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Abstract

In this note, we give a characterizations of left(right) semiregular

po-semigroups.

1. Introduction

The concept of the left(right) semiregular po-semigroups has been
introduced in [3] and extends concept of regular semigroups in case of
ordered semigroups. In this note, we give the characterizations of

left(right) semiregular po-semigroups.

A po-semigroup (: ordered semigroup) is an ordered set ( )≤,S  at the

same time a semigroup such that:

xbxaba ≤⇒≤   and  ,bxax ≤   .,, Sxba ∈∀

Definition 1.1 [3]. An element a of a po-semigroup S is a left (resp.
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right) semiregular element if xayaa ≤  (resp. )yaxaa ′′≤  for some

.,,, Syxyx ∈′′

S is called left (resp. right) semiregular if all elements of S are left
(resp. right) semiregular.

Equivalent definition. ( ]aSaSa ∈  ( ]( )SaSaa ∈.resp  for every

.Sa∈

Definition 1.2. Let S be a po-semigroup and .SA ⊆≠∅  Then A is

called a left (resp. right) ideal of S if

(1) .ASA ⊆

(2) If ,Aa ∈  ab ≤  with ,Sb ∈  then .Ab ∈

A is called an ideal of S if A is both a left and right ideal of S.

Definition 1.3 [4]. Let S be a po-semigroup and .SB ⊆≠∅  Then B

is called a bi-ideal of S if

(1) .BBSB ⊆

(2) If ,Ba ∈  ab ≤  with ,Sb ∈  then .Bb ∈

Every ideal and left(right) ideal is a bi-ideal.

Definition 1.4 [2]. Let S be a po-semigroup and .SQ ⊆≠∅  Then Q

is called a bi-ideal of S if

(1) .QSQQS ⊆∩

(2) If ,Qa ∈  ab ≤  with ,Sb ∈  then .Qb ∈

For ,SH ⊆  we denote ( ] { htStH ≤|∈=:  for some }.Hh ∈  For

{ },aH =  we write ( ]a  instead of { }( ] ( ).Saa ∈  We denote by ( ),aL  ( ),aR

( ),aI  ( )aB  and ( )aQ  the left ideal, right ideal, ideal, bi-ideal and quasi-

ideal of S generated by ( ).Saa ∈  For a po-semigroup S, one can easily

prove that:

( ) ( ] ( ) ( ] ( ) ( ],,, SaSSaaSaaISaaaRaSaaL ∪∪∪∪∪ ===

( ) ( ] [ ] ( ) ( )( ] [ ].2,42 SaaSaaQaSaaaaB ∩∪∪∪ ==
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Definition 1.5 [3]. Let L be a left ideal of a po-semigroup S. Then L

is called left (resp. right) weakly prime if for any left (resp. right) ideals A,

B of S such that ,LAB ⊆  we have LA ⊆  or .LB ⊆

Definition 1.6. Let L be a left ideal of a po-semigroup S. Then L is

called left (resp. right) weakly semiprime if for any left (resp. right) ideals

A of S such that ,2 LA ⊆  we have .LA ⊆

Lemma 1.1 [1]. Let S be a po-semigroup. Then

(1) ( ],AA ⊆  .SA ⊆∀

(2) If ,SBA ⊆⊆  then ( ] ( ].BA ⊆

(3) ( ] ( ] ( ],ABBA ⊆  ., SBA ⊆∀

(4) ( ]( ] ( ],AA =  .SA ⊆∀

(5) For every right ideal, left ideal, ideal and bi-ideal T of S, we have

( ] .TT =

(6) If A, B are ideals of S, then ( ],AB  ,BA ∩  BA ∪  are ideals of S.

(7) ( ] ( ]( )aSrespSa .  is a left (resp. right) ideal of S, ( ]aSa  is a bi-ideal

of S for every .Sa ∈

2. Main Results

Theorem 2.1. Let S be a po-semigroup. Then the following conditions

are equivalent:

(1) S is left semiregular.

(2) Every ideal of S is a left semiregular subsemigroup of S.

(3) ( ] LL =2  for every left ideal L of S.

(4) ( ]ILLI =∩  for every ideal I and every left ideal L of S.

(5) ( ]IBBI ⊆∩  for every ideal I and every bi-ideal B of S.

(6) ( ]2121 LLLL ⊆∩  for every left ideals ,1L  .2L
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(7) ( ) ( ) ( ) ( )( ],bLaLbLaL ⊆∩  ., Sba ∈∀

(8) ( ) ( ( )( ) ],2aLaL =  .Sa ∈∀

Proof. (1) ⇒ (2) Let I be an ideal of S. Then .2 ISII ⊆⊆  Thus I is a

subsemigroup of S.

Let .Ia ∈  Then there exist Syx ∈,  such that

( ) ( ) ( ) ( ) .ayxayaxxayxayayxayaxxayaa =≤≤

Since

,, ISSISyxayxxay ⊆∈

we have ( ].IaIaa ∈  Thus I is a left semiregular subsemigroup.

(2) ⇒ (3) Let L be a left ideal of S. Let ( ].2Lx ∈  Then abx ≤  for

some ., Lba ∈  Since L is a left ideal of S, we have Lab ∈  and .Lx ∈

Let .La ∈  Since S is an ideal of S itself. By hypothesis, a is semiregular

element of S. We have tahaa ≤  for some ., Sht ∈  Since ∈taha

( ],22 LLSLSL ⊆⊆  we have ( ].2La ∈

(3) ⇒ (4) For every ideal I and every left ideal of S. Then ( ] ( ]SLIL ⊆

( ] ,LL =⊆  ( ] ( ] ( ] ,IIISIL =⊆⊆  i.e., ( ] .LIIL ∩⊆  Since LI ∩  is a left

ideal of S. By hypothesis, we have

(( ) ] ( ) ( )( ] ( ].2 ILLILILILI ⊆== ∩∩∩∩

(4) ⇒ (5) Let .IBa ∩∈  By hypothesis, we have

( ) ( )( ] ( ]( ] ( ] ( ] ( ].IBISBIBISaIaSaaIaILaLIa ⊆⊆⊆==∈ ∪∪∪∩

(5) ⇒ (6) For any ,21 LLa ∩∈  by hypothesis, we have

( ) ( ) ( ) ( )( ] ( ] ( ]aSaaaSaSSaaSaaBaIaBaIa ∪∪∪∪∪∩ 2==∈

 ( ] ( ]222221111 SLLLLLSSLSLSLL ∪∪∪∪∪⊆

 ( ] ( ] ( ] ( ].212121211 LLSLLLLLSLL ⊆⊆⊆ ∪∪
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(6) ⇒ (7) It is obvious.

(7) ⇒ (8) It is obvious.

(8) ⇒ (1) Let .Sa ∈  Since ( ) ( ( )( ) ],2aLaL =  we have

( )( ) (( ( )( ) ] ( ( )( ) ]] ( ( )( ) ]4222 aLaLaLaL ⊆=

( ) ( ( )( ) ] ( ( )( ) ]] ( )( ) ]442 aLaLaLaL =⊆=⇒

( )( ] ( )( ] ( )aLaLaSL =⊆⊆

( ) ( ( )( ) ].4aLaL =⇒

On the other hand,

( ( )( ) ] ( ]44 SaaaL ∪=

(( ) ] ( ] ( ] ( ]22222 SaaSaSaSaaSaaSaaSaa ∪∪∪∪∪∪ ⊆⊆

( ] ( ] ( ] ( ] ( ].2 SaSaSaSaSaaSa ⊆⊆⊆ ∪

Therefore,

( ) ( ( )( ) ] ( ]( ] ( ].4 SaSaSaSaaLaLa =⊆=∈

Theorem 2.2. A po-semigroup S is left semiregular if and only if for

every ideal I, every bi-ideal B, every left ideal L and every right ideal R of

S,

( ] ( ]( ).. IRBBIRrespLIBBIL ⊆⊆ ∩∩∩∩

Proof. Let I be an ideal, B be a bi-ideal and L be a left ideal of S. Let

.BILa ∩∩∈  Since S is left semiregular, there exists Syx ∈,  such

that .xayaa ≤  Then we have

( ) ( ) ( )xayayxayaxyaxayaxxayaa ≤≤≤

 ( ) ( ) ( ) ( ) ( ) .LIBBSBSISSSLayayayxxxa ⊆∈=

Thus ( ].LIBa ∈  If R is a right ideal of S and ,RIBa ∩∩∈  then
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( ) ( ) ( )xayayxayaxyaxayaxxayaa ≤≤≤

 ( ) ( ) ( ) ( ) ( ) ( ) .IRBBSBRSSISayaayxxxay ⊆∈=

Conversely, let .Sa ∈  We consider the ideal ( ),aI  bi-ideal ( )aB  and

left ideal ( )aL  of S generated by a. By hypothesis, we have

 ( ) ( ) ( )aLaIaBa ∩∩∈

 ( ) ( ) ( )( ] ( ) ( )( ] ( ) ( )( ]aBaIaBaSIaBaIaL ⊆⊆=

 ( ] ( ]aSaaaSaSSaaSa ∪∪∪∪∪ 2=

( ]SaSaSaSaSaSaSaaSaSaaSaaSaSaaaa ∪∪∪∪∪∪∪∪ 22232⊆

 ( ].32 SaSaaSaaa ∪∪∪⊆

Then ta ≤  for some .32 SaSaaSaaat ∪∪∪∈  If ,2at =  then 2aa ≤

,4 SaSaa ∈≤  i.e., ( ].SaSaa ∈  If ,3at =  then .53 SaSaaaa ∈≤≤  If

axat =  for some ,Sx ∈  then .SaSaaxaxaaxaa ∈≤≤  If ,SaSat ∈

then .SaSaa ∈  Thus S is left semiregular.

Suppose now that ( ]( ).IRBBIR ⊆∩∩  Then

( ) ( ) ( ) ( ) ( ) ( )( ] ( ) ( )( ] ( ) ( )( ].aBaIaSBaIaBaRaIaRaIaBa ⊆⊆=∈ ∩∩

Therefore S is left semiregular (cf. the previous case).

Using the method of the proof of Theorem 2.2, we can also get the
following theorem.

Theorem 2.3. A po-semigroup S is left semiregular if and only if for

every ideal I, every quasi-ideal Q, every left ideal L and every right ideal R

of S,

( ] ( ]( ).. IRQQIRrespIQLQIL ⊆⊆ ∩∩∩∩

Following we characterize the semiregular semigroups by means of
left weakly prime and left weakly semiprime.

Theorem 2.4. Let S be a po-semigroup. Then the following conditions

are equivalent:
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(1) S is left semiregular.

(2) Every left ideal of S is a left weakly semiprime.

(3) Every left ideal of S is the intersection of all left weakly prime left

ideals of S containing it.

Proof. (1) ⇒ (2) Let L, A be left ideals of S such that LA ⊆2  and let

.Aa ∈  Since a is left semiregular, we have ( ] ( ] ( ]2ASASASaSaa ⊆⊆∈

( ] .LL =⊆

(2) ⇒ (3) Let L be a left ideal of S. Let

{ AA |=L  left weakly prime left ideals of S and }.LA ⊇

Let .AP A L∈= ∩  Since LA ⊇  for any ,L∈A  we have .PL ⊆  Let

Pa ∈  and .La ∉  Let W  be the class of left ideals of S containing L but

not containing a. Applying Zorn’s lemma to ,W  there exists the maximal

left ideal M not containing a but .LM ⊇  Then M is a left weakly prime

left ideal of S. In fact, let ,21 MLL ⊆  ML ⊆/1  and .2 ML ⊆/  Since

MML ⊃∪1  and MML ⊃∪2  are left ideals of S, by the maximality

of M, we have ,1 SML =∪  .2 SML =∪  Hence .21 LLa ∩∈  By

hypothesis, M is a left weakly semiprime, we have

( ) ( ) ( ) ( ) .21
2 MaLMLLaLaLaL ⊆⇒⊆⊆=

Hence ,Ma ∈  which is a contradiction. Therefore M is a left weakly

prime left ideal and .L∈M  Thus we have ,MPa ⊆∈  it is impossible.

Therefore, .PL =

(3) ⇒ (1) Let L be a left ideal of S. By (3), we have ( ] ( ]AL
LA 2

2
⊇

= ∩

and A is a left ideal of S. Since ( ] ,22 ALL ⊆⊆  by (3), we have .AL ⊆

Hence ( ] ( ].2
2 LAL

LA
=⊆

⊇
∩  This implies that ( ].2LL =  By Theorem 2.1,

S is left semiregular.

Remark. Using the method of the proofs of Theorems 2.1 and 2.4, we
can get the dualities for right semiregular, right weakly prime right ideal.
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