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Abstract 

In the field of social sciences and health, it is frequent that the 
information available comes from mixed data, i.e., a mixture of 
qualitative and quantitative variables. In this context, it is not easy to 
discriminate patterns: published studies show that no method is 
superior to the rest and it seems risky to base the decision solely by 
means of the error of the training data. In the present study we have 
identified interactive behaviors between the variables distribution and 
the classification error of several discriminant rules, as well as the bias 
and the mean square error from non-parametric error estimators. The 
protocol of the simulation study, dealing with mixed random vectors 
with a controlled dependence structure, approaches both problems at 
once and permits to extract relevant information. 
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I. Introduction 

Discriminating patterns is a task widely used in decision making 

processes. There are numerous studies in the fields of health sciences and 

social sciences which include discriminant methods with diagnostic aims 

[18], [25] and [28]. Particularly in these fields, pattern recognition 

problems require the inclusion of both qualitative and quantitative 

variables, i.e., mixed random vectors ( ),, qQ xxx =  where Qx  is the 

quantitative variable vector and qx  is the qualitative one. Even knowing 

the multivariate distribution of ,Qx  the joint distribution of x is usually 

unknown. The problem has basically been ignored until the 1970’s and in 

most cases the studies have focused on the robustness of some classic 

methods dealing with qualitative variables as quantitative ones. 

The behavior of Fisher’s linear discriminator [17] (LD) on discrete 

and mixed data has been described in detail by Krzanowski [32]. 

Linearity is the main disadvantage, which manifests itself in the problem 

of inversion [36]. Several studies show that LD can tolerate distributions 

slightly asymmetric, with heavier tails than usual, and normal mixtures, 

as well as non-severe violations of the covariance matrices equality 

hypothesis [2], [3], [6], [9] and [33]. Schmitz et al. [40, 41] describe that 

the dependence structure among quantitative variables has a greater 

impact than that of the qualitative ones, and point out the poor results 

obtained if the covariance matrices are very different. Likewise, they 

describe unsatisfactory results when there is a strong dependence 

between quantitative and qualitative variables, except when the 

dependence structure is similar for every class. 

The quadratic discriminant (QD) [42] has been suggested as an 

alternative when the covariance matrices are very different, even      

when the normality hypothesis is not met. According to Clarke and 

Subrahmaniam [7], QD is relatively robust if the distributions are not 

highly asymmetric. However numerous studies show that a small sample 

size is decisive, performing in this case worse results than LD, except 

when the covariance matrices are very different [4], [16], [29], [35], [43] 
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and [44]. Finally, in the case of mixed models, QD only solves inversions 

caused by first order interactions (and therefore reflected on the 

covariance matrix). 

The logistic discriminator (LOD) has been presented as an alternative 

to LD, specially in the case of mixed data, due to the wide range of 

probability models for which it is adequate. Several studies [26], [27] and 

[37] have shown that parameter estimates of the linear function obtained 

with LD have a higher bias than those obtained with LOD for mixed data. 

Notwithstanding, the same study by Halperin et al. [23] and others like 

Ameniya and Powell [1] and Krzanowski [31] show that the differences in 

the classification error are slightness. This relative tie and the higher 

computational cost of LOD make it an unattractive alternative for the 

mixed data problem. 

Studies about applying methods based on kernel functions (PARZEN) 

and nearest neighbors (k-NN) are scarce. Out of these, the comparative 

studies by Vlachonikolis and Marriot [43] and Schmitz et al. [41], which 

compare the performances of LD, QD, k-NN and PARZEN, among others, 

present contradictory and non-clarifying conclusions. 

Another alternative for mixed data is the distance based method (DB) 

suggested by Cuadras [10] and Cuadras et al. [11]. According to the 

simulation work of Oliva [38], its behavior depends greatly on the metrics 

used, as well as on the incorporation of first order interactions among the 

qualitative variables. 

Beyond the mixed data problem, if we focus our attention on tasks of 

assessment and comparison of discriminant methods, numerous studies 

have been carried out with real data and they provide us with 

contradictory results [24]. Because no method is inherently superior to 

other fact derived from the Not Free Lunch Theorems [45] and [46], 

superiority depends on the random vector distribution, sample size, etc. 

[12], hence the results of the studies are affected by the characteristics of 

its own design. It seems then necessary to delve into the knowledge of 

interactive behaviors [30] which occur among the factors considered in 

simulation studies. Bearing in mind the points formulated, the simulation 

protocol carried out in this study intends to: 
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1. assess and compare different discriminant methods when they are 

applied to mixed data. 

2. assess and compare the behavior of different conditional non-

parametric error estimators, identifying interactive behaviors with the 

variables distribution and with the discriminant method. 

II. The DB Method and a Distance Function for Mixed Data 

The DB method [10] and [11] is based on proximities between 

individuals. Given g classes gGG ...,,1  and a distance function ld  defined 

for class ,lG  the proximity measure between the class lG  and the pattern 

)( 00 ω= xx  is 

( ) ( ) ( ),00 ll GlGll VV xxxx −|=φ   (1) 

where 

( ) [ ( )]
lllll GGlGGGl dV xxx ,E

2
1 2=  (2) 

and 

( ) [ ( )]
lll GlGGl dV xxxx ,E 0

2
0 =|  (3) 

are the geometric variability and the geometric variability relative to the 

0x  pattern. The DB method assigns 0ω  to lG  if 

( ) ( )[ ].min 00 xx ttl φ=φ  (4) 

In practice, 

( ) ( )∑
=′
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ln
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jllj

l
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2
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are adequate estimates, where ljx  is the sample j of class l with a sample 

size .ln  Thus, the estimate of the proximity function is 

( ) ( ) ( )∑∑
=′

′
=

−=φ
ll n

jj
jllj

l

n

j
lj

l
l d

n
d

n
1,

2
2

1
0

2
0 .,

2

1,1ˆ xxxxx  (7) 

The DB method is susceptible of being used for mixed data. Oliva  

[38] suggests the weighted sum of two square distances, one for the 

quantitative variables and another for the qualitative ones 

( ) ( ) ( )( ) ( ) ( )( ).,,, 222
iiqqiiQQii dwdwd ′′′ += xxxxxx  (8) 

Likewise, he reveals a reasonable choice of the relative weights: 

( )
( ( ) )

,
1

1∑ =

=
g

l QGd

Q

lQ
Vg

pw
x

 

( )
( ( ) )∑ =

=
g

l qGd

q

lq
Vg

pw

1
1 x

 

which perform as ‘normalizing’ factors [21], where ( ( ) )QGd lQ
V x  is the 

geometric variability for the quantitative variables of class lG  and 

( ( ) )qGd lq
V x  is the analogous for the qualitative ones. Let us see a proposal 

of this mixed distance. Suppose that ( )Σµ,∼x  is the random vector of 

quantitative variables. We can calculate the absolute value distance (AV) 

( ) ,,

21

1 











−= ∑
=

′′

p

h
hiihiiQd yyxx  (9) 

where ( )µΣ −= − xy 21  is the Mahalanobis transformation that 

guarantees the invariance for scale changes, besides considering the 

correlations between the variables. For the estimate of ,Σ  we can opt for 

the joint estimate (pooled covariance matrix) (PC) or the separated 

estimate of the within covariance matrices (WC). 



w
w

w
.p

ph
m

j.c
om

F. GALÁN, F. OLIVA and J. GUÀRDIA 260

On the other hand, given q qualitative variables, we can define a 

similarity index based on the sum of multinomials with first order 

interactions (SMI) 

( ) ( )∑∑
′<=′

′′′
=

′′ +=
q

uuuu
uuiiuu

q

u
uiiuii swsws

,1,
,,

1

,   (10) 

where 
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

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=

≠
=′′=
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ii
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iiiiii
zz

zz
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if0
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with the restriction ( )∑ ∑
= ′<

′ =+
q

u uu
uuu ww

1
, 1  due to .10 ≤≤ ′iis  Since 

( ) 21−qq  double interactions are identified, which is higher than the 

number of variables if ,3>q  then the weights ,32 qwu =  ( ) =′uuw ,  

( ),132 −qq  ,...,,1, quu =′  are suggested (notice that the weight            

of interactions is inversely proportional to the number of interactions     

in which a variable participates), leading to ∑ =
=q

u uw
1

32  and 

( )∑ ′< ′ =
uu uuw .31,  In order to obtain distances we can apply to (10) the 

transformation [20] 

( ) ( ) .1, 21
iiiiq sd ′′ −=xx  (11) 

III. Conditional Error Estimators 

Let us consider a discriminant rule, where lr =)(x  symbolizes that 

the individual is assigned to the class .lG  For a training data t, the rule 

assigning probabilities is defined by ( )[ ].;; tGjtrP l∈|= xx  Therefore, 

the lG  class conditional error is 

( )[ ] ∑
≠

−==∈|≠=
g

lj
llljll cecetGltrPce 1;; xx  (12) 
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and the global conditional error is 

∑
=

π=
g

l
llcece

1

,  (13) 

where lπ  is the prior probability of belonging to the lG  class. 

The unconditional probabilities ljue  are the expected values of ljce  

( ) ( )[ ]TGlTrPceue lll ;;E ∈|≠== xx  

∑
≠

−==
g

lj
lllj ueue .1  (14) 

Hence the global unconditional error is 

∑
=

π=
g

l
llueue

1

.   (15) 

The analytic calculation of these errors, even when we know the 

probability model, is not easy and we can face insurmountable difficulties. 

In such cases, or when the probability model is unknown, we have several 

non-parametric error estimators. 

A. Apparent Error (AE) 

The apparent error [42] is the proportion of patterns of lG  in t wrongly 

classified by ( ).; tr x  It is defined by 

[ ( ) ]∑
=

≠=
ln

j
lj

l
l ltrI

n
AE

1

,;1 x  (16) 

where 

( )[ ]






=≠
false.if0

trueif1
; ltrI x  

The downside is that using the same patterns of t to assess the 

discriminant rule results in a negative (optimistic) bias. 
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B. Leave-One-Out (LOO) 

The leave-one-out error estimate [34] of the lG  class is 

[ ( ( ) ) ]∑
=

≠=
ln

j
ljlj

l
l ltrI

n
LOO

1

,;1 x  (17) 

where ( )ljt  expresses the exclusion of the pattern ljx  from the training 

set. Also known as cross-validation method, it avoids AE’s optimistic bias 

and is the extreme variation of the split method, maintaining the training 

set size largest as possible. Nevertheless, Glick [19] describes an increase 

in the mean square error and several other studies show a slightly 

positive (pessimistic) bias. 

C. Leave-One-Out Bootstrap (LOO-B) 

The leave-one-out bootstrap estimator [13] is defined as the rate of 
expected bootstrap error in an original pattern not included in the 

bootstrap training set. If we obtain B bootstrap training sets ( ),...,,1 Btt  

then the lG  class error estimate is defined as 

[ ( ) ] ∑∑∑∑
= == =

ζ≠ζ=
ll n

j

B

h
jh

n

j

h
lj

B

h
jhl ltrIErr
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



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⊄
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.if0

,if1
h

lj

h
lj

jh
tx

tx
 

LOO-B has revealed a tendency toward pessimistic estimates in 
simulation studies carried out by Efron and Tibshirani [14]. 

D. Bootstrap .632 (B.632) 

The .632 estimator [13] is a weighted mean between AE and LOO-B 

.632.368. 1632. ErrAEErr +=  (19) 

Several studies show that this ingenious estimator is superior to the 
previous ones, describing a moderate bias and the smallest mean square 
error. 
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E. Bootstrap .632+ (B.632+) 

Breiman et al. [5] describe a negative bias of the B.632 estimator in 

overfitting discriminant rules with ,0=AE  as is the case of k-NN or RBP 

methods. In order to solve the bias, Efron and Tibshirani [14] suggest the 

.632+ estimator 

( ) ,
ˆ368.1

ˆ632.368.1632632

R

RAEErrErrErr
′−

′×−+= ′+  (20) 

where 

( ) ( )





 >γ−γ−

=
′

otherwise0

ˆ,isˆˆ
11 AEErrAEAEErr

R  (21) 

is the relative overfitting rate, ( ),ˆ,min 11 γ=′ ErrErr  ( ) +−=γ ll qp ˆ1ˆˆ  

( ) ,ˆˆ1 ll qp−  lp̂  is the prior probability of lG  and lq̂  is the proportion of 

patterns classified in .lG  The simulation studies of Efron and Tibshirani 

[14] show that B.632+ provides estimates with smaller bias. 

IV. Method 

A. Simulation study 

(1) Simulation algorithm 

The algorithm is computationally demanding but it permits obtaining 

the necessary information to give an answer to the goals. It is structured 

as follows: 

1. Generate the training data: random samples of size ln  for each lG  

class 

.;...,,1 




 == ∑ nngl l  

2. Construct the discriminant rules with the training data. 

3. Estimate the conditional error of the discriminant methods by 

means of the different non-parametric estimators. 



w
w

w
.p

ph
m

j.c
om

F. GALÁN, F. OLIVA and J. GUÀRDIA 264

4. Random generation of test data, obtaining samples of size ln  for 
each lG  class. 

5. Estimate the conditional error of every rule classifying the test 
data. 

6. Repeat k times the steps 1 to 5. 

7. Process the results. 

Notice that the double estimate of the conditional error by means of 
training data and test data let us estimate the bias and the mean square 
error of each estimator. 

(2) Data generation 

The study is meant for 2=g  classes with 3=p  quantitative 

variables, out of which 20 =p  is ordinal, and 3=q  binary variables. We 

have chosen 21 π=π  prior probabilities, equal sample sizes 5021 == nn  

and .200=k  

The mixed data has been generated following Schmitz et al. [41] and 
Oliva [38], consists in generating ( )qp + -dimensional multivariate 

normal vectors and, afterwards, discretizing the 0p  and q  variables. The 

process is as follows: 

1. Generate 6-dimensional vectors with distribution ( ),,~ 6 ilG N
l

ΣµY  

.2,1=l  Covariance matrices have been defined with the structure: 

,

1

1

1

1

1

1

2σ×































κρρκρρκρ

κρκρρκρρ

ρκρκρρκρ

κρρκρκρρ

ρκρρκρκρ

κρρκρρκρ

 

where 2σ  is the variance parameter, ρ is the correlation coefficient and κ 

is an indicator of alternate correlations ( ).1,1 −=κ=κ  Tables 1 and 2 

show the covariance matrices and mean vectors used. 
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Table 1. Covariance matrices structure 

1Σ  2Σ  

2σ  ρ κ 2σ  ρ κ 

1 .5 1 1 .5 1 

1 .5 1 1 .5 –1 

1 .5 1 4 .5 1 

1 .5 1 4 .5 –1 

Table 2. Mean vectors (centroids) 

( )′µµµµµµ= 654321
1µ

 

( )′µµµµµµ= 654321
2µ

 ( )′000000

 

( )′000000

 ( )′000000  ( )′5.15.15.15.15.15.1  

2. Obtain ordinal and binary variables by means of the 
transformations: 

















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µ<≤µ

µ<≤µ

µ<≤µ

µ<

=

,
4
3if5

4
3

2
1if4

2
1

9
4if3

9
4

3
1if2

3
1if1

22

222

222

222

22

2

Y

Y

Y

Y

Y

X   


















µ≥

µ<≤µ

µ<≤µ−

µ−<≤µ−

µ−<

=

,
2
1if5

2
1

3
1if4

3
1

8
1if3

8
1

2
1if2

2
1if1

33

333

333

333
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3

Y

Y

Y

Y

Y

X  
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







µ≥

µ<
=

,
2
3if1

2
3if0

44

44
4

Y

Y
X  









µ≥

µ<
=

55

55
5

2
1if1

2
1if0

Y

Y
X  

and 









µ≥

µ<
=

.
2
1if1

2
1if0

66

66
6

Y

Y
X  

B. Comparison of discriminant methods 

The discriminant analysis methods considered in the study have been 
the following: 

• Fisher’s Linear Discriminator (LD). 

• Quadratic Discriminator (QD). 

• Discriminator based on the estimate of the density function by 
means of kernel functions (PARZEN). We have chosen the Epanechnikov 
function and a window width that minimizes the mean integrated square 
error of the estimated density [15]. 

• 1-NN and 3-NN nearest-neighbors. The distances used have been 
the same as for the DB discriminator. 

• DB discriminator based on the mixed distance (8), with the absolute 
value distance (AV) for the quantitative variables and the SMI similarity 
coefficient for the qualitative variables, both described in Section II. 

• Resilient Backpropagation [39] (RBP), learning algorithm used on 
multilayer perceptrons [22] to solve supervised learning tasks. A 6-10-1 

multilayer perceptron with ( )neta tanh=  has been used as a transference 

function of the neurons integrated in the hidden layer and the output 
layer. On the other hand, the parameters have been set according to the 
values recommended by Riedmiller and Braun [39]: ,1.0 =∆  ,50max =∆  

,1 6
min

−=∆ e  ,2.1=η+  .5.=η−  
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C. Error estimators 

By means of the s testing sets we can estimate the conditional errors 

( )
[ ( ( ) ) ]

1

1
;

ln
s s

l lj
l j

ce I r t l
n =

= ≠∑ x  (22) 

so that 

( ) ( )

1

.
g

s s
l l

l

ce ce
=

= π∑  (23) 

The estimate of the unconditional errors is immediate 

( )

= =

= = π∑ ∑
1 1

1
, .

gk
s

l lll
s l

ue ce ue ue
k

 (24) 

On the other hand, for each training data t we will obtain the non-

parametric estimators presented in Section III. In this sense, if we 

consider t and the estimator θ, then the bias is the following: 

[ ] [ ] .EE ceceb −θ=−θ=θ  (25) 

Given the differences 

( ) ( )
θ −ˆ ,

jj ce  (26) 

the bias estimate becomes evident 

( ( ) ( )
)θ

=

= θ −∑
1

1ˆ ˆ ,
k

jj

j

b ce
k

 (27) 

where j refers to the correspondent t training sets and s testing sets. 

On the other hand, θ’s mean square error is 

[( ) ].E 2ceMSE −θ=θ  (28) 

The following relation is known 

[( ) ] [ ]θ = θ − −2E .MSE ce V ce  (29) 
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From ( )~ , ,ll l ln ce B n ce  it can be inferred that 

[ ] ( )1 .l l l lV ce ce ce n= −  

Thus 

[ ] ( )2

1

1
.

g
l l

l
ll

ce ce
V ce

n
=

−
= π∑  (30) 

According to the previous results, the following differences can be 

obtained: 

( ( ) ( )
)

( )
(

( )
)

=

−
θ − − π∑ 2

1

1ˆ ,

s sg
st l l

l
ll

ce ce
ce

n
 (31) 

therefore the mean square error estimate is 

( ( ) ( )
)

( )
(

( )
)2

1 1

11 ˆ .

j jgk
jj l l

l
lj l

ce ce
MSE ce

k n
θ

= =

 − = θ − − π
 
  

∑ ∑  (32) 

D. Analysis 

In order to identify interactive behaviors between the random vector 

distribution and the discriminant rules error, the conditional error 

estimates obtained by means of the test data have been analyzed with a 

( ) 10222 ×××  mixed factorial model, where the between subjects factor 

are the vector features (means M, structure of correlations SC and 

variance V) and the discriminant methods (DM) is the within subjects 

factor. 

On the other hand, aiming to identify interactive behaviors between 

the random vector distribution and the bias and mean square error of  the 

non-parametric conditional error estimators, two ( ) ( )510222 ××××  

mixed factorial models have been used. The factors are the same 

aforementioned, with the addition of the estimators (ESTIM) as a new 

within subjects factor. The dependent variables in every model have been 

the expressions (26) and (31). 
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In order to deal with multiple comparisons, the minimum significant 

difference (MSD) has been fixed taking into account an overall 

significance level ( ) 05.11 <α−−=α k
F  for every family of comparisons, 

where k is the number of contrasts. We have only carried out contrasts 

that refer to the large-size and medium-size effects (according to Cohen’s 

judgment [8]) on the ( ) 10222 ×××  model ( ),450=k  and large-size effects 

on the ( ) ( )510222 ××××  models ( 620=k  and ,220=k  respectively). 

E. Software 

The discriminant methods, the conditional error estimators, as well 
as the whole simulation algorithms, have been implemented on MATLAB. 
Statistical analyses have been carried out on SPSS. 

V. Results 

A. Identifying interactive behaviors between the random vector 
distribution and the discriminant rules error 

Multivariate contrasts show interactive patterns among all the 

MVSCDM ×××  factors (Lambda ;063.Wilks =  ;824.1115819 =F  ;1 7−< ep  

;006.02 =ω  observed power ).1=  The effects showing a larger size are 

those referring to the discriminant methods (Lambda Wilks ;879.=  

;754.128015819 =F  ;1 7−< ep  ;419.02 =ω  observed power );1=  to the 

VDM ×  interaction (Lambda Wilks ;557.=  ;436.2211581/9 =F  ;1 7−< ep  

;110.02 =ω  observed power );1=  and to the SCDM×  interaction (Lambda 

Wilks ;426.=  ;610.13015819 =F  ;1 7−< ep  ;068.02 =ω  observed power 

).1=  

Figure 1 shows mean conditional error (unconditional error estimate) 

for every discriminant rule. The methods with smaller error are QD 

(mean = 0.207, standard error )10576.9 4−⋅=  and RBP ( ;246.0=m  

);10086.1.e.s 3−⋅=  whereas the worst method is LD ( ;134.0=m  

).10105.9.e.s 4−⋅=  The smaller error is evident on methods with non-

joint covariance matrices estimate (WC). 
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                       DM 

Figure 1. Mean conditional error under DM effect conditions. 

MDM ×  interaction (Figure 2) highlights the differences between 
methods when class means are equal (M1), specifically the good results of 
QD. 

The SCDM ×  interaction analysis (Figure 3) points out that LD and 

DB have peculiar nuances. Whereas the LD has a mean conditional error 
similar to other methods under equal correlation structures (SC1), errors 
are clearly bigger on the SC2 situations, as it was expected. On the other 
hand, DB methods show a smaller error than the k-NN and PARZEN 
methods in SC1, while they are alike in SC2. 

 
                        DM-M 

Figure 2. Mean conditional error under DM-M effect conditions. 
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                     DM.SC 

Figure 3. Mean conditional error under DM-SC effect conditions. 

B. Identifying interactive behaviors between random vector 

distribution and conditional non-parametric error estimators 

(1) Bias 

Multivariate contrasts show a significant interaction effect among all 

the factors introduced in the model MVSCESTIMDM ××××  (Lambda 

;520.Wilks =  ;574.53156627 =F  ;1 5−< ep  ;022.02 =ω  observed power 

).1=  The effects showing the largest size are those referring to the 

estimators (Lambda ;005.Wilks =  ;405.9982715903 =F  ;1 5−< ep  =ω2  

;824.0  observed power );1=  to the first order interaction between 

discriminant methods and estimators ESTIMDM ×  (Lambda Wilks 

;007.=  ;782.8055156627 =F  ;1 5−< ep  ;773.02 =ω  observed power );1=  

and to the second order interaction between discriminant methods, 

estimators and centroids MESTIMDM ××  (Lambda Wilks ;082.=  

;390.652156627 =F  ;1 5−< ep  ;216.02 =ω  observed power ).1=  
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Figure 4 shows the bias for the different non-parametric error 

estimators. AE and B.632 have negative bias, although very different in 

magnitude (bias ,127.0−=  410475.6.s.e −⋅=  and bias ,10887.1 2−⋅−=  

,10318.7.s.e 4−⋅=  respectively); whereas B.632+, LOO and LOO-B show 

positive bias (bias ,10390.1 2−⋅=  ;10490.8.s.e 4−⋅=  bias ,10307.2 2−⋅=  

;10913.8.s.e 4−⋅=  and bias ,10450.4 2−⋅=  ).10210.8.s.e 4−⋅=  All a 

posteriori contrasts show significant differences. 

 

                ESTIM 

Figure 4. Bias under ESTIM effect conditions. 

ESTIMDM ×  interaction (Figure 5) reveals that the bias depends on 

the discriminant method. The results obtained from the contrasts of each 

estimator’s bias depending on the discriminant methods are relevant. Out 

of the 90 possible contrasts, AE shows the biggest number of significant 

contrasts (86), while the LOO estimator shows the smallest one (34). 

LOO-B, B.632+ and B.632 estimators present 61, 78 and 84 significant 

contrasts, respectively. 
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                   DM-ESTIM 

Figure 5. Bias under DM-ESTIM effect conditions. 

MESTIMDM ××  interaction points out that class separation can 

influence the bias depending on the discriminant rule being used (Figures 

6 and 7). The significant contrasts found to show a tendency to increase 

the bias when the centroids are equal (M1) in the same direction as the 

bias described when these are unequal (M2), specially with AE and B.632. 

However, B.632+ does not show this behavior with the 1-NN(PC) and 1-

NN(WC) (in fact, its behavior is just in the opposite way). Another 

exception is the sign inversion on the bias introduced by B.632 on the 

PARZEN discriminant method, it being negative with equal centroids 

(M1), and positive in M2 situations. On the other hand, LOO and LOO-B 

only show significant contrasts on 4 out of the 10 discriminant methods: 

DB(PC), DB(WC), 3-NN(WC) and LD in the first one; RBP, DB(PC), 

DB(WC) and LD in the second one. B.632, B.632+ and AE estimators 

show a more heterogenic behavior, with significant contrasts being 

detected in 7, 8 and 10 out of the 10 discriminant methods, respectively. 
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                DM 

Figure 6. Bias under DM-ESTIM-M effect conditions (M1). 

 
                DM 

Figure 7. Bias under DM-ESTIM-M effect conditions (M2). 

(2) Mean Square Error 

Like on the bias analysis, a significant interactive effect is detected 

among all the MVSCESTIMDM ××××  factors (Lambda ;761.Wilks =  
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;602.13155736 =F ;1 5−< ep ;006.02 =ω  observed power ).1=  Nevertheless, 

the only large-size effects are those referring to estimators (Lambda 

;024.Wilks =  ;869.1595515894 =F  ;1 5−< ep  ;444.02 =ω  observed power 

)1=  and to the ESTIMDM×  first order interaction (Lambda ;025.Wilks =  

;213.1674155736 =F  ;1 5−< ep  ;429.02 =ω  observed power ).1=  

On Figure 8 we can see how B.632+ is the one with the smallest mean 

square error (Mean Square Error ,10408.3 3−⋅=  ,)10779.6.s.e 5−⋅=  

followed by LOO and 632.B  ( ,10167.4MSE 3−⋅=  ;10101.8.s.e 5−⋅=  

,10018.4MSE 3−⋅=  ).10605.6.s.e 5−⋅=  LOO-B shows a mean square error 

higher than the previous ones ( ,10911.4MSE 3−⋅=  =.s.e ),10020.9 5−⋅  

still far from AE  ( ,10898.2MSE 2−⋅=  ).10094.2.s.e 4−⋅=  

 
                     ESTIM 

Figure 8. Mean square error under ESTIM effect conditions.  

The ESTIMDM ×  effect (Figure 9) reveals important differences in 

the mean square error of every estimator depending on the discriminant 
method. The multiple comparisons show similar values to those obtained 
with bias. Out of the 90 possible contrasts, AE shows the biggest number 
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of significant contrasts (82); and LOO, the smallest one (42). LOO-B, 
B.632+ and B.632 present 50, 52 and 56 significant contrasts, 
respectively. 

 
                     DM-ESTIM 

Figure 9. Mean square error under DM-ESTIM effect conditions. 

VI. Discussion and Conclusions 

A. Random vector distribution and discriminant rules error 

QD and RBP show the smallest unconditional error, while LD has  
the biggest one. While a better behavior can be described of those 
methods which do not carry out the joint covariance matrix estimate, this 
fact may vary depending on the different centroid and correlation 
structure configurations. In this sense, the following conclusions are to be 
remarked: 

1. The differences between methods using a pooled covariance matrix 
and those using a within covariance matrix decrease with class 
separation (differentiated means). 

2. In comparison to the rest of the methods, LD shows a notably 
poorer performance when the correlation structures do not match. On the 
other hand, when compared to NN, PARZEN and LD methods, DB 
methods show better behavior with equal correlation structures. 
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It is easily noticed that results depend greatly on the specific 
situation. Out of the eight situations analyzed, six show classes with 
differentiated covariance matrices, and this fact explains the generally 
good performance of those methods that do not use the joint covariance 
matrix. However, the good performance of QD when dealing with     
mixed data is a bit surprising. It is possible that generating the data     
by discretizing multivariate normal random vectors improves its 
performance, whereas its behavior might worsen with data generated 
from non-normal random vectors. 

B. Random vector distribution and behavior of non-parametric 
conditional error estimators 

The bias and mean square error on the estimators vary ostensibly 
depending on the discriminant method and the random vector 
distribution. The following conclusions can be extracted: 

1. The use of the AE estimator with assessment and comparison 
objectives must be rejected, since it presents large negative bias and 
unacceptable mean square error, besides showing heterogenic behavior 
depending on the situation and the discriminant rule. 

2. The use of B.632 and B.632+ in order to carry out assessment tasks 
is recommendable, since they present the smallest mean square error in 
most situations. However, they show a certain heterogenic behavior 
depending on the discriminant method and random vector distribution, 
which advises against its use in comparison tasks. B.632+ does not 
improve substantially B.632, except for overfitting methods such as         
1-NN, as it was expected. 

3. LOO shows the most homogenous mean square error among the 
different discriminant methods and random vector distributions. This 
fact, along with its moderate bias and mean square error, recommends its 
use for discriminant rules comparison purposes. 

Despite the small number of situations evaluated, we consider that 
this study reflects the need of analyzing the behavior of discriminant 
methods and non-parametric error estimators jointly with the statistical 
features of the patterns, in a simultaneous and integrated way. 
Otherwise, the results may appear as contradictory or even lead us to 
erroneous conclusions. 
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