THE FUZZY PRIME RADICAL OF A k-SEMIRING

CHANG BUM KIM

Department of Mathematics Kookmin University Seoul 136-702, South Korea

Abstract

We define and study the fuzzy prime radical of a k-semiring. Also it is shown that the prime radical of the quotient semiring $R/\operatorname{FPR}(R)$ of a k-semiring by the fuzzy prime radical $\operatorname{FPR}(R)$ is zero. Algebraic properties of the fuzzy ideals $\operatorname{FPR}(R)$ and $\operatorname{FPR}(S)$ under a homomorphism from R onto S are also discussed.

1. Introduction

Chun et al. [2] constructed an extension of a k-semiring and studied a k-ideal of a k-semiring. Chun et al. [3] constructed the quotient semiring of a k-semiring by a k-ideal. Liu [15] introduced and studied the notion of fuzzy ideal of a ring. Following Liu, Mukherjee and Sen [18] defined and examined fuzzy prime ideals of a ring. Kumbhojkar and Bapat [12, 13] defined studied the ring R/J of the cosets of the fuzzy ideal J.

Kumar [7-11] extended the concept of fuzzy ideal to fuzzy semiprimary (semiprime, primary, prime, maximal) ideals in a ring. Also Malik and Mordeson [16] gave the necessary and sufficient conditions for a fuzzy subring or a fuzzy ideal A of a commutative ring R to be extended to one A^e of a commutative ring S containing R as a subring.

2000 Mathematics Subject Classification: 08A72, 13Axx, 16Y60.

Keywords and phrases: *k*-semiring, *k*-ideal, fuzzy ideal, fuzzy cosets of a fuzzy ideal, fuzzy maximal (semiprime, prime) ideal, quotient semiring, fuzzy prime radical.

Received April 5, 2007

© 2007 Pushpa Publishing House

In particular, Kuraoki and Kuroki [14] defined fuzzy quotient rings and gave homomorphism theorems and isomorphism theorem as to fuzzy ideals.

Kim and Park [6] defined and studied the notion of the k-fuzzy ideal in a semiring, and they also introduced and studied the quotient semiring R/A of a k-semiring R by a k-fuzzy ideal A.

Kim [4, 5] defined and investigated a fuzzy maximal ideal of a k-semiring and also characterized the quotient k-semiring R/A of a k-semiring R by a fuzzy maximal ideal A. Also he defined and studied the fuzzy Jacobson radical of a k-semirings, and obtained some algebraic properties of the fuzzy Jacobson radical of k-semirings.

Furthermore, Kumar [9] defined and studied the fuzzy Jacobson radical FJR(R) and the fuzzy prime radical FPR(R) of a ring R.

The purpose of this paper is to define and study the fuzzy prime radical FPR(R) of a k-semiring R. In particular, we show that the prime radical of the quotient semiring R/FPR(R) of a k-semiring R by the fuzzy prime radical FPR(R) is zero and investigate the algebraic properties of the fuzzy prime radical FPR(R) of k-semiring R.

2. Preliminaries

In this section, we review some definitions and some results which will be used in the later section.

Definition 2.1 [2]. A set R together with associative binary operations called addition and multiplication (denoted by + and \cdot respectively) is called a *semiring* provided:

- (1) addition is a commutative operation,
- (2) there exists $0 \in R$ such that x + 0 = x and x0 = 0x = 0 for each $x \in R$, and
- (3) multiplication distributes over addition both from the left and the right.

Definition 2.2 [2]. A semiring R is called a k-semiring if for any $a, b \in R$ there exists a unique element c in R such that either b = a + c or a = b + c but not both.

Definition 2.3 [3]. A non-empty subset I of a semiring R is called a *subsemiring* if I is itself a semiring with respect to the binary operations defined in R. A subsemiring I is called an *ideal* of R if $r \in R$, $a \in I$ imply ar and $ra \in I$.

Definition 2.4 [3]. An ideal I of a semiring R is called a k-ideal if $r + a \in I$ implies $r \in I$ for each $r \in R$ and each $a \in I$.

Let R be a k-semiring. Let R' be a set of the same cardinality with $R - \{0\}$ such that $R \cap R' = \emptyset$ and let denote the image of $a \in R - \{0\}$ under a given bijection by a'. Let \oplus and \odot denote addition and multiplication respectively on a set $\overline{R} = R \cup R'$ as follows:

$$a \oplus b = \begin{cases} a+b & \text{if } a, b \in R \\ (x+y)' & \text{if } a = x', b = y' \in R' \\ c & \text{if } a \in R, b = y' \in R', a = y+c \\ c' & \text{if } a \in R, b = y' \in R', a+c = y, \end{cases}$$

where c is the unique element in R such that either a = y + c or a + c = y but not both, and

$$a \odot b = \begin{cases} ab & \text{if } a, b \in R \\ xy & \text{if } a = x', b = y' \in R' \\ (ay)' & \text{if } a \in R, b = y' \in R' \\ (xb)' & \text{if } a = x' \in R', b \in R. \end{cases}$$

It can be shown that these operations are well defined and thus if R is a k-semiring, then $(\overline{R}, \oplus, \odot)$ is a ring, called the *extension ring* of R.

Remark. Let Θa denote the additive inverse of any element $a \in R$ and write $a \oplus (\Theta b)$ simply as $a \ominus b$. Then it is clear that $a' = \Theta a$ and $a = \Theta a'$ for all $a \in R$.

Note that if R is a k-semiring with identity, then \overline{R} is a ring with identity.

Theorem 2.5 [2]. Let R be a k-semiring, I be an ideal, and $I' = \{a' \in R' | a \in I\}$. Then I is a k-ideal of R if and only if $\overline{I} = I \cup I'$ is an ideal of the extension ring \overline{R} , called the extension ideal of I.

Note that if R is a k-semiring and \overline{R} is the extension ring of R, then each ideal of \overline{R} is the extension ideal of a k-ideal of R and each k-ideal of R is the intersection of its extension ideal and R (see [2]).

Let R be a k-semiring and \overline{R} be its extension ring. Let I be a k-ideal of R and \overline{I} be its extension ideal of \overline{R} . Define a relation $a \equiv b$ by $a \oplus b' \in \overline{I}$, where $a, b \in R$. Then this relation is an equivalence relation on R. Let $a \oplus I$ be the equivalence class containing $a \in R$ determined by \equiv . Let $R/I = \{a \oplus I \mid a \in R\}$ be the set of all equivalence classes determined by \equiv . Then $R/I = \{a \oplus I \mid a \in R\}$ is a k-semiring under the two operations $(a \oplus I) \oplus (b \oplus I) = (a+b) \oplus I$ and $(a \oplus I) \odot (b \oplus I) = (ab) \oplus I$ (see [3]).

Definition 2.6 [3]. A mapping f from a k-semiring R into a k-semiring S is called a *homomorphism* if f(a+b) = f(a) + f(b) and f(ab) = f(a)f(b) for all $a, b \in R$.

Theorem 2.7 [3]. Let $f: R \to S$ be a k-semiring homomorphism. Let \overline{R} and \overline{S} be extension rings of R and S, respectively. Define a map $\overline{f}: \overline{R} \to \overline{S}$ by

$$\bar{f}(x) = \begin{cases} f(x) & \text{if } x \in R \\ f(x')' & \text{if } x \in R'. \end{cases}$$

Then \bar{f} is a ring homomorphism, called extension ring homomorphism of f.

Theorem 2.8 [2]. Let \overline{R} be the extension ring of a commutative k-semiring with identity, I be a k-ideal of R and \overline{I} be the extension ideal of I in \overline{R} . Then I is prime k-ideal of R iff \overline{I} is prime ideal of \overline{R} .

Definition 2.9 [9]. A k-ideal I of a k-semiring R is a prime k-ideal if for all $a, b \in R$, $ab \in I$ implies that either $a \in I$ or $b \in I$.

Definition 2.10. Let R be a k-semiring and \overline{R} be the extension ring of R. The intersection of all prime k-ideals of R is called the *prime radical* of R, denoted by PR(R).

Theorem 2.11. Let R be a k-semiring and \overline{R} be the extension ring of R. Then $PR(R) = PR(\overline{R}) \cap R$ is an ideal of all nilpotent elements of R.

Proof.

$$\begin{split} PR(R) &= \bigcap \{P_i \mid P_i \text{ is a prime k-ideal of R}\} \\ &= \bigcap \{\overline{P_i} \cap R \mid \overline{P_i} \text{ is a prime ideal of \overline{R}}\} \\ &= \bigcap \{\overline{P_i} \mid \overline{P_i} \text{ is a prime ideal of \overline{R}}\} \cap R \\ &= PR(\overline{R}) \cap R. \end{split}$$

Since $PR(\overline{R})$ is the ideal of all nilpotent elements of \overline{R} by ring theory. Thus PR(R) is the ideal of all nilpotent elements of R. This completes the proof.

3. Fuzzy Ideal of a k-semiring

In this section, we have some properties of the fuzzy ideals of commutative k-semirings with identity. Throughout this paper unless otherwise all semirings are commutative k-semirings with identity.

Definition 3.1 [6]. A *fuzzy ideal* of a semiring R is a function $A: R \to [0, 1]$ satisfying the following conditions:

(1)
$$A(x + y) \ge \min\{A(x), A(y)\}$$

(2)
$$A(xy) \ge \max\{A(x), A(y)\}$$
 for all $x, y \in R$.

Theorem 3.2 [6]. Let A be a fuzzy ideal of a semiring R. Then $A(x) \le A(0)$ for all $x \in R$.

Definition 3.3 [6]. Let A be a fuzzy subset of a semiring R. Then the set $A_t = \{x \in R \mid A(x) \ge t\}$ $(t \in [0, 1])$ is called the *level subset* of R with respect to A.

Theorem 3.4 [6]. Let A be a fuzzy ideal of a semiring R. Then the level subset A_t ($t \le A(0)$) is the ideal of R.

In general, it is not true that if A is a fuzzy ideal of a semiring R, then A_t $(t \le A(0))$ is k-ideal of R, for we have the following example.

Example 3.5 [6]. Let $R = Z^*$, be the set of nonnegative integers and let I = (2, 3) be an ideal of R generated by 2 and 3. Define a fuzzy subset A of R by

$$A(x) = \begin{cases} 1 & \text{if } x \in I \\ 0 & \text{if } x \notin I. \end{cases}$$

Then A is a fuzzy ideal but $A_R = I$ is not k-ideal of R.

Definition 3.6 [16]. Let $f: R \to S$ be a homomorphism of semirings and B be a fuzzy subset of S. We define a fuzzy subset $f^{-1}B$ of R by $f^{-1}B(x) = B(f(x))$ for all $x \in R$.

Definition 3.7 [20]. Let $f: R \to S$ be a homomorphism of semirings and A be a fuzzy subset of R. We define a fuzzy subset f(A) of S by

$$f(A)(y) = \begin{cases} \operatorname{Sup}\{A(t) | t \in R, f(t) = y\} & \text{if } f^{-1}(y) \neq \emptyset \\ 0 & \text{if } f^{-1}(y) = \emptyset. \end{cases}$$

Definition 3.8 [15]. A *fuzzy ideal* of a ring R is a function $A: R \to [0, 1]$ satisfying the following axioms

- (1) $A(x + y) \ge \min\{A(x), A(y)\}\$
- $(2) A(xy) \ge \max\{A(x), A(y)\}\$
- (3) A(-x) = A(x).

Let R be a commutative k-semiring and \overline{R} be its extension ring. If A is a fuzzy ideal of R such that all its level subsets are k-ideals of R, then

 $R = \bigcup_{t \in \mathrm{Im}A} A_t, \ \ \overline{R} = \bigcup_{t \in \mathrm{Im}A} \overline{A}_t \ \ \text{and} \ \ s > t \ \ \text{if and only if} \ \ A_s \subset A_t \ \ \text{if and}$

only if $\overline{A}_s \subset \overline{A}_t$. Thus we have the following theorem.

Theorem 3.9 [6]. Let R be a commutative k-semiring and \overline{R} be its extension ring. Let A be a fuzzy ideal of R such that all its level subsets are k-ideals of R. Define the fuzzy subset \overline{A} of \overline{R} by for all $x \in \overline{R}$, $\overline{A}(x) = \sup\{t \mid x \in \overline{A}_t, t \in \operatorname{Im} A\}$. Then \overline{A} is a fuzzy ideal of \overline{R} .

Theorem 3.10 [6]. Let A be as in Theorem 3.9. Then \overline{A} is an extension of A.

Definition 3.11 [6]. Let A be as in Theorem 3.9 and let \overline{A} be the extension ideal of A. The fuzzy subset $x + A : R \to [0, 1]$ defined by $(x + A)(z) = \overline{A}(z \oplus x')$ is called a *coset* of the fuzzy ideal A.

Theorem 3.12 [6]. Let R, \overline{R} , A and \overline{A} be as in Theorem 3.9. Then x + A = y + A $(x, y \in R)$ if and only if $\overline{A}(x \oplus y') = A(0)$.

Theorem 3.13 [6]. Let A be as in Theorem 3.9 and \overline{A} be the extension of A. If x + A = u + A and y + A = v + A $(x, y, u, v \in R)$, then

(1)
$$x + y + A = u + v + A$$

$$(2) xy + A = uv + A.$$

Theorem 3.13 allows us to define two binary operation "+" and "." on the set R/A of cosets of the fuzzy ideal A as follows:

$$(x + A) + (y + A) = x + y + A$$

and

$$(x + A) \cdot (y + A) = xy + A.$$

It is easy to show that R/A is a k-semiring under these well-defined binary operations with additive identity A and multiplicative identity 1 + A. In this case, the semiring R/A is called the *factor semiring* or the *quotient semiring* of R by A.

Definition 3.14 [11]. A fuzzy ideal A of R is called a *fuzzy prime* if $\forall a, b \in R$, either A(ab) = A(a) or else A(ab) = A(b).

Definition 3.15 [11]. A fuzzy ideal A of R is called a *fuzzy semiprime* if $A(a^m) = A(a), \ \forall a \in R$ and $\forall m \in \mathbb{Z}_+$.

In the following theorem, we have the relation between the fuzzy prime ideal of a k-semiring and the fuzzy prime ideal of a ring.

Theorem 3.16. Let A be a fuzzy ideal of a k-semiring R such that all its level subsets are k-ideals of R, \overline{A} be its extension and \overline{R} be the extension ring of R. Then A is a fuzzy prime ideal of R iff \overline{A} is a fuzzy prime ideal of \overline{R} .

Proof. It is straightforward.

Theorem 3.17 [4]. Let $f: R \to S$ be an epimorphism of k-semirings and B be a fuzzy ideal of S. Then B is a fuzzy prime ideal of S iff $f^{-1}B$ is a fuzzy prime ideal of R.

Definition 3.18 [4]. Let A be a fuzzy ideal of a k-semiring R such that all its level subsets are k-ideals of R. A fuzzy ideal A of R is called a fuzzy maximal if (i) A(0) = 1; (ii) A(e) < A(0); and (iii) whenever A(b) < A(0) for some $b \in R$, then $\overline{A}(e_R \oplus (rb)') = A(0)$ for some $r \in R$, where e_R is identity of R.

Let $R = Z^*$, be the set of nonnegative integers. Define a fuzzy subset α of R by

$$\alpha(x) = \begin{cases} 1 & \text{if } x \in (2) \\ s & \text{if } x \notin (2) \text{ for } s \in [0, 1). \end{cases}$$

Then α is a fuzzy maximal ideal and a fuzzy prime ideal of R.

Kumar [9] defined the fuzzy maximal ideal of a ring as follow:

Definition 3.19 [8]. A fuzzy ideal A of a ring R is called *fuzzy* maximal if (i) A(0) = 1; (ii) $A(e_R) < A(0)$; and (iii) whenever A(b) < A(0) for some $b \in R$, then $A(e_R - rb) = A(0)$ for some $r \in R$.

In the following theorem, we have the relation between the fuzzy maximal ideal of a *k*-semiring and the fuzzy maximal ideal of a ring.

Theorem 3.20 [4]. Let A be as in Definition 3.18, \overline{A} be its extension and \overline{R} be the extension ring of R. Then A is a fuzzy maximal ideal of R iff \overline{A} is a fuzzy maximal ideal of \overline{R} .

Theorem 3.21 [4]. Let $f: R \to S$ be an epimorphism of k-semirings and B be a fuzzy ideal of S. Then B is a fuzzy maximal ideal of S iff $f^{-1}B$ is a fuzzy maximal ideal of R.

Theorem 3.22. Every fuzzy maximal ideal of a k-semiring is fuzzy prime.

Proof. Let α be any fuzzy maximal ideal of a k-semiring R. Then by Theorem 3.20, $\overline{\alpha}$ is a fuzzy maximal ideal of a ring \overline{R} , so that $\overline{\alpha}$ is a fuzzy prime ideal of \overline{R} . Thus α is a fuzzy prime ideal of R. This completes the proof.

4. The Fuzzy Prime Radical of a k-semiring

In this section, we define the fuzzy prime radical FPR(R) of a k-semiring R and have some properties of the quotient ring R/FPR(R) of R by the fuzzy prime radical FPR(R), and obtain some algebraic properties of FPR(R) and FPR(S) under a homomorphism from a k-semiring R onto a k-semiring S.

Kumar [9] defined the fuzzy prime radical FPR(R) of a ring R as follows: FPR(R) = $\bigcap \{\theta \mid \theta \text{ is a fuzzy prime ideal of } R\}$. Similarly, we define a fuzzy prime radical of a k-semiring.

Definition 4.1. Let R be a k-semiring. The intersection of all fuzzy prime ideals of R is called the *fuzzy prime radical* of R, denoted by FPR(R).

Definition 4.2 [5]. Let R be a k-semiring. The intersection of all fuzzy maximal ideals of R is called the *fuzzy Jacobson radical* of R, denoted by $\mathrm{FJR}(R)$.

From Theorem 3.22, we have the following theorem.

Theorem 4.3. Let R be a k-semiring. Then $FPR(R) \subseteq FJR(R)$.

Proof.

$$FJR(R) = \bigcap \{\alpha \mid \alpha \text{ is a fuzzy maximal ideal of } R\}$$
$$\supseteq \bigcap \{\alpha \mid \alpha \text{ is a fuzzy prime ideal of } R\}$$
$$= FPR(R).$$

Notation. We denote the collection of all fuzzy prime ideals of R by FPI(R) and denote the collection of all fuzzy prime ideals of R such that all its level subsets are k-ideals of R by $FPI^*(R)$. The intersection of all fuzzy prime ideals in $FPI^*(R)$ is denoted by $FPR^*(R)$.

Theorem 4.4 [5]. Let α and β be fuzzy ideals of a k-semiring R such that all its level subsets are k-ideals of R. Then $\alpha \cap \beta$ is a fuzzy ideal of R such that all its level subsets are k-ideals of R.

Theorem 4.5 [5]. Let α and β be fuzzy ideals of a k-semiring R such that all its level subsets are k-ideals of R. Then $\overline{\alpha \cap \beta} = \overline{\alpha} \cap \overline{\beta}$.

Theorem 4.6. Let R be a k-semiring and \overline{R} be the extension ring of R. If A be a fuzzy prime ideal of \overline{R} , then there exists a fuzzy prime ideal α of R such that all its level subsets are k-ideals of R and $\overline{\alpha} = A$.

Proof. Let α be the restriction $A \mid R$ of A to R. For each $t \in [0, 1]$, let $x + y \in \alpha_t$, and $y \in \alpha_t$, then $\alpha(x + y) \ge t$ and $\alpha(y) \ge t$. So $A(x + y) \ge t$ and $A(y) \ge t$, which implies that $x + y \in A_t$ and $y \in A_t$. Since A_t is an ideal of \overline{R} , $x \in A_t$. Thus $A(x) \ge t$ and thus $\alpha(x) \ge t$. So $x \in \alpha_t$. Hence α_t is a k-ideal of R for all $t \in [0, 1]$ and hence $\overline{\alpha} = A$. On the other hand, by Theorem 3.16, α is a fuzzy prime ideal of R. This completes the proof.

Lemma 4.7. Let R be a k-semiring and \overline{R} be the extension ring of R. Then a mapping $f: \mathrm{FPI}^*(R) \to \mathrm{FPI}^*(\overline{R})$ defined by $f(\alpha) = \overline{\alpha}$ is bijective. **Proof.** Let $f(\alpha) = f(\beta)$. Then $\overline{\alpha} = \overline{\beta}$ and $\alpha = \beta$. Thus f is one-one. Let A be any element of $\mathrm{FPI}^*(\overline{R})$. Then by Theorem 4.6, there exists an element $\alpha \in \mathrm{FPI}^*(R)$ such that $\overline{\alpha} = A$. Thus $f(\alpha) = \overline{\alpha} = A$. Hence f is onto. This completes the proof.

Theorem 4.8. Let R be a k-semiring and \overline{R} be the extension ring of R. Then $\overline{\text{FPR}^*(R)} = \text{FPR}^*(\overline{R})$.

Proof. By Theorem 4.5 and Lemma 4.7,

$$\begin{aligned} \operatorname{FPR}^*(R) &= \bigcap \left\{ \alpha \, | \, \alpha \in \operatorname{FPI}^*(R) \right\} \\ &= \bigcap \left\{ \overline{\alpha} \, | \, \overline{\alpha} \in \operatorname{FPI}^*(\overline{R}) \right\} \\ &= \operatorname{FPR}^*(\overline{R}). \end{aligned}$$

Theorem 4.9 [9]. Let R be a commutative ring with identity and let $\mu = \text{FPR}(R)$. Then R/μ is zero.

Remark. Clearly a fuzzy prime ideal of a k-semiring R is fuzzy semiprime.

Theorem 4.10 [5]. If α and β be fuzzy semiprime ideals of R, then $\alpha \cap \beta$ is a fuzzy semiprime ideal of R.

From the above Remark and Theorem 4.10, we have the following.

Corollary 4.11. If R is a k-semiring, then FPR(R) is fuzzy semiprime.

Theorem 4.12. Let R be a k-semiring and let $\mu = \text{FPR}(R)$. Then R/μ is zero prime radical.

Proof. Since $PR(R/\mu) = PR(\overline{R/\mu}) \cap R/\mu$ is the ideal of all nilpotent elements of R/μ by Theorem 2.11, we must show that every nilpotent element of R/μ is zero. Let $x + \mu$ be any element of R/μ . Then $x^n + \mu = 0 + \mu$ for some $n \in \mathbb{Z}_+$, so that $\overline{\mu}(x^n \oplus 0') = \mu(0)$. Since $\overline{\mu}(x^n \oplus 0') = \overline{\mu}(x^n) = \mu(x^n) = \mu(x)$ by Corollary 4.11, $\mu(x) = \mu(0)$ and so $\overline{\mu}(x \oplus 0') = \overline{\mu}(x^n) = \mu(x^n) = \mu(x$

 $\mu(0)$, which implies that $x + \mu = 0 + \mu$ by Theorem 3.12. Hence $PR(R/\mu)$ is zero prime radical.

Lemma 4.13 [5]. Let $\varphi: R \to S$ be an epimorphism from a k-semiring R onto a k-semiring S. Let β_1 and β_2 be fuzzy ideals of S. Then $\varphi^{-1}(\beta_1 \cap \beta_2) = \varphi^{-1}\beta_1 \cap \varphi^{-1}\beta_2$.

Lemma 4.14 [5]. Let α and β be fuzzy ideals of a k-semiring R. Then $(\alpha \cap \beta)_t = \alpha_t \cap \beta_t$ for all $t \in [0, 1]$.

Lemma 4.15 [5]. Let α and β be fuzzy ideals of a k-semiring R. If α_t and β_t are k-ideals of R for all $t \in [0, 1]$, then $\alpha_t \cap \beta_t$ is a k-ideal of R.

Theorem 4.16. Let $\varphi: R \to S$ be an epimorphism from a k-semiring R onto a k-semiring S. Then $\varphi^{-1}(\operatorname{FPR}(S)) \supseteq \operatorname{FPR}(R)$.

Proof.

$$\varphi^{-1}(\operatorname{FPR}(S)) = \varphi^{-1}(\bigcap \{\beta \mid \beta \text{ is a fuzzy prime ideal of } S\})$$
$$= \bigcap \{\varphi^{-1}(\beta) \mid \beta \text{ is a fuzzy prime ideal of } S\}$$
$$\supseteq \operatorname{FPR}(R).$$

From Theorem 4.16, we have the following.

Corollary 4.17. Let $\varphi: R \to S$ be an epimorphism from a k-semiring R onto a k-semiring S. Then $\varphi(\operatorname{FPR}(R)) \subseteq \operatorname{FPR}(S)$.

Proof. By Theorem 4.16, we have

$$\varphi(\operatorname{FPR}(R)) \subseteq \varphi(\varphi^{-1}(\operatorname{FPR}(S))) = \operatorname{FPR}(S).$$

Definition 4.18 [7]. Let R and S be any sets and let $f: R \to S$ be a function. A fuzzy subset A of R is called f-invariant if f(x) = f(y) implies A(x) = A(y), where $x, y \in R$.

Lemma 4.19 [4]. Let $\varphi: R \to S$ be an epimorphism from a k-semiring R onto a k-semiring S and let α be φ -invariant fuzzy ideal of R. Then α is a fuzzy prime ideal of R iff $\varphi(\alpha)$ is a fuzzy prime ideal of S.

Lemma 4.20 [4]. Let $\varphi: R \to S$ be an epimorphism from a k-semiring R onto a k-semiring S and let α be φ -invariant fuzzy ideal of R such that all its level subsets are k-ideals of R. Then $\overline{\alpha}$ is $\overline{\varphi}$ -invariant.

Lemma 4.21 [9]. If μ is any fuzzy ideal of a commutative ring with identity R, then $\mu(x - y) = \mu(0) \Leftrightarrow x + \mu = y + \mu$ for any $x, y \in R$.

Theorem 4.22. Let $\varphi: R \to S$ be an epimorphism from a k-semiring R onto a k-semiring S, $\overline{\varphi}$ be the extension of φ and let $\mu = \operatorname{FPR}^*(R)$. If μ is φ -invariant, then every element of $\operatorname{FPI}^*(R)$ is φ -invariant.

Proof. Let $\varphi(x) = \varphi(y)$ $(x, y \in R)$. Then $\overline{\varphi}(x) = \overline{\varphi}(y)$. Since μ is φ -invariant, by Lemma 4.20, $\overline{\mu}$ is $\overline{\varphi}$ -invariant. Thus $\overline{\mu}(x) = \overline{\mu}(y)$, so that $\overline{\alpha}(x - y) = \overline{\alpha}(0)$ for each $\alpha \in \mathrm{FPI}^*(R)$. Thus $\overline{\alpha}(x) = \overline{\alpha}(y)$ and thus $\alpha(x) = \alpha(y)$ for each $\alpha \in \mathrm{FPI}^*(R)$. This completes the proof.

From Lemma 4.19 and Theorem 4.22, we have the following.

Theorem 4.23. Let $\varphi : R \to S$ be an epimorphism from a k-semiring R onto a k-semiring S and let $\mu \in \operatorname{FPR}^*(R)$ be φ -invariant. Then if $\alpha \in \operatorname{FPI}^*(R)$, then $\varphi(\alpha) \in \operatorname{FPI}^*(S)$.

Lemma 4.24. Let φ and μ be as Theorem 4.23. Then $f : \mathrm{FPI}^*(R) \to \mathrm{FPI}^*(S)$ defined by $f(\alpha) = \varphi(\alpha)$ is bijective.

Proof. By Theorem 4.23, f is well defined. Let $f(\alpha) = f(\beta)$. Then $\varphi(\alpha) = \varphi(\beta)$. Since μ is φ -invariant, by Theorem 4.22, α and β are φ -invariant, so that $\alpha = \beta$. Thus f is one-one. Let β be any element of $\mathrm{FPI}^*(S)$. Then by Theorem 3.17, there exists $\alpha = \varphi^{-1}(\beta) \in \mathrm{FPI}^*(R)$ such that $f(\alpha) = \varphi(\alpha) = \varphi(\varphi^{-1}(\beta)) = \beta$. Thus f is onto. This completes the proof.

By Lemma 4.24, we have $\mathrm{FPI}^*(R) = \{ \phi^{-1}(\beta) | \beta \in \mathrm{FPI}^*(S) \}$. So we obtain the following theorem.

Theorem 4.25. Let φ and μ be as Theorem 4.23 and let $\nu = \mathrm{FPR}^*(S)$. Then $\varphi^{-1}(\nu) = \mu$.

Proof.

$$\phi^{-1}(\nu) = \phi^{-1}(\cap \{\beta \,|\, \beta \in \operatorname{FPI}^*(S)\}) = \cap \{\phi^{-1}(\beta) \,|\, \beta \in \operatorname{FPI}^*(S)\} = \mu.$$

Corollary 4.26. Let ϕ and μ be as Theorem 4.23 and let $\nu = \mathrm{FPR}^*(S)$. Then $\phi(\mu) = \nu$.

Proof. By Theorem 4.25, $\varphi(\mu) = \varphi(\varphi^{-1}(\nu)) = \nu$.

From Theorems 4.8, 4.25 and Corollary 4.26, we have the following corollary.

Corollary 4.27. Let φ and μ be as Theorem 4.23 and let $\nu = \mathrm{FPR}^*(S)$. Let \overline{R} and \overline{S} be the extension rings of R and S, respectively. Then

(1)
$$\overline{\varphi^{-1}(v)} = \text{FPR}^*(\overline{R}).$$

(2)
$$\overline{\varphi(\mu)} = \operatorname{FPR}^*(\overline{S}).$$

References

- D. M. Burton, A First Course in Rings and Ideals, Addition-Wesley, Cambridge, MA, 1970
- [2] Y. B. Chun, H. S. Kim and H. B. Kim, A study on the structure of a semiring, Journal of the Natural Science Research Institute (Yonsei Univ.) 11 (1983), 69-74.
- [3] Y. B. Chun, C. B. Kim and H. S. Kim, Isomorphism theorem in k-semirings, Yonsei Nonchong 21 (1985), 1-9.
- [4] Chang Bum Kim, Isomorphism theorems and fuzzy k-ideals of k-semirings, Fuzzy Sets and Systems 112 (2000), 333-342.
- [5] Chang Bum Kim, The fuzzy Jacobson radical of a k-semiring (2007), accepted.
- [6] Chang Bum Kim and Mi-Ae Park, k-fuzzy ideals in semirings, Fuzzy Sets and Systems 81 (1996), 281-286.
- [7] Rajesh Kumar, Fuzzy semiprimary ideals of rings, Fuzzy Sets and Systems 42 (1991), 263-272.
- [8] Rajesh Kumar, Fuzzy nil radicals and fuzzy primary ideals, Fuzzy Sets and Systems 43 (1991), 81-93.

- [9] Rajesh Kumar, Fuzzy cosets and some fuzzy radicals, Fuzzy Sets and Systems 46 (1992), 261-265.
- [10] Rajesh Kumar, Fuzzy subgroups, fuzzy ideals, and fuzzy cosets: some properties, Fuzzy Sets and Systems 48 (1992), 267-274.
- [11] Rajesh Kumar, Certain fuzzy ideals of rings redefined, Fuzzy Sets and Systems 46 (1992), 251-260.
- [12] H. V. Kumbhojkar and M. S. Bapat, Not-so-fuzzy fuzzy ideals, Fuzzy Sets and Systems 37 (1990), 237-247.
- [13] H. V. Kumbhojkar and M. S. Bapat, Correspondence theorem for fuzzy ideals, Fuzzy Sets and Systems 41 (1991), 213-219.
- [14] Takashi Kuraoka and Nobuaki Kuroki, On fuzzy quotient rings induced by fuzzy ideals, Fuzzy Sets and Systems 47 (1992), 381-386.
- [15] Wang Jin Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982), 133-139.
- [16] D. S. Malik and J. N. Mordeson, Extensions of fuzzy subrings and fuzzy ideals, Fuzzy Sets and Systems 45 (1992), 245-251.
- [17] D. S. Malik and J. N. Mordeson, Fuzzy maximal, radical, and primary ideals of a ring, Inform. Sci. 55 (1991), 151-165.
- [18] T. K. Mukherjee and M. K. Sen, On fuzzy ideals of a ring 1, Fuzzy Sets and Systems 21 (1987), 99-104.
- [19] U. M. Swamy and K. L. N. Swamy, Fuzzy prime ideals of rings, J. Math. Anal. Appl. 134 (1988), 94-103.
- [20] Zhang Yue, Prime L-fuzzy ideals and primary L-fuzzy ideals, Fuzzy Sets and Systems 21 (1988), 345-350.
- [21] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.