
w
w

w
.p

ph
m

j.c
om

Adv. & Appl. in Stat. 7(2) (2007), 281-290

:tionClassifica jectSub sMathematic 2000 62J12, 62F10.

Keywords and phrases: missing at random, logistic regression, Goiter disease, maximum

likelihood.

Received January 25, 2007

 2007 Pushpa Publishing House

ESTIMATION OF PARAMETERS IN
UNCONDITIONAL CATEGORICAL REGRESSION

MODELS WITH INCOMPLETE DATA IN COVARIATES

K. AZAM1, A. GRAMI2, K. MOHAMMAD1, GH. JANDAGHI3,

M. KARIMLOU4 and A. KAZEMNEJAD5

1Department of Epidemiology and Biostatistics
School of Public Health and Institute of Public Health
Tehran University of Medical Sciences, Iran

2Faculty of Science, University of Tehran, Iran

3University of Tehran, Qom Campus, Iran

4University of Welfare and Rehabilitation, Iran

5University of Tarbiat Modarres, Iran

Abstract

In large–scale sampling, we are always facing non-responses item(s)
non-response or unit(s) or both. In fitting a model to the data we have
two groups of variables, namely dependent and independent variables.
Non-response may occur for any of these groups of variables. In this
paper we assume that Y as a categorical dependent variable, Z and X as
independent variables. The first two variables are fully observed and we
assume that the mechanism of missing-ness is random (MAR). In order
to estimate parameters a model is devised based on likelihood function
for the whole data set including missing data and the estimation of
parameters are compared with those obtained by statistical software
such as S-Plus which are only based on complete observed data and
ignore missing units.
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Our results show that the estimations obtained using maximum
likelihood based model are superior to the standard estimations for the
approach utilized by the soft wares. The comparison is made on a set of
health survey data on Goiter disease carried out in Qazvin province.

1. Introduction

In the last decades, logistic regression models have played an
important role in medical and epidemiological researches. Because of non-
linearity of logistic models, the inference is made by maximum likelihood
estimation, for there is no limitation considered about independent
variables. In the cohort or cross-sectional studies in which no matching is
done, the model parameters are estimated via unconditional maximum
likelihood. Furthermore, in these types of studies, we may face data
in which some part is missing due to unwillingness to respond,
incompleteness of the questionnaire, incompleteness of the study frame
and so on.

Generally, there are three mechanisms of missingness, missing at
random (MAR), missing completely at random (MCAR), and non-

ignorable missing (NI) (Little and Rubin [5]).

In MCAR, the missingness in one variable does not depend on itself or
other covariates. So, we can eliminate the cases with missing values and
do the analysis based on the remaining cases without any bias in
estimates. In MAR, the missingness in one variable is independent of it
but depends on the other covariates. For example, in studying the
association between blood pressure and smoking, missingness in blood
pressure depends on smoking but not on itself. In comparison to smokers,
non-smokers, because of their sensitivity to their health, have more
willingness to participate in the study.

As it is evident from example, the problem of missingness can mislead
the analysis toward biased interpretations. Missingness can occur either
in response variable or covariates. In our study the missingness in
covariates with MAR mechanism of missing is of interest.

Treating missing values, generally three methods are used (Gao and
Hui [4]). The simplest method which is used as a default in most
statistical softwares is eliminating the cases with missing values and
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doing the analysis on the remaining complete cases. This method usually
introduces bias in estimates (Little and Rubin [5]). In the second method,
one replaces the missing values by their means, using regression or other
mechanisms, and does the analysis by standard methods of estimation. In
this approach, if there is a large amount of data, one would face two
important problems. Firstly, it may change the natural shape of the
distribution of covariates and secondly, the mean and variance of the
estimates of the parameters are changed. The third method which has
recently captured the attention of the researchers is to determine a
probability model for the variables with missing values. These probability
models act similar to standard models with some changes in likelihood
function.

In classical statistics, the logistic models are developed by maximum
likelihood estimation and expectation maximization (EM) algorithm. This
method, in addition to computational difficulties has some technical
problems, i.e., one may reach a local instead of a global maximum or the
iterative algorithm may not converge. Furthermore, we may face serious
problems in analyzing small samples which would yield estimates, not
sharing the asymptotic characteristics of MLE estimates.

Fuchs [3] and Little and Schluchter [6] used EM algorithm for
maximum likelihood estimation of the parameters in logistic regression
with missing discrete covariates and combined discrete-continuous
missing covariates. This method generally needs many iterations and
may be computationally intensive. Blackhurst and Schluchter [2]
proposed a maximum likelihood method using EM algorithm which does
not need iterations when the continuous missing covariate follows normal
distribution.

Satten and Kupper [11, 12] generalized the analysis of logistic models
with missing covariates and used alternative covariates to find
information about the effects of missing covariates. Paik and Sacco [8]
and Satten and Carroll [10] assumed a distribution for missing covariates
and by introducing some changes in conditional and unconditional
likelihood functions refined the estimates. Rathouz et al. [9] introduced a
new class of estimates on the basis of modeling the missing covariates
and mechanisms of missingness. Bayesian statisticians also have
authored some papers on this issue.
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In this study we have used the third method by determining a
probability model for missing covariates and using Satten and Carroll
[10] likelihood function.

2. Model, Definitions and Likelihood Function

Suppose iY  is a binary response variable corresponding to subject i

such that 1=iY  and 0=iY  denotes the diseased and non-diseased

individual, respectively. We also suppose that the vector covariate Z is

fully observed and the vector covariate X has missing values for some of

its observations. Without loss of generality, we present our models with

one Z and one X covariate. First, we assume both variables are fully

observed. In this case the conditional probabilities given the covariates

are defined based on a logistic model as follows:
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where x ′  and z′  are some levels of X and Z different from x and z.

The purpose of fitting a logistic regression model to data is to obtain

an estimate of model parameters (here ),,, 12210 ββββ  to determine the

association between the response variable and a set of X and Z covariates.

In case of complete data, we use standard methods of estimation. But if

we assume that some values of X are missing, then we have
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In addition we define

( ) ( ),,0 zZYxXPzx ====π (6)

( ) ( ),,1 zZYxXPzx ====ρ (7)

where the functions π and ρ denote the probability distributions in non-

diseased and diseased subjects, respectively. Satten and Kupper [11, 12]

showed that

( ) ( ) ( )∑ πθ=θ
x

zxzxz ,  . ,~ (8)

where the summation is taken over all values of X. Their second result is
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In case of a continuous covariate X, we shall use integration instead

of summation and ( )zxπ  and ( )zxρ  will be density functions.

The likelihood function for standard logistic regression when X and Z

are fully observed is
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If X contains missing values, we define the indicator variable i∆  whose

value is 1=∆i  when ix  is observed and 0=∆i  when ix  is missing. By

this definition, the likelihood function is rewritten as follows:

( ) ( ) ( ) ( ).,,,,, ∆||∆|=∆ ZYXPZYPZYPZXYP (11)

Under MAR missingness, we can assume that (Little and Rubin [5]):

( ) ( ).,,, ZYXPZYXP |=∆|

We also assume that the probability of missingness ( )ZYP ,|∆  does not

depend on vector parameter β. So, by elimination of this from the
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likelihood function, the unconditional likelihood for observed data will

become
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1

iiiii y
ii

y
iii

y
i

n

i

zxzxzzL ∆−∆−

−

|ρ|πθ+θ=β ∏ (12)

In the above equation, the distribution ( )zx |π  is unknown, which can be

derived once a model for π is chosen. A particularly attractive case is

when X and Z take only finitely many values, Satten and Carroll [10].
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Substituting (3) through (9) in equation (13) and rewriting the likelihood

function (12), we have
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which is a function of parameters 112210 ,,,, γββββ  and .12γ  Taking

logarithm of the both sides of (14), partially differentiating with respect

to parameters, and setting the derivatives equal to zero, we obtain a

nonlinear system of equations which is solved by numerical methods.
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2.1. Estimation method

In this study, we used R software to program and solve the system of

nonlinear equations, using iterative methods by following phases:

Phase 1. In this phase both X and Z covariates were completely

observed and the model parameters were estimated using R code with

precision of e = 0.0001 and compared with standard S-plus estimates.

Phase 2. We made some values of X variable missing using MAR

mechanism and repeated the estimation procedure with both R and

S-plus.

Phase 3. In this phase we did change both the percent of missingness

and the precision and compared the results.

2.2. Example: Goiter disease data from health survey in Iran

We have used the data on Goiter disease collected during Health

Survey in Qazvin province of Iran. The Goiter disease is one of the most

prevalent diseases in Qazvin province. The data consisted of a bivariate

response variable which is Goiter disease (Y) and place of residency (X)

and sex (Z) as covariates which had been shown a significant relation

to the disease (Noorbala and Mohammad [7]). 60% of the sample data

(758 individuals) were diseased from which we drew a sample of 100=n

randomly due to the limitation of computer memory.

3. Results

For response variable (Y) we set 1=Y  for diseased (including 1A, 1B

stage and above) and 0=Y  for non-diseased individuals, 1=X  for rural

and 0=X  for urban residents, 1=Z  for females and 0=Z  for males.

First by fitting standard logistic regression model (equation (9)) for full

dataset all effects including interaction term were statistically significant.

Then we applied our implemented R code to the data with 20 percent

MAR in X variable and the precision .0001.=e  The results are shown in

Table 1. As can be seen the estimates of the parameters in both S-plus

and R code are identical, which confirms the efficiency of the R code for

full data. In addition for most cases the estimation of the standard errors
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of the parameters in R code is less than those of standard logistic

regression obtained from S-plus. After making 20% MAR in X covariate,

the parameter estimates using Satten and Carroll likelihood of equation

(14) (R code) and complete case analysis (S-plus) are shown in columns 4

and 5 of Table 1 respectively. The estimates in column 4 are much closer

to the full data estimates (column 2) than the complete case estimates

(column 5) without any significant difference in standard errors of

estimations.

For more evaluation of our approach we did the analysis on the data
with several percentages of missing and different precisions with two
replicates. The results are shown in Table 2.

The maximum likelihood estimates obtained from cases with missing
values are more reliable than those obtained from standard methods in
which we ignore the cases with missing values.

Table 1. Parameter estimates for new and standard models
using Goiter disease data of Qazvin province*

Full data analysis Data with 20% MAR missing
in Area covariate

parameters New model Standard model New model Standard model

0β    –0.980852           –0.980829

   (0.49017)             (0.47859)**

–0.97996 –0.73317

(0.51021) (0.52271)

1β 1.791792 1.791759

(0.75844) (0.76819)

1.79547 1.50339

(0.69478) (0.70279)

2β 2.268725 2.268673

(0.60241) (0.62289)

2.43209 1.81530

(0.69211) (0.68202)

3β  –2.791966 –2.791921

   (0.96947)           (0.94599)

–2.97879 –2.38279

(0.92479) (0.91049)

* Data is taken from “Health Survey in Iran 2000”.

** The numbers in parentheses are standard errors of the estimates.
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Table 2. Maximum likelihood estimates of parameters in both new and

standard models. In terms of different percentage of missingness and

different precisions iN(  and iS   represent i-th replication of estimates

based on new and standard models respectively)

05.0=e 005.0=e

0β 1β 2β 3β 0β 1β 2β 3β

1N –0.969
(0.084)

1.743
(0.162)

2.347
(0.127)

–2.728
(0.208)*

–1.044
(0.192)

1.831
(0.271)

2.131
(0.482)

–2.453
(0.547)

%20=r 1S –0.984
(0.300)

1.736
(0.340)

2.265
(0.534)

–2.700
(0.604)

–0.987
(0.132)

1.768
(0.225)

2.261
(0.334)

–2.634
(0.477)

2N –0.967
(0.131)

1.699
(0.310)

2.247
(0.152)

–2.802
(0.398)

–0.891
(0.211)

1.589
(0.247)

2.280
(0.723)

–2.778
(0.825)

2S –0.903
(0.448)

1.679
(0.800)

2.196
(0.518)

–2.843
(0.621)

–0.903
(0.191)

1.588
(0.257)

2.258
(0.591)

–2.706
(0.671)

1N –0.935
(0.082)

1.757
(0.207)

2.165
(0.084)

–2.612
(0.347)

–0.938
(0.271)

1.652
(0.317)

2.222
(0.472)

–2.655
(0.447)

%30=r 1S –0.823
(0.195)

1.663
(0.457)

2.074
(0.259)

–2.405
(0.548)

–0.822
(0.212)

1.527
(0.279)

2.030
(0.413)

–2.472
(0.520)

2N –0.982
(0.249)

1.692
(0.562)

2.296
(0.114)

–2.737
(0.382)

–0.865
(0.101)

1.634
(0.271)

2.208
(0.421)

–2.708
(0.499)

2S –0.883
(0.337)

1.636
(0.728)

2.107
(0.381)

–2.568
(0.855)

–0.998
(0.099)

1.738
(0.265)

2.210
(0.425)

–2.674
(0.459)

* The numbers in parentheses are standard errors of the estimates.

4. Discussion and Conclusion

In many situations where logistic regression is to be used to

determine the effect of explanatory variables on a binary outcome, some

of the explanatory variables are only available for a subset of study

participants. In cross-sectional studies, the problem of dealing with

MAR missing is of great importance because the elimination of missing-

valued cases can lead to biased estimates of the parameters and

misinterpretation of the results.

In this study we have demonstrated that a modification of the
approach of Satten and Kupper [11] applies in this case, allowing
likelihood-based inference for this type of data. This approach also has
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the advantage that an unconditional likelihood can be easily constructed.
As an example, we applied our approach to a cross-sectional study.

Besides the basic logistic model relating disease to covariates, the
only thing that needs to be specified is a density or mass function ( )zxπ

for the missing covariates which we used the Satten and Carroll [10]
approach.
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