# NORM COMPARISONS FOR DATA AUGMENTATION 

JAMES P. HOBERT ${ }^{1}$ and JEFFREY S. ROSENTHAL ${ }^{2}$<br>${ }^{1}$ Department of Statistics<br>University of Florida<br>P. O. Box 118545<br>Gainesville, FL 32611-8545<br>U. S. A.<br>${ }^{2}$ Department of Statistics<br>University of Toronto<br>Ontario, Canada M5S 3G3<br>e-mail: jeff@math.toronto.edu


#### Abstract

We consider the convergence and efficiency of various data augmentation algorithms, including the parameter-expansion data augmentation (PX-DA) algorithms of Liu and Wu [8], Meng and van Dyk [9], and Hobert and Marchev [5]. In particular, we explore connections between Markov chain partial order introduced by Peskun [12], operator norm bounds, geometric ergodicity, variance bounding Markov chains, and L2 theory. Our main result is a direct generalisation of one of the theorems in Hobert and Marchev [5].


## 1. Introduction

This short paper considers comparisons of different data
2000 Mathematics Subject Classification: Primary 60J10; Secondary 60J22, 65C40.
Keywords and phrases: Markov chain, MCMC, data augmentation, PX-DA, Peskun order, geometric ergodicity, variance bounding.
${ }^{1}$ Supported in part by NSF Grant DMS-05-03648.
${ }^{2}$ Supported in part by NSERC of Canada.
Received April 11, 2007
augmentation algorithms in terms of their convergence and efficiency. It examines connections between the partial order $\preceq_{1}$ on Markov kernels, and inequalities of operator norms. It applies notions from Roberts and Rosenthal [16] related to variance bounding Markov chains, together with L2 theory, to data augmentation algorithms (Tanner and Wong [19]; Liu and Wu [8]; Meng and van Dyk [9]; Hobert and Marchev [5]). In particular, our main result, Theorem 10, is a direct generalisation of one of the theorems in Hobert and Marchev [5].

## 2. Background and Notation

Let $\pi(\cdot)$ be a probability measure on a measurable space $(\mathcal{X}, \mathcal{F})$. For measurable $f: \mathcal{X} \rightarrow \mathbf{R}$, write $\pi(f)=\int_{\mathcal{X}} f d \pi$. Let

$$
L^{2}(\pi)=\left\{f: \mathcal{X} \rightarrow \mathbf{R} \text { s.t. } f \text { measurable and } \pi\left(f^{2}\right)<\infty\right\}
$$

$L_{0}^{2}(\pi)=\left\{f \in L^{2}(\pi)\right.$ s.t. $\left.\pi(f)=0\right\}$, and $L_{0,1}^{2}(\pi)=\left\{f \in L_{0}^{2}(\pi)\right.$ s.t. $\left.\pi\left(f^{2}\right)=1\right\}$. For $f, g \in L^{2}(\pi)$, write $\langle f, g\rangle=\int_{\mathcal{X}} f(x) g(x) \pi(d x)$, and $\|f\|=\sqrt{\langle f, f\rangle}$.

Let $P$ be a Markov chain operator on $(\mathcal{X}, \mathcal{F})$. For a measure $\mu$ on $(\mathcal{X}, \mathcal{F})$, write $\mu P$ for the measure on $(\mathcal{X}, \mathcal{F})$ defined by $(\mu P)(A)=$ $\int_{\mathcal{X}} \mu(d y) P(y, A)$ for $A \in \mathcal{F}$. For a measurable function $f: \mathcal{X} \rightarrow \mathbf{R}$, write $P f$ for the measurable function defined by $(P f)(x)=\int_{\mathcal{X}} f(y) P(x, d y)$ for $x \in \mathcal{X}$. Write $\|P\|$ for the norm of the operator $P$ restricted to $L_{0}^{2}(\pi)$, i.e., $\|P\|=\sup \left\{\|P f\|\right.$ s.t. $\left.f \in L_{0,1}^{2}(\pi)\right\}$.

The Markov chain operator $P$ has stationary distribution $\pi(\cdot)$ if $\pi P=\pi . \quad P$ is reversible (with respect to $\pi(\cdot)$ ) if $\pi(d x) P(x, d y)=$ $\pi(d y) P(y, d x)$ as measures on $\mathcal{X} \times \mathcal{X}$, or equivalently if $P$ is a self-adjoint operator on $L^{2}(\pi)$. If $P$ is reversible with respect to $\pi(\cdot)$, then $P$ has stationary distribution $\pi(\cdot)$ (see, e.g., Roberts and Rosenthal [15]).

In terms of a Markov chain $\left\{X_{n}\right\}_{n=0}^{\infty}$ following the transitions $P$ in stationarity, so $\mathcal{L}\left(X_{n}\right)=\pi(\cdot)$ and $\mathbf{P}\left[X_{n+1} \in A \mid X_{n}\right]=P\left(X_{n}, A\right)$ for all $A \in \mathcal{F}$ and all $n \in \mathbf{N}$, we have the interpretations $(P f)(x)=$ $\mathbf{E}\left[f\left(X_{1}\right) \mid X_{0}=x\right]$, and $\langle f, g\rangle=\mathbf{E}\left[f\left(X_{0}\right) g\left(X_{0}\right)\right]$, and

$$
\langle f, P g\rangle=\mathbf{E}\left[f\left(X_{0}\right)(P g)\left(X_{0}\right)\right]=\mathbf{E}\left[f\left(X_{0}\right) g\left(X_{1}\right)\right] .
$$

For a reversible Markov chain operator $P$ on $L^{2}(\pi)$, write $\sigma(P)$ for the spectrum of $P$ restricted to $L_{0}^{2}(\pi)$. Let $m_{P}=\inf \sigma(P)$ and $M_{P}=\sup \sigma(P)$. A reversible operator $P$ is positive iff $m_{P} \geq 0$, i.e., if $\langle P f, f\rangle \geq 0$ for all $f$. The following properties follow from basic operator theory (e.g., Rudin [18]; Chan and Geyer [2]).

Proposition 1. Let P be a reversible Markov chain operator. Then
(a) $\sigma(P) \subseteq[-1,1]$, i.e., $-1 \leq m_{P} \leq M_{P} \leq 1$;
(b) $\|P\|=\max \left(-m_{P}, M_{P}\right)$, so in particular $M_{P} \leq\|P\|$;
(c) $m_{P}=\inf \left\{\langle P h, h\rangle\right.$ s.t. $\left.h \in \mathcal{L}_{0,1}^{2}(\pi)\right\}$;
(d) $M_{P}=\sup \left\{\langle P h, h\rangle\right.$ s.t. $\left.h \in \mathcal{L}_{0,1}^{2}(\pi)\right\}$;
(e) $\|P\|=\sup \left\{|\langle P h, h\rangle|\right.$ s.t. $\left.h \in \mathcal{L}_{0,1}^{2}(\pi)\right\}$.

A Markov kernel $P$ is geometrically ergodic if there is $\pi$-a.e. finite $M: \mathcal{X} \rightarrow[0, \infty]$ and $\rho<1$ such that $\left|P^{n}(x, A)-\pi(A)\right| \leq M(x) \rho^{n}$ for all $n \in \mathbf{N}, x \in \mathcal{X}$ and $A \in \mathcal{F}$. From Roberts and Rosenthal [13] and the above, we obtain:

Proposition 2. Let P be a reversible Markov chain operator. Then the following are equivalent:
(a) $P$ is geometrically ergodic;
(b) $\|P\|<1$;
(c) $m_{P}>-1$ and $M_{P}<1$;
(d) $\sigma(P) \subseteq[-r, r]$ for some $r<1$.

Remark. On a finite state space, $m_{P}=-1$ if and only if -1 is an eigenvalue, which occurs if and only if $P$ is periodic (with even period). However, on an infinite state space, $P$ could have spectrum converging to -1 , and thus have $m_{P}=-1$, even if $P$ is not periodic and does not have an eigenvalue equal to -1 .

Given a Markov operator $P$ and a measurable function $f: \mathcal{X} \rightarrow \mathbf{R}$, the corresponding asymptotic variance is given by $\operatorname{Var}(f, P)=$ $\lim _{n \rightarrow \infty} n^{-1} \operatorname{Var}\left(\sum_{i=1}^{n} f\left(X_{i}\right)\right)$, where again $\left\{X_{n}\right\}$ follows the Markov chain in stationarity. A Markov operator $P$ satisfies a central limit theorem (CLT) for $f$ if $n^{-1 / 2} \sum_{i=1}^{n}\left[f\left(X_{i}\right)-\pi(f)\right]$ converges weakly to $N\left(0, \sigma_{f}^{2}\right)$ for some $\sigma_{f}^{2}<\infty$. Kipnis and Varadhan [6] (see also Chan and Geyer [2]) prove that if $P$ is reversible, and $\operatorname{Var}(f, P)<\infty$, then $P$ satisfies a CLT for $f$, and furthermore $\sigma_{f}^{2}=\operatorname{Var}(f, P)$.

Roberts and Rosenthal [16] define a Markov operator $P$ to be variance bounding if $\sup \left\{\operatorname{Var}(f, P)\right.$ s.t. $\left.f \in L_{0,1}^{2}(\pi)\right\}<\infty$, and prove the following:

Proposition 3. Let P be a reversible Markov chain operator. Then the following are equivalent:
(a) $\operatorname{Var}(f, P)<\infty$ for all $f \in L^{2}(\pi)$;
(b) $P$ is variance bounding;
(c) $M_{P}<1$.

In particular, comparing Propositions 2(c) and 3(c) show that if $P$ is geometrically ergodic, then it is variance bounding.

## 3. Partial Orderings

Let $P$ and $Q$ be Markov operators on $(\mathcal{X}, \mathcal{F})$, each having stationary distribution $\pi(\cdot)$. Write $P \succeq_{1} Q$ if for all $f \in L^{2}(\pi)$ (or, equivalently, for all $\left.f \in L_{0}^{2}(\pi)\right)$, then we have $\langle f, P f\rangle \leq\langle f, Q f\rangle$.

Peskun [12], Tierney [20] and Mira and Geyer [11, Theorem 4.2], see also Mira [10], prove that if $P$ and $Q$ are reversible, then $P \succeq_{1} Q$ if and only if $\operatorname{Var}(P, f) \leq \operatorname{Var}(Q, f)$ for all $f \in L^{2}(\pi)$. In particular, it follows that if $P \succeq_{1} Q$ and $Q$ is variance bounding, then $P$ is variance bounding. However, the corresponding property for geometric ergodicity does not hold. That is, if $P \succeq_{1} Q$ and $Q$ is geometrically ergodic, then it does not necessarily follow that $P$ is also geometrically ergodic (Roberts and Rosenthal [16]). This illustrates the potential conflict between small variance and rapid convergence (Mira [10] and Rosenthal [17]).

Concerning operator norms, we have the following.
Proposition 4. If $R$ and $S$ are reversible, and $R \succeq_{1} S$, then $\|R\| \leq$ $\max \left(-m_{R},\|S\|\right)$.

Proof. We have

$$
\|R\|=\max \left(-m_{R}, M_{R}\right) \leq \max \left(-m_{R}, M_{S}\right) \leq \max \left(-m_{R},\|S\|\right)
$$

Corollary 5. If $R$ and $S$ are reversible, and $R$ is positive, and $R \succeq_{1} S$, then $\|R\| \leq\|S\|$.

Proof. Since $R$ is positive, $m_{R} \geq 0$, so $\max \left(-m_{R},\|S\|\right)=\|S\|$.
It then follows from Proposition 2 that:
Corollary 6. If $R$ and $S$ are reversible, and $R$ is positive, and $R \succeq_{1} S$, and $S$ is geometrically ergodic, then $R$ is geometrically ergodic.

## 4. Data Augmentation Algorithms

Consider now the case where the state space is a product space, $(\mathcal{X}, \mathcal{F}) \times(\mathcal{Y}, \mathcal{G})$. Let $\mu(\cdot)$ and $v(\cdot)$ be some $\sigma$-finite reference measures on $\mathcal{X}$ and $\mathcal{Y}$, respectively (e.g., Lebesgue measure of appropriate dimension), and let $\pi(\cdot)$ be a probability measure on $\mathcal{X} \times \mathcal{Y}$ having (unnormalised) density $w$ with respect to $\mu \times v$ :

$$
\pi(A \times B)=\frac{\int_{y \in B} \int_{x \in A} w(x, y) \mu(d x) v(d y)}{\int_{y \in \mathcal{Y}} \int_{x \in \mathcal{X}} w(x, y) \mu(d x) v(d y)}
$$

Also, let $\pi_{x}$ and $\pi_{y}$ denote the marginal measures on $(\mathcal{X}, \mathcal{F})$ and $(\mathcal{Y}, \mathcal{G})$, respectively; e.g., $\pi_{x}(A)=\pi(A \times \mathcal{Y})$.

The data augmentation algorithm (Tanner and Wong [19]) may be defined as follows. Let $P_{1}$ be the Markov operator on $\mathcal{X} \times \mathcal{Y}$ which leaves $y$ fixed while updating $x$ from the conditional density given by $w$, i.e.,

$$
\begin{equation*}
P_{1}((x, y), A \times\{y\})=\frac{\int_{x \in A} w(x, y) \mu(d x)}{\int_{x \in \mathcal{X}} w(x, y) \mu(d x)}, \quad A \in \mathcal{F} \tag{1}
\end{equation*}
$$

Similarly, define $P_{2}$ by

$$
\begin{equation*}
P_{2}((x, y),\{x\} \times B)=\frac{\int_{y \in B} w(x, y) v(d y)}{\int_{y \in \mathcal{Y}} w(x, y) v(d y)}, \quad B \in \mathcal{G} \tag{2}
\end{equation*}
$$

Then the traditional data augmentation algorithm corresponds to the operator $P=P_{2} P_{1}$, i.e., the Markov chain which updates first $y$ (with $P_{1}$ ) and then $x$ (with $P_{2}$ ). (This is the systematic scan version; the random scan version is $P=\frac{1}{2}\left(P_{1}+P_{2}\right)$ though we do not consider that here.)

A data-augmentation algorithm Markov operator $P$ on $(\mathcal{X}, \mathcal{F}) \times(\mathcal{Y}, \mathcal{G})$ then induces a corresponding restricted Markov operator $\hat{P}$ on $(\mathcal{X}, \mathcal{F})$, by $\hat{P}(x, A)=P((x, y), A \times \mathcal{Y})$, equivalent to performing $P$ as usual but keeping track of only the $x$ coordinate. It is well known and easy to show that $\hat{P}$ is reversible with respect to $\pi_{x}$. (In the language of Roberts and Rosenthal [14], the individual chain $\left\{Y_{n}\right\}$ and the pair chain $\left\{\left(X_{n}, Y_{n}\right)\right\}$ are co-de-initialising.)

Amit [1] and Liu et al. [7, Lemma 3.2] prove the following:
Proposition 7. Let $\left\{\left(X_{n}, Y_{n}\right)\right\}$ follow a systematic scan data augmentation algorithm $P$, and let $f \in L_{0}^{2}\left(\pi_{x}\right)$. Then

$$
\langle f, \hat{P} f\rangle=\operatorname{Var}_{\pi}\left[\mathbf{E}_{\pi}(f(X) \mid Y)\right] \geq 0
$$

Proposition 7 immediately implies:
Corollary 8. A Markov chain operator $\hat{P}$ corresponding to a systematic scan data augmentation algorithm is positive.

Hobert and Marchev [5], following Liu and Wu [8] and Meng and van Dyk [9], generalise the data augmentation algorithm as follows. Let $R$ be any Markov chain operator on $(\mathcal{Y}, \mathcal{G})$ having $\pi_{y}$ as a stationary distribution. Extend this trivially to $(\mathcal{X}, \mathcal{F}) \times(\mathcal{Y}, \mathcal{G})$ by $\bar{R}=I \times R$, i.e.,

$$
\bar{R}((x, y),\{x\} \times B)=R(y, B) .
$$

Then define $P_{R}=P_{1} \bar{R} P_{2}$; intuitively, $P_{R}$ corresponds to first updating $y$ with $P_{2}$, then updating $y$ with $R$, and then updating $x$ with $P_{1}$. Let $\hat{P}_{R}$ be the corresponding restricted operator on $\mathcal{X}$ as above. It is clear that $\pi_{x}$ is a stationary distribution for $\hat{P}_{R}$.

Say that $P_{R}$ is a $D A$ algorithm if there is some other density function $w^{*}$ on $\mathcal{X} \times \mathcal{Y}$, that also yields $\pi_{x}$ as the $x$-marginal, such that if $P_{1}^{*}$ and $P_{2}^{*}$ are defined by (1) and (2) but with $w^{*}$ in place of $w$, then $P_{R}=P_{2}^{*} P_{1}^{*}$, i.e., $P_{R}$ is a traditional data augmentation algorithm based on the joint density $w^{*}$. In terms of this, Hobert and Marchev [5, Theorem 3] prove:

Proposition 9. Let $R$ and $S$ be two Markov operators on $(\mathcal{Y}, \mathcal{G})$ that are both reversible with respect to $\pi_{y}$, and let $P_{R}, \hat{P}_{R}, P_{S}$ and $\hat{P}_{S}$ be as defined above. Then
(a) $\hat{P}_{R}$ and $\hat{P}_{S}$ are reversible with respect to $\pi_{x}$;
(b) if $R \succeq_{1} S$, then $\hat{P}_{R} \succeq_{1} \hat{P}_{S}$;
(c) if $R \succeq_{1} S$, and if $P_{R}$ and $P_{S}$ are both DA algorithms, then $\left\|\hat{P}_{R}\right\|$ $\leq\left\|\hat{P}_{S}\right\|$.

In particular, Proposition 9(c) requires unnatural assumptions about $P_{R}$ and $P_{S}$ being DA algorithms, which are hard to verify and might well fail. Using the theory of the previous section, we are able to improve upon their result, as follows:

Theorem 10. In Proposition 9, part (c) may be replaced by any of the following:
(c') if $R \succeq_{1} S$, then $\left\|\hat{P}_{R}\right\| \leq \max \left(-m_{\hat{P}_{R}},\left\|\hat{P}_{S}\right\|\right)$.
(c') if $R \succeq_{1} S$, and if $\hat{P}_{R}$ is a positive operator, then $\left\|\hat{P}_{R}\right\| \leq\left\|\hat{P}_{S}\right\|$.
(c'"') if $R \succeq_{1} S$, and if $P_{R}$ is a $D A$ algorithm, then $\left\|\hat{P}_{R}\right\| \leq\left\|\hat{P}_{S}\right\|$.
Proof. (c') follows from combining Proposition 9(b) with Proposition 4. ( $\mathrm{c}^{\prime \prime}$ ) follows immediately from ( $\mathrm{c}^{\prime}$ ) as in Corollary 5. ( $\mathrm{c}^{\prime \prime \prime}$ ) follows by combining ( $\mathrm{c}^{\prime \prime}$ ) with Corollary 8.

Comparing Theorem 10 with Proposition 2, we conclude:
Corollary 11. If $R \succeq_{1} S$ and $m_{\hat{P}_{R}}>-1$, and $\hat{P}_{S}$ is geometrically ergodic, then $\hat{P}_{R}$ is geometrically ergodic.

Now, if $S$ is the identity operator $I$ on $\mathcal{Y}$, then $P_{S}$ corresponds to the traditional data augmentation algorithm, that is, $P_{S}=P$. Of course, $R \succeq_{1} I$ for all $R$. Hence, Theorem 10 immediately implies:

Corollary 12. Let $R$ be a Markov operator on $(\mathcal{Y}, \mathcal{G})$ that is reversible with respect to $\pi_{y}$, and let $P_{R}, \hat{P}_{R}$ and $\hat{P}$ be as defined above. Then
(a) $\hat{P}_{R} \succeq_{1} \hat{P}$;
(b) $\left\|\hat{P}_{R}\right\| \leq \max \left(-m_{\hat{P}_{R}},\|\hat{P}\|\right)$;
(c) if $\hat{P}_{R}$ is a positive operator, then $\left\|\hat{P}_{R}\right\| \leq\|\hat{P}\|$;
(d) (Hobert and Marchev [5]) if $P_{R}$ is a DA algorithm, then $\left\|\hat{P}_{R}\right\| \leq\|\hat{P}\|$.

Remark. Corollary 12(d) essentially says that $\left\|P_{1} R P_{2}\right\| \leq\left\|P_{1} P_{2}\right\|$. One might think this is "obvious", since $\|R\| \leq 1$ and since $\|A B\|=\|B A\|$ for reversible $A$ and $B$. However, it does not necessarily follow that $\left\|P_{1} R P_{2}\right\| \leq\|R\|\left\|P_{1} P_{2}\right\|$ in general. For example, let

$$
R=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad P_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad P_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Then $P_{1} P_{2}=0$, but $P_{1} R P_{2}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ which has norm 1.
Hobert and Marchev leave as an open problem whether their additional assumption (that $P_{R}$ and $P_{S}$ are DA algorithms) is required to conclude that $\left\|\hat{P}_{R}\right\| \leq\left\|\hat{P}_{S}\right\|$. Theorem $10\left(\mathrm{c}^{\prime \prime \prime}\right)$ shows that at most half of their assumption, i.e., that just $P_{R}$ is a DA algorithm, is required. But this still leaves the question of whether the result holds without any such assumption at all. In fact, it does not.

Example 13. Let $\mathcal{X}=\mathcal{Y}=\{0,1\}$ and suppose that $\mathbf{P}(X=0, Y=0)$ $=1 / 4, \mathbf{P}(X=0, Y=1)=3 / 8, \mathbf{P}(X=1, Y=0)=1 / 4$ and $\mathbf{P}(X=1, Y=1)$ $=1 / 8$. Note that the marginal distribution of $Y$ is uniform, i.e., $\mathbf{P}(Y=0)$ $=\mathbf{P}(Y=1)=1 / 2$. The marginal distribution of $X$ is as follows: $\mathbf{P}(X=0)$ $=5 / 8$ and $\mathbf{P}(X=1)=3 / 8$. Now define

$$
R=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and

$$
S=\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

and consider these to be Markov transition matrices on $\mathcal{Y}$. It is easy to see that $R$ and $S$ are both reversible with respect to the marginal distribution of $Y$. Moreover, $S-R$ has eigenvalues 0 and 1 so $R \succeq_{1} S$.

Note that a draw from $S$ is equivalent to a draw from the marginal distribution of $Y$. It follows immediately that

$$
\hat{P}_{S}=\left(\begin{array}{cc}
5 / 8 & 3 / 8 \\
5 / 8 & 3 / 8
\end{array}\right)
$$

It is easy to show that

$$
\hat{P}_{R}=\left(\begin{array}{ll}
3 / 5 & 2 / 5 \\
2 / 3 & 1 / 3
\end{array}\right)
$$

Thus, $\hat{P}_{R}$ and $\hat{P}_{S}$ are both irreducible and aperiodic. Furthermore, $\hat{P}_{R}$ has eigenvalues 1 and $-1 / 15$, so

$$
\left\|\hat{P}_{R}\right\|=1 / 15>\left\|\hat{P}_{S}\right\|=0
$$

Alternatively, if we instead take $\mathbf{P}(X=0, Y=0)=\mathbf{P}(X=1, Y=1)=1 / 2$, then $\hat{P}_{R}$ is the same as $R$, so $\left\|\hat{P}_{R}\right\|=1$ even though $R \succeq_{1} S$ and $\left\|\hat{P}_{S}\right\|=0$. This gives an even more "extreme" counter-example, but at the expense of making $\hat{P}_{R}$ periodic.

## 5. Questions for Further Research

We close with a few brief questions for possible further research.
Is it possible to quantify the improvement of $\hat{P}_{R}$ over $\hat{P}_{S}$ ? For example, suppose $S-R-c I$ is positive for some $c>0$. What quantitative results does this imply about how much $M_{R}$ is less than $M_{S}$ or $\operatorname{Var}(f, R)$ is less than $\operatorname{Var}(f, S)$, or $\|R\|$ is less than $\|S\|$ ?

Which of the results in this paper carry over to the non-reversible case? Or even to the case where $P=Q_{1} Q_{2}$ with each $Q_{i}$ reversible? Various results about mixing of non-reversible operators are discussed in, e.g., Mira and Geyer [11], Fill [4] and Dyer et al. [3] but it is not clear how to apply them in the current context.

## References

[1] Y. Amit, On the rates of convergence of stochastic relaxation for Gaussian and Non-Gaussian distributions, J. Multivariate Analysis 38 (1991), 89-99.
[2] K. S. Chan and C. J. Geyer, Discussion paper, Ann. Stat. 22 (1994), 1747-1758.
[3] M. Dyer, L. A. Goldberg, M. Jerrum and R. Martin, Markov chain comparison, Prob. Surveys 3 (2006), 89-111.
[4] J. A. Fill, Eigenvalue bounds on convergence to stationarity for non-reversible Markov chains, with an application to the exclusion process, Ann. Appl. Prob. 1 (1991), 62-87.
[5] J. P. Hobert and D. Marchev, A theoretical comparison of the data augmentation, marginal augmentation and PX-DA algorithms, Ann. Stat. (2006), to appear, Available at: http://web.stat.ufl.edu/~jhobert/
[6] C. Kipnis and S. R. S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Comm. Math. Phys. 104 (1986), 1-19.
[7] J. S. Liu, W. Wong and A. Kong, Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes, Biometrika 81 (1994), 27-40.
[8] J. S. Liu and Y. N. Wu, Parameter expansion for data augmentation, J. Amer. Statist. Assoc. 94 (1999), 1264-1274.
[9] X. L. Meng and D. A. van Dyk, Seeking efficient data augmentation schemes via conditional and marginal augmentation, Biometrika 86 (1999), 301-320.
[10] A. Mira, Ordering and improving the performance of Monte Carlo Markov chains, Stat. Sci. 16 (2001), 340-350.
[11] A. Mira and C. Geyer, Ordering Monte Carlo Markov chains, Technical Report No. 632, School of Statistics, University of Minnesota, 1999, Available at: http://eco.uninsubria.it/webdocenti/amira/papers.html
[12] P. H. Peskun, Optimum Monte Carlo sampling using Markov chains, Biometrika 60 (1973), 607-612.
[13] G. O. Roberts and J. S. Rosenthal, Geometric ergodicity and hybrid Markov chains, Electronic Comm. Prob. 2(2) (1997), 13-25.
[14] G. O. Roberts and J. S. Rosenthal, Markov chains and de-initialising processes, Scandinavian J. Statist. 28 (2001), 489-504.
[15] G. O. Roberts and J. S. Rosenthal, General state space Markov chains and MCMC algorithms, Prob. Surveys 1 (2004), 20-71.
[16] G. O. Roberts and J. S. Rosenthal, Variance bounding Markov chains, Preprint, Available at: http://probability.ca/jeff/research.html
[17] J. S. Rosenthal, Asymptotic variance and convergence rates of nearly-periodic Markov chain Monte Carlo algorithms, J. Amer. Statist. Assoc. 98 (2003), 169-177.
[18] W. Rudin, Functional Analysis, 2nd ed., McGraw-Hill, New York, 1991.
[19] M. A. Tanner and W. H. Wong, The calculation of posterior distributions by data augmentation (with discussion), J. Amer. Statist. Assoc. 82 (1987), 528-550.
[20] L. Tierney, A note on Metropolis-Hastings kernels for general state spaces, Ann. Appl. Prob. 8 (1998), 1-9.

