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Abstract

We consider the convergence and efficiency of various data
augmentation algorithms, including the parameter-expansion data
augmentation (PX-DA) algorithms of Liu and Wu [8], Meng and van
Dyk [9], and Hobert and Marchev [5]. In particular, we explore
connections between Markov chain partial order introduced by Peskun
[12], operator norm bounds, geometric ergodicity, variance bounding
Markov chains, and L2 theory. Our main result is a direct generalisation
of one of the theorems in Hobert and Marchev [5].

1. Introduction

This short paper considers comparisons of different data



w
w

w
.p

ph
m

j.c
om

JAMES P. HOBERT and JEFFREY S. ROSENTHAL292

augmentation algorithms in terms of their convergence and efficiency. It

examines connections between the partial order 1≺  on Markov kernels,

and inequalities of operator norms. It applies notions from Roberts and

Rosenthal [16] related to variance bounding Markov chains, together with

L2 theory, to data augmentation algorithms (Tanner and Wong [19];

Liu and Wu [8]; Meng and van Dyk [9]; Hobert and Marchev [5]). In

particular, our main result, Theorem 10, is a direct generalisation of one

of the theorems in Hobert and Marchev [5].

2. Background and Notation

Let ( )⋅π  be a probability measure on a measurable space ( )., FX

For measurable ,: R→Xf  write ( ) ∫ π=π
X

.fdf  Let

( ) { ( ) }, andmeasurable.t.s: 22 ∞<π→=π fffL RX

( ) { ( ) ( ) },0.t.s22
0 =ππ∈=π fLfL  and ( ) { ( ) ( ) }.1.t.s 22

0
2

1,0 =ππ∈=π fLfL

For ( ),, 2 π∈ Lgf  write ( ) ( ) ( )∫ π=
X

,, dxxgxfgf  and ., fff =

Let P be a Markov chain operator on ( )., FX  For a measure µ

on ( ),, FX  write Pµ  for the measure on ( )FX ,  defined by ( ) ( ) =µ AP

( ) ( )∫ µ
X

AyPdy ,  for .F∈A  For a measurable function ,: R→Xf  write

Pf  for the measurable function defined by ( ) ( ) ( ) ( )∫=
X

dyxPyfxPf ,  for

.X∈x  Write P  for the norm of the operator P restricted to ( ),2
0 πL

i.e., { ( )}..t.ssup 2
1,0 π∈= LfPfP

The Markov chain operator P has stationary distribution ( )⋅π  if

.π=πP  P is reversible (with  respect to ( ))⋅π  if ( ) ( ) =π dyxPdx ,

( ) ( )dxyPdy ,π  as measures on ,XX ×  or equivalently if P is a self-adjoint

operator on ( ).2 πL  If P is reversible with respect to ( ),⋅π  then P has

stationary distribution ( )⋅π  (see, e.g., Roberts and Rosenthal [15]).
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In terms of a Markov chain { }∞=0nnX  following the transitions P

in stationarity, so ( ) ( )⋅π=nXL  and [ ] ( )AXPXAX nnn ,1 =|∈+P  for

all F∈A  and all ,N∈n  we have the interpretations ( ) ( ) =xPf

( )[ ],01 xXXf =|E  and ( ) ( )[ ],, 00 XgXfgf E=  and

( ) ( ) ( )[ ] ( ) ( )[ ]., 1000 XgXfXPgXfPgf EE ==

For a reversible Markov chain operator P on ( ),2 πL  write ( )Pσ  for the

spectrum of P restricted to ( ).2
0 πL  Let ( )PmP σ= inf  and ( ).sup PMP σ=

A reversible operator P is positive iff ,0≥Pm  i.e., if 0, ≥fPf  for all f.

The following properties follow from basic operator theory (e.g., Rudin
[18]; Chan and Geyer [2]).

Proposition 1. Let P be a reversible Markov chain operator. Then

(a) ( ) [ ],1,1−⊆σ P  i.e., ;11 ≤≤≤− PP Mm

(b) ( ),,max PP MmP −=  so in particular ;PMP ≤

(c) { ( )};..,inf 2
1,0 π∈= LhtshPhmP

(d) { ( )};..,sup 2
1,0 π∈= LhtshPhMP

(e) { ( )}...,sup 2
1,0 π∈= LhtshPhP

A Markov kernel P is geometrically ergodic if there is π-a.e. finite

[ ]∞→ ,0: XM  and 1<ρ  such that ( ) ( ) ( ) nn xMAAxP ρ≤π−,  for all

X∈∈ xn ,N  and .F∈A  From Roberts and Rosenthal [13] and the above,

we obtain:

Proposition 2. Let P be a reversible Markov chain operator. Then the

following are equivalent:

(a) P is geometrically ergodic;

(b) ;1<P

(c) 1−>Pm  and ;1<PM

(d) ( ) [ ]rrP ,−⊆σ  for some .1<r
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Remark. On a finite state space, 1−=Pm  if and only if 1−  is an

eigenvalue, which occurs if and only if P is periodic (with even period).
However, on an infinite state space, P could have spectrum converging to

,1−  and thus have ,1−=Pm  even if P is not periodic and does not have

an eigenvalue equal to .1−

Given a Markov operator P and a measurable function ,: R→Xf

the corresponding asymptotic variance is given by ( ) =Pf ,Var

( ( )),Varlim
1

1 ∑ =
−

∞→
n
i in Xfn  where again { }nX  follows the Markov chain

in stationarity. A Markov operator P satisfies a central limit theorem

(CLT) for f if ( ) ( )[ ]∑ =
− π−n

i i fXfn
1

21  converges weakly to ( )2,0 fN σ  for

some .2 ∞<σ f  Kipnis and Varadhan [6] (see also Chan and Geyer [2])

prove that if P is reversible, and ( ) ,,Var ∞<Pf  then P satisfies a CLT for

f, and furthermore ( ).,Var2 Pff =σ

Roberts and Rosenthal [16] define a Markov operator P to be variance

bounding if { ( ) ( )} ,.t.s,Varsup 2
1,0 ∞<π∈ LfPf  and prove the following:

Proposition 3. Let P be a reversible Markov chain operator. Then the

following are equivalent:

(a) ( ) ∞<Pf ,Var  for all ( );2 π∈ Lf

(b) P is variance bounding;

(c) .1<PM

In particular, comparing Propositions 2(c) and 3(c) show that if P is
geometrically ergodic, then it is variance bounding.

3. Partial Orderings

Let P and Q be Markov operators on ( ),, FX  each having stationary

distribution ( ).⋅π  Write QP 1;  if for all ( )π∈ 2Lf  ( ,or  equivalently, for

all ( )),2
0 π∈ Lf  then we have .,, QffPff ≤
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Peskun [12], Tierney [20] and Mira and Geyer [11, Theorem 4.2], see
also Mira [10], prove that if P and Q are reversible, then QP 1;  if and

only if ( ) ( )fQfP ,Var,Var ≤  for all ( ).2 π∈ Lf  In particular, it follows

that if QP 1;  and Q is variance bounding, then P is variance bounding.

However, the corresponding property for geometric ergodicity does not
hold. That is, if QP 1;  and Q is geometrically ergodic, then it does not

necessarily follow that P is also geometrically ergodic (Roberts and
Rosenthal [16]). This illustrates the potential conflict between small
variance and rapid convergence (Mira [10] and Rosenthal [17]).

Concerning operator norms, we have the following.

Proposition 4. If R and S are reversible, and ,1 SR ;  then ≤R

( ).,max SmR−

Proof. We have

( ) ( ) ( ).,max,max,max SmMmMmR RSRRR −≤−≤−=

Corollary 5. If R and S are reversible, and R is positive, and ,1 SR ;

then .SR ≤

Proof. Since R is positive, ,0≥Rm  so ( ) .,max SSmR =−

It then follows from Proposition 2 that:

Corollary 6. If R and S are reversible, and R is positive, and ,1 SR ;
and S is geometrically ergodic, then R is geometrically ergodic.

4. Data Augmentation Algorithms

Consider now the case where the state space is a product space,
( ) ( ).,, GYFX ×  Let ( )⋅µ  and ( )⋅ν  be some σ-finite reference measures on

X  and ,Y  respectively (e.g., Lebesgue measure of appropriate dimension),

and let ( )⋅π  be a probability measure on YX ×  having (unnormalised)

density w with respect to :ν×µ

( )
( ) ( ) ( )

( ) ( ) ( )
.

,

,

∫ ∫
∫ ∫

∈ ∈

∈ ∈

νµ

νµ
=×π

Y Xy x

By Ax

dydxyxw

dydxyxw
BA
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Also, let xπ  and yπ  denote the marginal measures on ( )FX ,  and ( ),, GY

respectively; e.g., ( ) ( ).Y×π=π AAx

The data augmentation algorithm (Tanner and Wong [19]) may be
defined as follows. Let 1P  be the Markov operator on YX ×  which leaves

y fixed while updating x from the conditional density given by w, i.e.,

( ) { }( )
( ) ( )

( ) ( )
.,

,

,
,,1 F

X

∈
µ

µ
=×

∫
∫

∈

∈ A
dxyxw

dxyxw
yAyxP

x

Ax (1)

Similarly, define 2P  by

( ) { }( )
( ) ( )

( ) ( )
.,

,

,
,,2 G

Y

∈
ν

ν
=×

∫
∫

∈

∈ B
dyyxw

dyyxw
BxyxP

y

By (2)

Then the traditional data augmentation algorithm corresponds to the
operator ,12PPP =  i.e., the Markov chain which updates first y (with )1P

and then x (with ).2P  (This is the systematic scan version; the random

scan version is ( )212
1 PPP +=  though we do not consider that here.)

A data-augmentation algorithm Markov operator P on ( ) ( )GYFX ,, ×

then induces a corresponding restricted Markov operator P̂  on ( ),, FX

by ( ) ( )( ),,,,ˆ Y×= AyxPAxP  equivalent to performing P as usual but

keeping track of only the x coordinate. It is well known and easy to show

that P̂  is reversible with respect to .xπ  (In the language of Roberts and

Rosenthal [14], the individual chain { }nY  and the pair chain ( ){ }nn YX ,

are co-de-initialising.)

Amit [1] and Liu et al. [7, Lemma 3.2] prove the following:

Proposition 7. Let ( ){ }nn YX ,  follow a systematic scan data

augmentation algorithm P, and let ( ).2
0 xLf π∈  Then

( )( )[ ] .0Varˆ, ≥|= ππ YXffPf E
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Proposition 7 immediately implies:

Corollary 8. A Markov chain operator P̂  corresponding to a

systematic scan data augmentation algorithm is positive.

Hobert and Marchev [5], following Liu and Wu [8] and Meng and van

Dyk [9], generalise the data augmentation algorithm as follows. Let

R be any Markov chain operator on ( )GY,  having yπ  as a stationary

distribution. Extend this trivially to ( ) ( )GYFX ,, ×  by ,RIR ×=  i.e.,

( ) { }( ) ( ).,,, ByRBxyxR =×

Then define ;21 PRPPR =  intuitively, RP  corresponds to first updating y

with ,2P  then updating y with R, and then updating x with .1P  Let RP̂

be the corresponding restricted operator on X  as above. It is clear that

xπ  is a stationary distribution for .ˆ
RP

Say that RP  is a DA algorithm if there is some other density function

∗w  on ,YX ×  that also yields xπ  as the x-marginal, such that if ∗
1P  and ∗

2P

are defined by (1) and (2) but with ∗w  in place of w, then ,12
∗∗= PPPR

i.e., RP  is a traditional data augmentation algorithm based on the joint

density .∗w  In terms of this, Hobert and Marchev [5, Theorem 3] prove:

Proposition 9. Let R and S be two Markov operators on ( )GY,  that

are both reversible with respect to ,yπ  and let SRR PPP ,ˆ,  and SP̂  be as

defined above. Then

(a) RP̂  and SP̂  are reversible with respect to ;xπ

(b) if ,1 SR ;  then ;ˆˆ
1 SR PP ;

(c) if ,1 SR ;  and if RP  and SP  are both DA algorithms, then RP̂

.ˆ
SP≤
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In particular, Proposition 9(c) requires unnatural assumptions about

RP  and SP  being DA algorithms, which are hard to verify and might well

fail. Using the theory of the previous section, we are able to improve upon
their result, as follows:

Theorem 10. In Proposition 9, part (c) may be replaced by any of the

following:

( )c′  if ,1 SR ;  then ( ).ˆ,maxˆ
ˆ SPR PmP
R

−≤

( )c ′′  if ,1 SR ;  and if RP̂  is a positive operator, then .ˆˆ
SR PP ≤

( )c ′′′  if ,1 SR ;  and if RP  is a DA algorithm, then .ˆˆ
SR PP ≤

Proof. ( )c′  follows from combining Proposition 9(b) with Proposition

4. ( )c ′′  follows immediately from ( )c′  as in Corollary 5. ( )c ′′′  follows by

combining ( )c ′′  with Corollary 8.

Comparing Theorem 10 with Proposition 2, we conclude:

Corollary 11. If SR 1;  and ,1ˆ −>
RPm  and SP̂  is geometrically

ergodic, then RP̂  is geometrically ergodic.

Now, if S is the identity operator I on ,Y  then SP  corresponds to the

traditional data augmentation algorithm, that is, .PPS =  Of course,

IR 1;  for all R. Hence, Theorem 10 immediately implies:

Corollary 12. Let R be a Markov operator on ( )GY,  that is reversible

with respect to ,yπ  and let RR PP ˆ,  and P̂  be as defined above. Then

(a) ;ˆˆ
1 PPR ;

(b) ( );ˆ,maxˆ
ˆ PmP
RPR −≤

(c) if RP̂  is a positive operator, then ;ˆˆ PPR ≤

(d) (Hobert and Marchev [5]) if RP  is a DA algorithm, then

.ˆˆ PPR ≤
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Remark. Corollary 12(d) essentially says that .2121 PPRPP ≤

One might think this is “obvious”, since 1≤R  and since BAAB =

for reversible A and B. However, it does not necessarily follow that

2121 PPRRPP ≤  in general. For example, let

.
10
00

,
00
01

,
01
10

21 





=






=






= PPR

Then ,021 =PP  but 





=

00
10

21RPP  which has norm 1.

Hobert and Marchev leave as an open problem whether their

additional assumption (that RP  and SP  are DA algorithms) is required

to conclude that .ˆˆ
SR PP ≤  Theorem ( )c10 ′′′  shows that at most half

of their assumption, i.e., that just RP  is a DA algorithm, is required. But

this still leaves the question of whether the result holds without any such

assumption at all. In fact, it does not.

Example 13. Let { }1,0== YX  and suppose that ( )0,0 == YXP

,41=  ( ) ( ) 410,1,831,0 ====== YXYX PP  and ( )1,1 == YXP

.81=  Note that the marginal distribution of Y is uniform, i.e., ( )0=YP

( ) .211 === YP  The marginal distribution of X is as follows: ( )0=XP

85=  and ( ) .831 ==XP  Now define






=

01
10

R

and







=

2121
2121

S

and consider these to be Markov transition matrices on .Y  It is easy to

see that R and S are both reversible with respect to the marginal

distribution of Y. Moreover, RS −  has eigenvalues 0 and 1 so .1 SR ;
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Note that a draw from S is equivalent to a draw from the marginal

distribution of Y. It follows immediately that

.
8385
8385ˆ 





=SP

It is easy to show that

.
3132
5253ˆ 





=RP

Thus, RP̂  and SP̂  are both irreducible and aperiodic. Furthermore, RP̂  has

eigenvalues 1 and ,151−  so

.0ˆ151ˆ =>= SR PP

Alternatively, if we instead take ( ) ( ) ,211,10,0 ====== YXYX PP

then RP̂  is the same as R, so 1ˆ =RP  even though SR 1;  and .0ˆ =SP

This gives an even more “extreme” counter-example, but at the expense of

making RP̂  periodic.

5. Questions for Further Research

We close with a few brief questions for possible further research.

Is it possible to quantify the improvement of RP̂  over SP̂ ? For

example, suppose cIRS −−  is positive for some .0>c  What quantitative

results does this imply about how much RM  is less than SM  or ( )Rf ,Var

is less than ( ),,Var Sf  or R  is less than S ?

Which of the results in this paper carry over to the non-reversible

case? Or even to the case where 21QQP =  with each iQ  reversible?

Various results about mixing of non-reversible operators are discussed in,

e.g., Mira and Geyer [11], Fill [4] and Dyer et al. [3] but it is not clear how

to apply them in the current context.
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