multivariate generalized
Poisson distribution (see Jain [3]) and for Aijy =0 1<i,v<m and
1<j<k), it reduces to the multivariate Poisson distribution or
multivariate extended Poisson distribution of order % (see Philippou et al.
[13]). We therefore introduce the following definition.

Definition 2.4. A rv X =(X;,.., X,,) is said to have the

multivariate extended generalized Poisson distribution of order k, with
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parameters 011,..., 0,5, A115000 Appm (835 >0 and |15, |<1) (1<i,v<m
and 1 < j < k), to be denoted by MEGP, (011, ..., 0,15 M1115 -+ Amkm) 1>
for x; =0,1,..., 1<i<m), P(X=x) is equal to the limit given in
Proposition 2.2.

For m =1, this distribution reduces to a new distribution of order %,
which we call extended generalized Poisson distribution of order k with
parameters 61, ..., 0y, Ay, .., A (6; >0 and |A;|<1) (1<j<k), to be
denoted by EGP,(04, ..., 04; Ay, ..., A), since, for k = 1, this distribution

reduces to the generalized Poisson distribution (see Consul and Jain [2]),
and for 6; =0 and A; =& (1< j<k), it reduces to the generalized

Poisson distribution of order %, type I, of Tripsiannis et al. [17]. Also, for

Li=0 (1 < j < k), it reduces to the multiparameter or extended Poisson

distribution of order & (see Aki [1] and Philippou [10]).

3. Characteristics of the Multivariate Extended Generalized
Distributions of Order k

In this section, we obtain the means and variances-covariances of the
multivariate extended generalized distributions of order k&, treated in
Section 2. We first recall the following definitions from the work of

Tripsiannis et al. [18].

Definition 3.1. A rv X =(X;,.., X,,) is said to have the

multivariate generalized negative binomial distribution of order k, with

parameters n, i, ..., Ly, @115 s @pr (>0, n; >-1(1<i<m) all
integers, 0 < @;; <1 (1<i<m and 1<j<k), %;X;Q; <1 and P =
1-2;2;®;), to be denoted by MGNBy(n; py, ... Wi @115 oos @ure) if,

for x; =0,1, ..., A1 <i<m),

P(X = x)

_ Z nl(n + Zizj(l + Hi)xij) Pn+2iZjHiXin H qu
L LY

ijxij:xi F(n + Zizjuixij + 1)“1 H] .’X,'L]‘
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Definition 3.2. A rv X =(Xj,.., X,,) is said to have the
multivariate generalized logarithmic series distribution of order k, with
parameters Wi, ..., Ly, @11, o @mr (1; = -1 (1 <i < m) all integers,
0<@; <1 (1<i<mandl1<j<k), ¥,Y;@;<1and P=1-%;%;Q;),
to be denoted by MGLS(uy, .y Wym; @11y s @up), if, for x; = 0,1, ...
(1<i<m)and X;x; >0, where a = —(log P)™",

P(X = x)
- Z N it ) pZiZjuix;'jHHQ.x.if.
ijxijzxizLZJ(l+Hz)xL] xll"“’xmk’zizjuixij i joi

By setting @1 = ¢;1 and @; =p; - pj_1q; (0<g; <1, 0<X;q; <1
and p; =1 —Ziqij) for1 <i<mandl<j<k, whichimply P = p; - pp,
we observe that
MGN By (n; w1, o B @115 0 Qi) = MEGN By (n; pas s Bins @115 - k)

and
MGLSk(Ml, cees M5 Qll’ o0y ka) = MEGLSk(ub - Bms 9115 - ka)'

Then, the following two propositions are direct consequences of
Propositions 2.2 and 4.4 of Tripsiannis et al. [18].

Proposition 3.1. Let X =(Xy,..., X,,) be a rv following the

multivariate extended generalized negative binomial distribution of order

k. Then, the mean and variance-covariance are given by

() E(X;)= Yo piagi, (1<i<m),
l D1 Dp _Zizjuipl p]—lqu J J )

Gi) Var(X;) = n
(X:) P1 o Pr — 2 ZjKiP1  Pjd;

1
D1 PR~ ZiZjWiPy Pj1di)

2
[Zj] D1 DPjqi +

22+ w)uipy - pj1gyj
D1 Pp — 2 2Py PG

x{2ui+1+

. 2 .
(ijm "'pj—1Qij) ] (1<i<m),
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(i) Cov(X;, X,) = n -
(PP — XX 0Py -+ Dj14i)

22X+ p)uipy - g ]

pn +ue +1+
( e P1 PR — L2 WPt P14

x(Xjjp1Pjqy)(Xj b1 Pjagqs), (1<i#s<m).

Proposition 3.1 reduces to the mean and variance-covariance of the (i)
multivariate generalized negative binomial distribution (see Sen and Jain

[16]), for k =1, (i) multivariate extended negative binomial distribution

of order % (see Philippou and Antzoulakos [11]), for p; =0 (1<i<m) and
(ii1) multivariate generalized negative binomial distribution of order &,
type I (see Tripsiannis et al. [19]), for p; = - = pp = p.

Proposition 3.2. Let X = (X, ..., X,,) be a rv following the

multivariate extended generalized logarithmic series distribution of order
k. Then, the mean and variance-covariance are given by

() E(X;)= Zj]pl--'pj_lqij, (1<i<m),
D1 PR — 2L ZjHiP1 P14

(i) Var(X;) = a
D1 P — 22 jWD1 P19

1
D1 P — 22 jH;P1 Pj1gij

2
[Zj] D1 DPjagij +

ZiXi( 4 w)uipr - i1
P1 PR — 2 2Pt Pj-14j

><|:2pi+1+a+

(ijlh -"pj_lqij)Q], 1<i<m),

(i) Cov(X;, X;) = g
(p1- P = ZiX Wby - Pj 1)

Y2+ w)uipy o P19y J

W +us+1l+a+
( P P1 P~ i LMDy e Pjoadi

x(Xjjp1Pja9i)(Zjip1 - Pjaqg), A <i#s<m).
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For %k =1, Proposition 3.2 reduces to the mean and variance-
covariance of the multivariate generalized logarithmic series distribution
(see Proposition 4.4 of Tripsiannis et al. [18], for £ = 1), and for p; =0
(1 < i < m), it reduces to the characteristics of the multivariate extended
logarithmic series distribution of order % (see Philippou and Antzoulakos
[11]). Furthermore, for p; =---= p; = p, it provides the characteristics of
the multivariate generalized logarithmic series distribution of order k,

type I (see Tripsiannis et al. [19]).

The mean and variance-covariance of the multivariate extended
generalized Poisson distribution of order k2 can be easily obtained as
a limit of the respective characteristics of the multivariate extended
generalized negative binomial distribution of the same order.

Proposition 8.3. Let X =(Xy, ..., X,,) be a rv following the

maultivariate extended generalized Poisson distribution of order k. Then,
the mean and variance-covariance are given by

%) 70y

D) EX)=—20"Y 1<i<

(1) ( L) 1—ZZZJ}\.UL ) ( l m)’

) 1 2 2;J0;

i) Var(X;) = ——=———|2;j0; + ————
( ) ( l) 1—Zizj7‘iji il i I—Zizj';‘iji

. (770, (i 2 2%:/0;)
=220
(Z;70;)(Z;704)
1= %,% %)
Aiji .\ Agjs . XX 0% /0,
0; 0y 122N

[zzjjxiﬁ j 1 <i<m),

(iii) Cov(X;, X,) =

], 1<i=#s<m).

For %k =1, Proposition 3.3 reduces to the mean and variance-

covariance of the multivariate generalized Poisson distribution (see
Proposition 4.5 of Tripsiannis et al. [18], for & =1). Also, for 2;;, =0

(I1<i,v<m and 1< j<k), it reduces to the characteristics of the
multivariate Poisson distribution (see Philippou et al. [13]).
For m =1, Propositions 3.1-3.3 provide the means and variances of

the respective univariate distributions of order k.
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4. Special and Limiting Cases
of MEGN By (n; Ui, oo B Q115 o Dmk)

In the present section, we note that the multivariate extended
generalized negative binomial distribution of order & reduces to six new
multivariate extended distributions of order k for appropriate choices of
its parameters.

Case I. The MEGN By, (1 11,0 B3 Q11s s Qi )> TOr p; =1 (1<i<m)
and ¢;i/pj =PFP; (1<i<m and 1<j<k) so that g;; = P;j/Q; and
pj = 1/Qj, where @; =1+ X;P;, and n is replaced by nmk and x;; by
x;; —n, reduces to a new multivariate distribution which we call
multivariate extended Haight distribution of order k with parameters n,
Py, ..., P

Case II. The MEGN Bj,(n; iy, s Ks @115 - Omk)s for a;i/pj = Pj
(1<i<m and 1<j<k) sothat g;; = P;/Q; and p; =1/Q;, where
Q; =1+ 2;P;, and nisreplaced by k2;n; and x;; by x;; -1, reduces to
a new multivariate distribution which we call multivariate extended
Takdcs distribution of order k with parameters pq, ..., W, Pi1, s Pop-

Case III. The MEGN By, (1; 1y, s Wi Qi1s - Ok )s for p; =d; —1,
and n is replaced by nkX;d; and x;; by x; —n, reduces to a new

multivariate distribution which we call multivariate extended binomial-
delta distribution of order k with parameters n, dy, ..., d,,,, D1, s Pp-
Case IV. The MEGN By, (n; 11, -y K5 Q115 - mk)» fOr @;/pj = Pj
(1<i<m and 1<j<k) sothat g;; = P;/Q; and p; =1/Q;, where
Q; =1+ 2;P;, and n is replaced by nkX;n; and x;; by x;; — n, reduces
to a new multivariate distribution which we call multivariate extended
negative binomial-delta distribution of order k with parameters

n, Ui, ooy Hpys Pll’ veny Pmk

Case V. The MEGN By, (n; uy, ..., W3 Q115 - Ok )> for a;i/pj = Pj
(1<i<m and 1<j<k) so that g; = Pj/Q; and p; =1/Q;, where
Q; =1+ X;P,;, reduces to a new multivariate distribution which we call

maultivariate extended negative binomial-negative binomial distribution of
order k with parameters n, py, ..., Wy P15 oo Pyk-
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For k =1, the above five new multivariate distributions of order k
reduce to the corresponding usual multivariate distributions (see Sen and

Jain [16]) and for Pj = P, (1 <j<k) (pj = p (1 <j < k), for Case III),

they reduce to the corresponding, type I, multivariate distributions of
order k of Tripsiannis et al. [19]. Furthermore, for m = 1, they reduce to

new univariate extended distributions of order k.

Case VI. In MEGNBL(n; W1, -y Wyns Q115 =0 Dmp)s let p; = -1 (1 <
i < m) and interchange pjand g; (1 £ j < k). Then, for x; =0, 1, ..., kn,
1<i<m)

n
P(X = X) = Z ( j(ql qk)nizlz]xll
3 fory \FLLs oo Fmfy 22X

k
18 §aat’) s=1 % ’

which reduces to the usual multinomial distribution with parameters n,
Dis - Dp, (see Patil et al. [8, p. 14]), for £ =1, and to the multinomial

distribution of order k, type I, of Tripsiannis et al. [19], for p; = p;
(1 <j<k) We say that the rv X has the extended multinomial

distribution of order k, with parameters n, p;q, ..., b, and denote it by

EMj,(n; p11s s Pmp)- Also, for m = 1, it reduces to a new distribution of
order k, which we call extended binomial distribution of order k, with

parameters n, py, ..., p, and denote it by EB},(n; py, ..., py).

Next, we establish a proposition which relates asymptotically
MEGNBy(+) to the multivariate Poisson (MP;, (A1, ..., Ay )) distribution

of order k.

Proposition 4.1. Let X, (n > 0) and X be two rv's distributed as
MEGN B (15 0y ey Mons Q115 oo Qi) @nd MPy(A1, ...y App ), respectively,
and assume that q;; > 0 (1<i<m and 1< j<k)and ng;; - A (A;; >0,
1<i<mand 1< j<k), as n —> o Then, for x; =0,1, ... 1<i<m),
we have

P(X,, =x)—> P(X =x).
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Figure 4.1 presents the graphs of MEGN B,,(-), for selected values of
its parameters.

q11 = 0025, q19 = 0.025 q11 = 0025, q19 = 0.05
qo1 = 0.025, q99 0.025 921 = 0.025, qoo = 0.05

= 005, qi9 = 0.075
q91 = 005, qo9 = 0.075

Q

i

—
|

[
o
o
~J
o
Q
o
8]
[

= 0.075 q11
0.075 91

0075, qi9 = 0.1
0.075, qgq = 0.1

Q1 =
qq; = 0.075,

Q
%)
%}

Il

Figure 4.1. Bivariate extended negative binomial distribution of order 2,
for n =5, u; =1 and py = 2.
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