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Abstract

Estimators for location and size of a discontinuity or change-point in a
smooth mean residual life model are proposed. The proposed estimators
also apply to the detection of discontinuities in derivatives and therefore
to the detection of change-points of slope and of higher order curvature.
The proposed estimators are based on a comparison of left and right
one-sided kernel smoothers. Weak convergence of a stochastic process
in local differences to a Gaussian process is established for properly
scaled versions of estimators for the location of a change-point. The
continuous mapping theorem can then be invoked to obtain asymptotic
distributions and corresponding rates of convergence for change-point
estimators.

1. Introduction

Nonparametric methods are usually applied in order to obtain a
smooth fit of a curve without having to specify a parametric class of
function. Sometimes a generally smooth curve might contain an isolated
discontinuity or change-point in the curve or in a (possibly higher order)
derivative, and in many cases interest focuses on the occurrence of such
change-points.
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The analysis of change-points describing sudden, localized changes
typically occurring in economics, medicine and the physical sciences has
recently found increasing interest. General smoothness assumptions,
allowing for a large class of functions to be considered, seem to be more
appropriate in a variety of applied problems than parametric modeling.

The problem of estimating the location of the change-point of a mean
residual life function (MRLF) is considered here.

Although the change-point has received relatively little attention in
literature, some estimates of the change-point have been studied by Mi
[11] and Ebrahimi [4]. We will consider estimates of the change-point of
the MRLF via a kernel estimate of the MRLF. That is, if X is a real-
valued random variable with the distribution function F, survival function

( ) ( )xFxF −= 1  and such that ( ) ;∞<+XE  for example, X might represent

the time of advice. The mean residual life function (MRLF for short) or
the remaining life expectancy at age x, ( )xM  of X is defined by (see, e.g.,

Kotz and Shanbhag [10], Hall and Wellner [8] and Guess and Proschan
[7])

( ) ( )
( )

( )
( )










>=>|−=
∫
∞

.otherwise0

0if xF
xF

dyyF
xXxXExM x

Given a sample nXX ...,,1  from F, then Yang [14] proposed a natural

nonparametric estimate of ( )xM  is the random function ( )xen  defined by

( )
( )

( ) [ ( ) ],xX
n

x
n

n nxF

dyyF
xe >

∞

∫
= I (1.1)

where ( ) inin XX ≤≤= 1max  that is the average, less x, of the observations

exceeding x; and ( )xFn  is the empirical survival function defined by

( ) ( ),1 xFxF nn −=  where ( ) [ ]∑ ≤=
n

xXn in
xF

1
1 I  is the empirical distribution.

In order to introduce a kernel-type estimator for ( ),xM  let us use by ( )⋅K

(a probability density on the real line). Its corresponding survival function
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will be denoted by ( ) ( )∫
∞

=
t

duuKt .K  Also, we will need a sequence of

smoothing parameters (or bandwidths) .0>= nhh  The expected value

of the empirical MRL estimator was derived by Abdous and Berred [1],

( )( ) ( ) ( ( )).1 xFxexe n
n −=E (1.2)

It follows that the bias of the empirical estimator is ( ) ( )xFxe n−  and hence

( )xen  is asymptotically unbiased, with bias decaying exponentially to

zero as .∞→n  When ( ) ,2 ∞<XE  Abdous and Berred [1] also provided

the variance of ( ):xen

( )( ) ( ) ( ( ))xFFxexear nn
n −×= 12V

[ ] ( ( ))∑
=

>|−+
n

j

xFjnB
j

xXxXar
1

,,,1V (1.3)

where ( ( )) ( ).,, xFF
j
n

xFjnB jnj −×





=  Therefore, ( )( ) 0→xear nV  as

∞→n  when ( ) .2 ∞<XE

Throughout this paper, we suppose that the MRLF M is l times

continuously differentiable for some ,0≥l  lM C∈  and a kernel smoother

with a kernel function of the order k is chosen, that is, the kernel function

with exactly ( )1−k  vanishing moments.

However, the focus of this paper is to use the nonparametric

regression method of the change-point to estimate the change-point of the

MRLF. Smooth approximation of the change-point model by a model

which contains a point of most rapid change and the corresponding

statistical inference was considered by Müller and Wang [12] in the

context of hazard functions under random censoring. Let 0≥ν  be an

integer and 2≥k  be an even integer. Assume that a change-point exists

for ( )νM  at ,τ  ,10 <τ<  in the following sense: There exists a
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( ) [ ]( )1,0ν+∈ kg C  such that

( )( ) ( )( ) [ ]( ) .10,0,1, ≤≤>∆∆+= ντν
νν ttItgtM (1.4)

The case 0<∆ν  can be treated analogously. Define ( )( )τν
+M

( )( ),lim xMx
ν

τ↓=  ( )( ) ( )( )xMM x
ν

τ↑
ν
− =τ lim  and ( )( ) ( )( )τ=τ ν

+
ν MM  and

observe that

( )( ) ( )( ),τ−τ=∆ ν
−

ν
+ν MM (1.5)

where ν∆  is the jump size at the possible change-point τ of the νth

derivative. The case 0=∆ν  corresponds to the nonexistence of a change-

point at τ. The change-point MRL function model (1.4) differs from the

model of a change-point in the sequence of random variable (e.g., Hinkley

[9], Deshayes and Picard [3], Worstley [13] in which the first k

observations among kXX ...,,1  are independent and identically

distributed with a common cumulative distribution function (c.d.f.) F

while nk XX ...,,1+  are independent and identically distributed with a

common c.d.f. G. In (1.4), the change-point τ is an unknown point in the

domain of the common p.d.f. of all observations. In terms of the MRL
function, this change-point is the unknown time at which the MRL
function jumps.

The main results of this paper concern weak convergence of

estimators τ̂  of the location of the change-point τ. The paper is organized

as follows: Section 2 presents a discussion of kernel estimators using
kernel functions with one-sided support and their application to change-
point estimation, which is based on maximizing the difference between
one-sided kernel smoothers. Section 3 is devoted to the study of a
functional limit theorem for a local deviation process. The functional
mapping theorem is used to obtain the distribution limit for the estimated
change-point. The proofs of Section 3 are given in Section 4.

2. Change-point Estimators

We consider ( )xM  as a function on its own, we can convolve ( )xen
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with ( ) ( ) hhKKh ⋅=⋅  and obtain the following kernel estimators:

( )( ) ( ) ( )∫
∞+

∞−

ν
+ν

ν 




 −= .1ˆ

1
duue

h
uxK

h
xM n (2.1)

Here nhh =  is a sequence of bandwidths which is required to satisfy

+∞→→ +ν 12,0 nhh   as  ,∞→n  ( ) ,suplim 12 ∞<+ν+
∞→

k
n

nh (2.2)

( )νK  is the kernel function, which is assumed to be the νth derivative of a

function K with compact support [ ]1,1−  and ( )xen  is defined by (1.1).

Let ( )ν
+K  and ( )ν

−K  be one-sided kernel functions with support ( ( ) )ν
+K

[ ]0,1−=  and support ( ( ) ) [ ]1,0=ν
+K  and define one-sided estimates for

the νth derivative ( )( ):xM ν

( )( ) ( ) ( )∫
∞+

∞−

ν
±+ν

ν
± 





 −= .1ˆ

1
duue

h
uxK

h
xM n (2.3)

The idea is to base inference for change-points on differences between

right and left sided estimates:

( )( ) ( )( ) ( )( ).ˆˆˆ xMxMx ν
−

ν
+

ν −=∆ (2.4)

Intuitively, the location of the maximum of these differences will be a

reasonable estimator for the location of the change-point. Let ] [1,0⊂Q

be a closed interval such that .Q∈τ  Define the estimators

{ ( )( ) ( )( )}x
x

ν

∈

ν ∆=ρ∆∈ρ=τ ˆsupˆ:infˆ
Q

Q (2.5)

for the location of the change-point τ and

( )( ) ( )( ) ( )( )τ−τ=τ∆ ν
−

ν
+

ν ˆˆˆˆˆˆ MM (2.6)

for the jump size in the νth derivative. Defining τ̂  as maximizer over Q

instead of [ ]1,0  serves the sole purpose of excluding change-points

located arbitrarily close to the boundary.
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Assume that for some integer ,0≥µ

[ ]( ) [ ]( ),1,11,1 ,0 −−∈ ν+µ
kK HC ∩ (2.7)

( )( ) ( )( ) ,0,011 ν+µ<≤==− jKK jj (2.8)

where k as before is an even integer ,2≥k  k<ν  and

[ ]( )

[ ]( ) ( ) [ ]

( )
( ) .

,if,0
,,0if,0

,if,!1

,,support:,

,

2121

21,

































=≠
ν≠<≤=

ν=ν−=
=

=∈

=

∫
ν

lj
jj

j
dxxxf

aafaaf

aa
j

l

C

H

It then follows by integration by parts that

( ) [ ]( ) [ ]( ),1,11,1 , −−∈ ν+ν
µν

kK HC ∩ (2.9)

( )( ) ( )( ) .0,011 µ<≤==− +ν+ν jKK jj (2.10)

According to (2.10), the kernel ( )νK  is ( )1−µ  times differentiable on R

and ( )1−µK  is absolutely continuous. Similarly, assume for kernels +K

and ,−K

[ ]( ) [ ]( ),0,10,1 ,0 −−∈ µ+ν
+ kK HC ∩ (2.11)

[ ]( ) [ ]( ),1,01,0 ,0 kK HC ∩µ+ν
− ∈ (2.12)

( )( ) ( )( ) ,0,001 µ+ν<≤==− ++ jKK jj

( )( ) ( )( ) ,0,001 µ+ν<≤== −− jKK jj (2.13)

which again imply that

( ) [ ]( ) [ ]( ),0,10,1 , −−∈ ν+ν
µν

+ kK HC ∩

( )( ) ( )( ) ,0,001 µ<≤==− ν+
+

ν+
+ jKK jj (2.14)

( ) [ ]( ) [ ]( ),1,01,0 , ν+ν
µν

− ∈ kK HC ∩

( )( ) ( )( ) .0,001 µ<≤== ν+
−

ν+
− jKK jj (2.15)
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Observe that +K  (respectively, )−K  acts on the right half side (r.h.s.)

(respectively, left half side (l.h.s.)) of t according to the convolution

property in definition (2.3), so that application of these kernels

corresponds to employing smoothing windows [ ]htt +,  (respectively,

[ ])., tht −  Observe that it follows from (2.13) that if ( )ν
−K  satisfies (2.15),

then a kernel ( )ν
+K  defined by

( )( ) ( ) ( )( )xKxK −−= ν
−

νν
+ 1 (2.16)

satisfies (2.14). An additional assumption we make is

( )( ) ( )µ+ν>µ+ν
− ,00K  is odd and .1≥µ (2.17)

Similar conditions follow for ( ),µ+ν
+K  assuming (2.16).

3. Weak Convergence of Local Deviation Processes and

Asymptotic Distributions of Change-point Estimators

In this section, a functional limit theorem for a process operating on

increments of one-sided function estimates near τ is derived. The

functional mapping theorem is then applied to obtain the limit

distributions for change-point estimators .τ̂  A similar device was used by

Eddy [5, 6] in the context of estimating the mode of a probability density.

Let

( ) ( )( ) ( )( ) ( )( )yhMyhMyhy +τ−+τ=+τ∆=δ ν
−

ν
+

ν
ν

ˆˆˆˆ

and define for some ,,0 TzTT ≤≤−∞<<  the sequence of stochastic

processes

( ) ( )( ) ( )( )

( ) ( )( ) ( ) .0ˆˆ
2112

2112










δ−










δ=ζ νν+µ+νν

ν+µ+ν+µ+ν

nh

znhzn (3.1)

The scaling is chosen in such a way that processes nζ  converge weakly.

Observe that [ ]( )., TTn −∈ζ C  The following functional limit theorem

holds.
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Theorem 3.1. Assume that (1.1), (2.2) and (2.8)-(2.17) hold. Then

ζ→ζn   a.s.  on  [ ]( ),, TT−C (3.2)

where ζ is a continuous Gaussian process with moment structure

( )( )
( )( )

( )
,

!1
01

+ν+µ
∆

−=ζ
ν+µ

−
+ν+µ

ν Kz
zE (3.3)

( ) ( )( ) ( ( )( ))∫ +ν
−σ=ζζ ,2,cov 212

2121 dvvKzzzz (3.4)

where ( ).2
neVar=σ

Since the Gaussian limit process ζ is determined by its first and
second moments, according to (3.3) and (3.4), it can be equally written as

( ) ( )
( )

,
!1

01
Yz

Kz
z +

+ν+µ
∆

−=ζ
ν+µ

−
+ν+µ

ν (3.5)

where ( ( )( )) .2,0~ 22






 σ ∫ ν+µ

− dvvKY N

The proof of Theorem 3.1 follows from a sequence of lemmas in
Section 4.

Asymptotic distributions of estimated change-points (2.5) can now be
obtained as a consequence of this functional limit theorem. Under (2.17),
the limit process ζ of (3.5) is seen to have a unique maximum at

( )
( )( )

( )

.
0

!
1 ν+µ

ν+µ
−ν

∗













∆

ν+µ=
K

Y
Z (3.6)

Let nZ  be the location of the maximum of .nζ  By construction,

( ) ( )( ) .ˆ
2112 ν+µ+ν

+τ=τ
nh

hZn (3.7)

Corollary 3.1. Under the assumption of Theorem 3.1,

( ) ( )
( ( )( ))

( ( )( )) .
0

!
2,0

ˆ 22
2

2112














σ











∆

ν+µ→




 τ−τ ∫ ν+µ

−ν+µ
−ν

ν+µ
+ν dvvK

Kh
nh ND (3.8)
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Consider for instance the important cases ,1=µ  ,0=ν  .2=k  If the

usual bandwidth choice 51−= dnh  is made and ,0>d  then (3.8) becomes

( ( )
( ( )( ))

( ( )( ))
.

0
2,0ˆ

21

21
253

















∆
σ→τ−τ

−ν

−∫
K

dvvK
dn ND

Another application of the functional mapping theorem shows that

( ) ( )∗ζ→ζ ZZnn D  and therefore

( ) ( )
( )( ) ( )( ) .0

2112
2112

P→










 ζ

ν+µ+ν+µ+ν
+ν

nh

Z
nh nn

This implies ( ) { ( )( ) ( )( )} ,0ˆˆˆ2112
P→τ∆−τ∆ νν+νnh  where ( )( )⋅∆ νˆ  is defined

in (2.4). According to Lemma 4.6,

( ) { ( )( ) } ( ( )( )) ,2,0ˆ 222112






 σ→∆−τ∆ ∫ ν

−ν
ν+ν dvvKnh ND

and combining these results one obtains for the jump size estimator
( )( ).ˆˆ τ∆ ν

Corollary 3.2.

( ) { ( )( ) } ( ( )( )) .2,0ˆˆ 222112






 σ→∆−τ∆ ∫ ν

−ν
ν+ν dvvKnh ND (3.9)

4. Auxiliary Results and Proofs

The following sequence of lemmas leads to the proof of Theorem 3.1.

Lemma 4.1.

( )( )
( )( )

( )
( ).1

!1
01

o
Kz

zn +
+ν+µ

∆
−=ζ

ν+µ
−

+ν+µ
νE (4.1)

Proof. Observe that, following (1.2) and (2.3),

( )( ) ( ) ( )∫
∞+

∞−

ν
±+ν

ν
± 





 −= ,1,ˆ

1
duue

h
uxK

h
hxM n
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then

( ( )( )) ( ) ( )( )∫ 




 −+τ=+τ ν

±+ν
ν
± duue

h
uyhK

h
yhM nEE

1
1ˆ

( )( ) ( )
������ 
������ 	�

I

dvvhyhMvK
h ∫ −+τ= ν

±ν
1

   ( )( ) ( ) ( )
���������� 
���������� 	�

II

n dvvhyhFvhyhMvK
h ∫ −+τ−+τ− ν

±ν
1

( )( ) ( ) ([ ] )∫ −νν
±ν

+−+τ= .1 1hOdvvhyhMvK
h

Therefore, defining

( ) ( ( )( ) ( )( )) ( )∫−
ν
−

ν
+νν −+τ−=δ

1

1
,1 dvvhyhMvKvK

h
y

we obtain

( ( )) ( ) ([ ] ).ˆ 1−ν
νν +δ=δ hOyyE (4.2)

Observing (1.4), (2.11), (2.12), (2.13), evenness of k and (2.16) and

employing a Taylor expansion and mean values ( ) ,11 hvyn −ξ+τ=ξ

( ) ,22 hvyn −ξ+τ=ξ  then

( ) ( ( )( ) ( )( ))[ ( ) ( { } { })]∫− ≤>
ν
−

ν
+νν +−+τ−=δ

1

1
111 dvvhyhMvKvK

h
y yvyv

( ( )( ) ( )( )) ( ) ( )( ) { }

( )
������������� 
������������� 	�

A

k

j
yv

jj
j

dvMh
j
vy

vKvK
h ∫ ∑−

−ν+

=
≤+

ν
−

ν
+ν 













τ−−=

1

1

1

0

1
!

1

( ( )( ) ( )( )) ( ) ( )( ) { }

( )
������������� 
������������� 	�

B

k

j
yv

jj
j

dvMh
j
vy

vKvK
h ∫ ∑−

−ν+

=
>−

ν
−

ν
+ν 













τ−−+

1

1

1

0

1
!

1
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( ( )( ) ( )( )) ( )
( )

( )( ) { }

( )
�������������� 
�������������� 	�

C

yvn
kk

k
dvMh

k
vy

vKvK
h ∫− ≤

ν+
+

ν+
ν+

ν
−

ν
+ν

ξ
ν+

−−+
1

1
1 1

!
1

( ( )( ) ( )( )) ( )
( )

( )( ) { }

( )
�������������� 
�������������� 	�

D

yvn
kk

k
dvMh

k
vy

vKvK
h ∫− >

ν+
−

ν+
ν+

ν
−

ν
+ν

ξ
ν+

−−+
1

1
2 1

!
1

( ( )( ) ( )( )) ( )
( )

( ( )( )∫−
ν+

+
ν+

ν+
ν
−

ν
+ν

ξ
ν+

−−=+
1

1
1!

1
n

kk
k

Mh
k

vy
vKvK

h
DC

( )( ) ( )( )) { }dvMM yv
kk

≤
ν+

+
ν+

+ τ+τ− 1

( ( )( ) ( )( )) ( )
( )

( ( )( )∫−
ν+

−
ν+

ν+
ν
−

ν
+ν

ξ
ν+

−−+
1

1
2!

1
n

kk
k

Mh
k

vy
vKvK

h

( )( ) ( )( )) { }dvMM yv
kk

>
ν+

−
ν+

− τ+τ− 1

( ( )( ) ( )( )) ( )
( )

( ( )( )∫−
ν+

+
ν+

ν+
ν
−

ν
+ν

ξ
ν+

−−=
1

1
1!

1
n

kk
k

Mh
k

vy
vKvK

h

( )( )) { }dvM yv
k

≤
ν+

+ ×τ− 1

( ( )( ) ( )( )) ( )
( )

( ( )( )∫−
ν+

−
ν+

ν+
ν
−

ν
+ν

ξ
ν+

−−+
1

1
2!

1
n

kk
k

Mh
k

vy
vKvK

h

( )( )) { }dvM yv
k

>
ν+

− ×τ− 1

( ( )( ) ( )( )) ( )
( )

( )( ) { }∫− ≤
ν+

+
ν+

ν+
ν
−

ν
+ν

τ
ν+

−−+
1

1
1

!
1 dvMh

k
vy

vKvK
h

yv
kk

k

( ( )( ) ( )( )) ( )
( )

( )( ) { }∫− >
ν+

−
ν+

ν+
ν
−

ν
+ν

τ
ν+

−−+
1

1
.1

!
1 dvMh

k
vy

vKvK
h

yv
kk

k
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Let

( ) ( ( )( ) ( )( )) ( )
( )

( ( )( )∫−
ν+

+
ν+

ν+
ν
−

ν
+ν

ξ
ν+

−
−=

1

1
1!

1
n

kk
k

n Mh
k

vy
vKvK

h
yQ

( )( )) { }dvM yv
k

≤
ν+

+ ×τ− 1

( ( )( ) ( )( )) ( )
( )

( ( )( )∫−
ν+

−
ν+

ν+
ν
−

ν
+ν

ξ
ν+

−−+
1

1
2!

1
n

kk
k

Mh
k

vy
vKvK

h

( )( )) { }dvM yv
k

>
ν+

− ×τ− 1

( )
( ( )( ) ( )( )) ( ) ( ( )( )∫−

ν+
+

ν+ν
−

ν
+ ξ−−

ν+
=

1

1
1! n

kk
k

MvyvKvK
k

h

( )( ) ( )( )) { }dvMM yv
kk

≤
ν+

+
ν+

+ τ+τ− 1

( )
( ( )( ) ( )( )) ( ) ( ( )( )∫−

ν+
+

ν+ν
−

ν
+ ξ−−

ν+
+

1

1
2! n

kk
k

MvyvKvK
k

h

( )( ) ( )( )) { } .1 dvMM yv
kk

>
ν+

−
ν+

+ τ+τ−

Then

( )yQDCBA n=+++

( ( )( ) ( )( )) ( ) ( )( ) { }

( )
������������ 
������������ 	�

E

k

j
yv

jj
j

dvMh
j
vy

vKvK
h ∫ ∑−

ν+

=
≤+

ν
−

ν
+ν 













τ−−+

1

1 0

1
!

1

( ( )( ) ( )( )) ( ) ( )( ) { }

( )

,1
!

1 1

1 0 ������������ 
������������ 	�
F

k

j
yv

jj
j

dvMh
j
vy

vKvK
h ∫ ∑−

ν+

=
>−

ν
−

ν
+ν 













τ−−+

and by (2.11), (2.12) and (2.13), we have

( )( ) ( ( )( ) ( )( )) ( ) { } ,1
!

1

0

1

10 ������������ 
������������ 	�
=

−
>

ν
−

ν
+

ν+

=
−ν ∫∑ −−τ= dvvyvKvKM

j
h

h
F yv

j
k

j

j
j
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and

( ( )( ) ( )( )) ( ( )( ) ( )( )) ( ) { }∑ ∫
ν+

= −
≤

ν
−

ν
+

−+
ν

−−
τ−τ

=
k

j
yv

j
jjj

dvvyvKvK
j

MMh

h
E

0

1

1
1

!
1

( ( )( ) ( )( )) ( ( )( ) ( )( )) ( ) { }∫− ≤
νν

−
ν
+

ν
−

ν
+ −−

ν
τ−τ

=
1

1
1

!
dvvyvKvK

MM
yv

( ( )( ) ( )( )) ( ( )( ) ( )( )) ( ) { }

��������������� 
��������������� 	�
0

1

0

1

1
1

!
1

=

−ν

= −
≤

ν
−

ν
+

−+
ν ∑ ∫ −−

τ−τ
+

j
yv

j
jjj

dvvyvKvK
j

MMh

h

( ( )( ) ( )( )) ( ( )( ) ( )( ))( ) { } ,1
!

1

0

1

1

1
�������������� 
�������������� 	�

=

ν+

+ν= −
≤

ν
−

ν
+

−+
ν ∑ ∫ −−

τ−τ
+

k

j
yv

j
jjj

dvvyvKvK
j

MMh

h

hence

( ) ( ) ( ( )( ) ( )( )) ( ( )( ) ( )( )) ( ) { }∫− ≤
νν

−
ν
+

ν
−

ν
+

ν −−
ν

τ−τ
+=δ

1

1
1

!
dvvyvKvK

MM
yQy yvn

( ( )( ) ( )( )) ( ) { } ( )∫− ≤
νν

−
ν
+ν +−−∆

ν
=

1

1
,1

!
1 yQdvvyvKvK nyv

where ( )yQn  is defined above.

Observe that

( ) ( ) ( ) ( ),0 yhoQyQyR k
nnn =−= (4.3)

since, for instance, for the difference of the first term on the r.h.s. of nQ

for ,0>y

 ( ( )( ) ( )( )) ( ) ( ( ) ( )( ) ( )( ))∫−
ν+

+
ν+

+
ν+ν

−
ν
+ τ−−ξ+τ−−

y
kkk dvMhvMvvKvK

1
1

( ( )( ) ( )( )) ( ) ( ( )( ) ( )( ))∫−
ν+

+
ν+

+
ν+ν

−
ν
+ τ−ξ−−−−=

y
k

n
kk dvMMvyyvKyvK

1
1
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and analogous calculations for ,0<y  and for the difference of the second

term on the r.h.s. of nQ  yields (4.3). Observing, for ,0≥y  under (2.16),

( )( ) ( ) ( )( ) ( )( ) ( )∫ ∫ ∑ ν
−












ξ

µ
+=−

ν

ν−µ

=

µ+ν
−

µ
+ν

−
νν

−
y y

i

i
i

dv
vy

KvK
i
vdvvyvK

0 0

1

0
!!

0
!!

1

( )
( ( )( ) ( )),0

!1

1
yOKy +

+ν+µ
= µ+ν

−

+ν+µ
   as 0→y

and analogously, for ,0≤y

( )( ) ( ) ( ) ( ( )( ) ( ))∫ +
+ν+µ

−
=−

ν
µ+ν

−

−ν+µ
νν

−
y

yOK
y

dvvyvK
0

1
,0

!1!
1    as ,0→y

one obtains, noting that ( )( ) ( ) ( )( )010 µ+ν
+

ν+µµ+ν
− −= KK  and that ( )ν+µ  is

odd

( ) ( )
( )( )
( ) ( ( ) ( )),1

!1
0

0
1

yhoyO
yK

y k++
+ν+µ

∆−
=δ−δ

+ν+µµ+ν
−ν

νν    as .0→y (4.4)

The result follows.

Lemma 4.2.

( ) ( )( ) ( ( )( ))
( ) ( )∫ 










+σ=ζζ

µ+ν+ν
+ν

− .12,cov
2112

212
2121

nh
OdvvKzzzz nn (4.5)

Proof. Abbreviate ,12 +ν=α  
( )
( )( )ν+µ

+ν+µ=β
2

1
 and 

( )( )
.

2
1
ν+µ

=γ

( ) ( )( ) ( ) ( ) ( ) ( ) ( )∫ 

















 −τ−









 −+τ
=ζ−ζ ν

+

γα
ν
++ν

βα

h
vK

h
vnhzh

K
h

nh
zz nn 1

E

( ) ( ) ( ) ( )




















 −τ−









 −+τ
− ν

−

γα
ν
− h

vK
h

vnhzh
K

( ) ( )( )( ) .dvveve nn E−× (4.6)



w
w

w
.p

ph
m

j.c
om

ESTIMATION OF THE CHANGE-POINTS … 171

This implies

( ) ( )( ) ( ) 2
22

2

21 ,cov σ=ζζ
+ν

βα

h

nh
zz nn

( ) ( ) ( ) ( )























 −τ−









 −+τ
× ∫ ν

+

γα
ν
+ dv

h
vK

h
vnhhz

K 1

( ) ( ) ( ) ( )∫ 















 −τ−









 −+τ
× ν

+

γα
ν
+ dv

h
vK

h
vnhhz

K 2

( ) ( ) ( ) ( )∫ 















 −τ−









 −+τ
− ν

+

γα
ν
+ dv

h
vK

h
vnhhz

K 1

( ) ( ) ( ) ( )∫ 















 −τ−









 −+τ
× ν

−

γα
ν
− dv

h
vK

h
vnhhz

K 2

( ) ( ) ( ) ( )∫ 















 −τ−









 −+τ
− ν

+

γα
ν
+ dv

h
vK

h
vnhhz

K 2

( ) ( ) ( ) ( )∫ 















 −τ−









 −+τ
× ν

−

γα
ν
− dv

h
vK

h
vnhhz

K 1

( ) ( ) ( ) ( )∫ 















 −τ−









 −+τ
+ ν

−

γα
ν
− dv

h
vK

h
vnhhz

K 1

( ) ( ) ( ) ( ) .2























 −τ−









 −+τ
× ∫ ν

−

γα
ν
− dv

h
vK

h
vnhhz

K

By the assumptions, observing the compactness of supports,

( ) ( ) ( ) ( )





 −τ−









 −+τ ν
±

γα
ν
± h

vK
h

vnhzh
K

( )

( ) γα
+ν

± 




 −τ=

2
1

nh

z
h

vK

( ) ( ) ( ) ( ) ( ) .11

00
2 1













≠








 −+τ






 ≠





 −τγα γα

ν
±

+ν
±











+

h
vnhzh

K
h

v
Knh

O
∪

(4.8)
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Inserting this into (4.7) and observing

( ) ( ) ( ) ( ) ( ),1
001

hO

h
vnhzh

K
h

v
K

=













≠








 −+τ






 ≠






 −τ γα

ν
+

+ν
+ ∪

(4.9)

all the ( )⋅O  terms combined result in a summary ( )⋅O  term of ( ( ) ).1 γαnhO

Observing 122 =γ−β  and combining

( ) ( ) ( ( )( ))∫∫ ∫ 





+=





 −τ






 −τ +ν

±
+ν

±
+ν

± ,1
2

2111

n
OduvK

n
hdu

h
vKdu

h
vK

( ) ( ) ( )( ) ( )( )∫∫ ∫ 





+=





 −τ






 −τ +ν

−
+ν

+
+ν

±
+ν

± 2
1111 1

n
OdvvKvK

n
hdu

h
vKdu

h
vK







=

2
1

n
O (4.10)

with (4.7), where the differences are substituted by the leading terms of
(4.8), completes the proof.

Lemma 4.3. For fixed ,z  [ ],, TTz −∈

( ) ( )( ) ( ( ) ( )) .2,0 2122 




 σ→ζ−ζ ∫ +ν

− dvvKzzz nn NDE

Lemma 4.4. For fixed ,...,,, 21 lzzz  [ ],, TTzi −∈

( ) ( )( ) ( ) ( )( )( ) ( ),,0...,,11 Azzzz lnlnnn ND→ζ−ζζ−ζ EE (4.11)

where ( ) ljiijaA ≤≤= ,1  and ( ( )( )) .2 212 ∫ +ν
−σ= dvvKzza jiij

Lemma 4.5. The sequence ( ) ( ) ( )( )⋅ζ−⋅ζ=⋅ζ nnn E  is tight.

Proof. We show that there exists a constant 0>c  such that

( ( ) ( )) ( )221
2

21 zzczz nn −≤ζ−ζE (4.12)

for n sufficiently large. According to Billingsley [2], the moment condition

(4.12) implies tightness .nζ  Using the same notation as in the proof of

Lemma 4.2 and defining

( ) [ ] ( ) ( )
,0:1,0













≠








 −+τ
∈=

γα
ν
±± h

unhzb
KuzA
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the Lipschitz continuity of ( )νK  implies

( ( ) ( ))221 zz nn ζ−ζE

( )
( )

( ( ) ( ) ( ) ( ) )
2

212
22

2

2121
11












+

−
σ≤ ∫ −−++γα+ν

βα
du

nh

zz

h

nh
zAzAzAzA ∪∪

2
21 zzc −≤

since 122 =γ−β  and

( ( ) ( ) ( ) ( ) ) ( ).11 2
2

2121
nhOduzAzAzAzA =



 +∫ −−++ ∪∪

Proof. Proof of Theorem 3.1.

Weak convergence of the processes nζ  follows now from applying

Lemmas 4.4 and 4.5. The moment structure of the limit process ζ is a

consequence of Lemmas 4.1 and 4.2.

The following lemma is used in the proof of Corollary 3.2.

Lemma 4.6.

( ) { ( )( ) } ( ( )( )) .2,0ˆ 222112






 σ→∆−τ∆ ∫ ν

−ν
ν+ν dvvKnh ND
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