CONTINUOUS DEFORMATIONS OF C^* -ALGEBRA EXTENSIONS

TAKAHIRO SUDO

Department of Mathematical Sciences Faculty of Science University of the Ryukyus Nishihara, Okinawa 903-0213, Japan e-mail: sudo@math.u-ryukyu.ac.jp

Abstract

We study continuous deformations of C^* -algebra extensions.

Introduction

A continuous deformation from a C^* -algebra $\mathfrak A$ to another $\mathfrak B$ is a continuous field C^* -algebra on the closed interval [0,1] with fibers $\mathfrak A_t$ given by $\mathfrak A_0=\mathfrak B$ and $\mathfrak A_t=\mathfrak A$ for $0< t\le 1$, and we denote it by $E_{\mathfrak A}=\Gamma([0,1],\{\mathfrak A_t\}_{t\in[0,1]})$ (see Dixmier [2] and Blackadar [1]). See also [3].

In this paper we consider continuous deformations for C^* -algebra extensions in some cases. Our first intention for this is to study relative continuous deformations for C^* -algebras with closed (two-sided) ideals. It seems to have not been considered in the literature. More cases could be considered.

2000 Mathematics Subject Classification: Primary 46L05.

Keywords and phrases: C^* -algebra, continuous field, deformation, extension.

Received April 23, 2007

© 2007 Pushpa Publishing House

Continuous Deformations of C^* -algebra Extensions

We say that a continuous deformation from a C^* -algebra $\mathfrak A$ to another $\mathfrak B$ is internal if $\mathfrak B$ is a C^* -subalgebra of $\mathfrak A$. Denote by $\Gamma_0(X,\{\mathfrak A_t\}_{t\in X})$ a continuous field C^* -algebra on the base space X a locally compact Hausdorff space with fibers $\mathfrak A_t$ (vanishing at infinity). Replace $\Gamma_0(\cdot)$ with $\Gamma(\cdot)$ if X is compact.

Theorem 1.1. Let \mathfrak{A} be a C^* -algebra with continuous trace and \mathfrak{I} be its closed ideal. If \mathfrak{I} has an internal continuous deformation $E_{\mathfrak{I}}$ to its C^* -subalgebra \mathfrak{I}_0 , then it induces an internal continuous deformation $E_{\mathfrak{A}}$ from \mathfrak{A} to its C^* -subalgebra \mathfrak{A}_0 containing \mathfrak{I}_0 as a closed ideal, preserving $E_{\mathfrak{I}}$.

Proof. Since $\mathfrak A$ has continuous trace, it can be viewed as a continuous field C^* -algebra on its Hausdorff spectrum $\mathfrak A^{\wedge}$ consisting of equivalence classes of irreducible representations of $\mathfrak A$, i.e., $\mathfrak A \cong \Gamma_0(\mathfrak A^{\wedge}, \{\pi(\mathfrak A)\}_{\pi \in \mathfrak A^{\wedge}})$, where an irreducible representation π of $\mathfrak A$ is identified with its class in $\mathfrak A^{\wedge}$ (see [2]). Also, we have $\mathfrak I \cong \Gamma_0(\mathfrak I^{\wedge}, \{\pi(\mathfrak I)\}_{\pi \in \mathfrak I^{\wedge}})$. Thus, we have the following exact sequence:

$$0 \to \Gamma_0(\mathfrak{I}^{\wedge}, \{\pi(\mathfrak{I})\}_{\pi \in \mathfrak{I}^{\wedge}}) \to \mathfrak{A} \to \mathfrak{A}/\mathfrak{I} \cong \Gamma_0(\mathfrak{A}^{\wedge} \setminus \mathfrak{I}^{\wedge}, \{\pi(\mathfrak{I})\}_{\pi \in \mathfrak{A}^{\wedge} \setminus \mathfrak{I}^{\wedge}}) \to 0,$$

where $\mathfrak{A}^{\wedge} \mathfrak{I}^{\wedge}$ is the complement of \mathfrak{I}^{\wedge} in \mathfrak{A}^{\wedge} . Our claim follows from the diagram:

where the vertical arrows mean continuous deformations.

Example 1.2. Let H_3 be the real 3-dimensional Heisenberg Lie group and $C^*(H_3)$ be its group C^* -algebra. The group C^* -algebra $C^*(H_3)$ can be viewed as a continuous field C^* -algebra $\mathfrak{A} = \Gamma_0(\mathbb{R}, \{\mathfrak{A}_t\}_{t\in\mathbb{R}})$ with

fibers $\mathfrak{A}_0 = C_0(\mathbb{R}^2)$ and $\mathfrak{A}_t = \mathbb{K}$ for $t \in \mathbb{R} \setminus \{0\}$ (see [2]). Thus, we have the following exact sequence and its continuous deformation:

where $E_{\mathfrak{I}}$ is induced from the canonical internal continuous deformation from \mathbb{K} to $M_n(\mathbb{C})$ (any $n \ge 1$).

However, it is not always true that $E_{\mathfrak{I}}$ induces $E_{\mathfrak{A}}$.

Example 1.3. Let A_2 be the real 2-dimensional ax + b group and $C^*(A_2)$ be its group C^* -algebra. The group C^* -algebra $C^*(A_2)$ is decomposed into

$$0 \to \mathfrak{I} = \mathbb{K} \oplus \mathbb{K} \to \mathfrak{A} = C^*(A_2) \to C_0(\mathbb{R}) \to 0.$$

As for $E_{\mathfrak{I}}$, we consider the continuous deformation from \mathbb{K} to its diagonal $C_0(\mathbb{N})$. If $E_{\mathfrak{I}}$ induces $E_{\mathfrak{A}}$ from \mathfrak{A} to a C^* -algebra extension \mathfrak{A}_0 of $C_0(\mathbb{N}) \oplus C_0(\mathbb{N})$ by $C_0(\mathbb{R})$, then \mathfrak{A}_0 must be commutative. But this is impossible since \mathfrak{A} is noncommutative so that there exist $a,b\in\mathfrak{A}$ such that $[a,b]=ab-ba\neq 0$, and so the norm $\|[a,b]\|\neq 0$ but $\|[a_0,b_0]\|=0$ for $a_0,b_0\in\mathfrak{A}_0$, where a,b go to a_0,b_0 under $E_{\mathfrak{A}}$ respectively. Note that $C^*(A_2)$ is of type I but not CCR so that it is not of continuous trace, and it never be written as a continuous field C^* -algebra.

Even if $\mathfrak A$ is not of continuous trace, $E_{\mathfrak I}$ may induce $E_{\mathfrak A}$.

Example 1.4. Let $\mathfrak{A} = \mathfrak{I} \oplus \mathfrak{B}$ be the direct sum of C^* -algebras. Assume that \mathfrak{I} has continuous trace and \mathfrak{B} is not of continuous trace, and so is not \mathfrak{A} . Then some $E_{\mathfrak{I}}$ induces $E_{\mathfrak{A}}$.

In a general situation,

Theorem 1.5. Let $0 \to \mathfrak{I} \to \mathfrak{A} \to \mathfrak{B} \to 0$ be an extension of

 C^* -algebras. Assume that \Im is stable, i.e., $\Im \cong \Im \otimes \mathbb{K}$. Then an internal continuous deformation of \Im with respect to that of \mathbb{K} induces a continuous deformation from \mathfrak{A} .

Proof. Note that

$$\mathfrak{I} \cong \mathfrak{I} \otimes \mathbb{K} \cong \mathfrak{I} \otimes \mathbb{K} \otimes M_n(\mathbb{C}) \cong \mathfrak{I} \otimes \mathbb{K} \otimes \mathbb{K}.$$

An extension $0 \to \mathfrak{I} \to \mathfrak{A} \to \mathfrak{B} \to 0$ of C^* -algebras can be identified with the Busby map τ from \mathfrak{B} to the corona $M(\mathfrak{I})/\mathfrak{I}$, the quotient of the multiplier algebra $M(\mathfrak{I})$ of \mathfrak{I} (see [4]). As for $E_{\mathfrak{I}}$, we consider a continuous deformation from $\mathfrak{I} \otimes \mathbb{K} \otimes M_n(\mathbb{C})$ to $\mathfrak{I} \otimes \mathbb{K} \otimes \mathbb{C}^n \cong \oplus^n \mathfrak{I}$. Then $M(\mathfrak{I} \otimes \mathbb{K} \otimes \mathbb{C}^n) \cong \oplus^n M(\mathfrak{I})$. Thus, we obtain a continuous deformation from τ to the sum $\tau \oplus \cdots \oplus \tau$ (n times) from \mathfrak{B} to $\oplus^n (M(\mathfrak{I})/\mathfrak{I})$.

As for $E_{\mathfrak{I}}$, if we take another one from $\mathfrak{I}\otimes\mathbb{K}\otimes\mathbb{K}$ to $\mathfrak{I}\otimes\mathbb{K}\otimes C_0(\mathbb{N})$, then it induces a continuous deformation from \mathfrak{I} to the sequence $(\mathfrak{I})_{j=1}^{\infty}$. Note that $M(\mathfrak{I}\otimes\mathbb{K}\otimes C_0(\mathbb{N}))$ contains $M(\mathfrak{I})\otimes M(C_0(\mathbb{N}))$, and $M(C_0(\mathbb{N}))$ $\cong C(\beta\mathbb{N})$ containing the constant sequences, where $\beta\mathbb{N}$ is the Stone-Čech compactification of \mathbb{N} (for instance, see [4]).

More generally, note that a C^* -subalgebra of \mathbb{K} can be viewed as a finite or infinite direct sum of \mathbb{K} or $M_n(\mathbb{C})$. Thus, an internal continuous deformation of \mathbb{K} to such a direct sum also induces a continuous deformation from \mathfrak{A} .

References

- B. Blackadar, K-theory for Operator Algebras, Second Edition, Cambridge, 1998.
- [2] J. Dixmier, C^* -algebras, North-Holland, 1977.
- [3] T. Sudo, K-theory of continuous deformations of C^* -algebras, Acta Math. Sin. (Engl. Ser.) (to appear).
- [4] N. E. Wegge-Olsen, K-theory and C^* -algebras, Oxford Univ. Press, 1993.