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Abstract

Estimators for location and size of a discontinuity or change-point in a
smooth mean residual life model are proposed. The proposed estimators
also apply to the detection of discontinuities in derivatives and therefore
to the detection of change-points of slope and of higher order curvature.
The proposed estimators are based on a comparison of left and right
one-sided kernel smoothers. Weak convergence of a stochastic process
in local differences to a Gaussian process is established for properly
scaled versions of estimators for the location of a change-point. The
continuous mapping theorem can then be invoked to obtain asymptotic
distributions and corresponding rates of convergence for change-point
estimators.

1. Introduction

Nonparametric methods are usually applied in order to obtain a
smooth fit of a curve without having to specify a parametric class of
function. Sometimes a generally smooth curve might contain an isolated
discontinuity or change-point in the curve or in a (possibly higher order)
derivative, and in many cases interest focuses on the occurrence of such
change-points.
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The analysis of change-points describing sudden, localized changes
typically occurring in economics, medicine and the physical sciences has
recently found increasing interest. General smoothness assumptions,
allowing for a large class of functions to be considered, seem to be more
appropriate in a variety of applied problems than parametric modeling.

The problem of estimating the location of the change-point of a mean
residual life function (MRLF) is considered here.

Although the change-point has received relatively little attention in
literature, some estimates of the change-point have been studied by Mi
[11] and Ebrahimi [4]. We will consider estimates of the change-point of
the MRLF via a kernel estimate of the MRLF. That is, if X is a real-
valued random variable with the distribution function F, survival function

F(x)=1- F(x) and such that E(X")< w; for example, X might represent
the time of advice. The mean residual life function (MRLF for short) or
the remaining life expectancy at age x, M(x) of X is defined by (see, e.g.,
Kotz and Shanbhag [10], Hall and Wellner [8] and Guess and Proschan
(7D

J F(y)dy
TEONS
F(x)

0 otherwise.

Mx)=EX-x|X >x) = if F(x)>0

Given a sample Xj, ..., X,, from F, then Yang [14] proposed a natural

nonparametric estimate of M(x) is the random function e, (x) defined by

Ian(y)dy

X

ep(x)= Wﬂ[x(nyx], (1.1)

where X(,) = max;<;<, X; that is the average, less x, of the observations
exceeding x; and Fn (x) 1is the empirical survival function defined by
F,(x)=1-F,(x), where F,(x)= %Z?H[Xigx] is the empirical distribution.

In order to introduce a kernel-type estimator for M(x), let us use by K(-)

(a probability density on the real line). Its corresponding survival function
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will be denoted by K(t) = jtoo K(u)du. Also, we will need a sequence of

smoothing parameters (or bandwidths) A = h,, > 0. The expected value

of the empirical MRL estimator was derived by Abdous and Berred [1],
E(e, (x)) = e(x) (1 - F"(x)). (1.2)

It follows that the bias of the empirical estimator is —e(x) F" (x) and hence
e,(x) is asymptotically unbiased, with bias decaying exponentially to
zero as n — . When E(XQ) < o, Abdous and Berred [1] also provided

the variance of e, (x):

Var(e,(x)) = e2(x)F" x (1 - F™(x))

+Var[X -x|X > x]Z%B(n, j, F(x)), (1.3)
fE=

where B(n, j, F(x)) = (’;jﬁj x F"7J(x). Therefore, Var(e,(x)) = 0 as
n — o when E(X?) < o.

Throughout this paper, we suppose that the MRLF M is [ times
continuously differentiable for some [ > 0, M < ¢! and a kernel smoother

with a kernel function of the order & is chosen, that is, the kernel function

with exactly (k — 1) vanishing moments.

However, the focus of this paper is to use the nonparametric
regression method of the change-point to estimate the change-point of the
MRLF. Smooth approximation of the change-point model by a model
which contains a point of most rapid change and the corresponding
statistical inference was considered by Miuller and Wang [12] in the
context of hazard functions under random censoring. Let v > 0 be an

integer and & > 2 be an even integer. Assume that a change-point exists

for MY at 1, 0<1t<1, in the following sense: There exists a
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g e c*)([0, 1]) such that
MY@) = gV)+ A I @), A, >0,0<t<1, (1.4)

The case A, <0 can be treated analogously. Define MJ(rV)(r)
—1lim, |, MM (x), MY(z) = lim 4. MV (x) and MV)(z) = MM (x) and
observe that

A, = MM(x) - MM (), (1.5)

where A, is the jump size at the possible change-point t of the vth
derivative. The case A, = 0 corresponds to the nonexistence of a change-

point at 1. The change-point MRL function model (1.4) differs from the
model of a change-point in the sequence of random variable (e.g., Hinkley
[9], Deshayes and Picard [3], Worstley [13] in which the first %

observations among Xj, .., X; are independent and identically

distributed with a common cumulative distribution function (c.d.f.) F
while X, 4, ..., X,, are independent and identically distributed with a

common c.d.f. G. In (1.4), the change-point t is an unknown point in the
domain of the common p.d.f. of all observations. In terms of the MRL
function, this change-point is the unknown time at which the MRL

function jumps.

The main results of this paper concern weak convergence of
estimators T of the location of the change-point 1. The paper is organized
as follows: Section 2 presents a discussion of kernel estimators using
kernel functions with one-sided support and their application to change-
point estimation, which is based on maximizing the difference between
one-sided kernel smoothers. Section 3 i1s devoted to the study of a
functional limit theorem for a local deviation process. The functional
mapping theorem is used to obtain the distribution limit for the estimated
change-point. The proofs of Section 3 are given in Section 4.

2. Change-point Estimators

We consider M(x) as a function on its own, we can convolve e, (x)
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with Kj(-) = K(/h)/h and obtain the following kernel estimators:

(v 1 oW x —u
Mt )(x): P _wK( )( ; jen(u)du. (2.1)

Here h = h,, is a sequence of bandwidths which is required to satisfy

h =0, nh>* > 40 as n—> o, lim supnhz(k+v)+1 < o0, (2.2)
n—o

KW is the kernel function, which is assumed to be the vth derivative of a
function K with compact support [-1, 1] and e, (x) is defined by (1.1).

Let K\ and K™ be one-sided kernel functions with support (KJ(rV))
= [-1, 0] and support (KJ(rV)) =[0,1] and define one-sided estimates for

the vth derivative M) (x):

T - L [Trw(x-u
M (x)—F B K} (T]en(u)du. (2.3)

The idea is to base inference for change-points on differences between
right and left sided estimates:

AM(x) = MWV (x) - MY (). (2.4)

Intuitively, the location of the maximum of these differences will be a

reasonable estimator for the location of the change-point. Let Q < ]0, 1

be a closed interval such that t € Q. Define the estimators

t=inf{p € Q : AM(p) = sup AV (x)} (2.5)
xeQ

for the location of the change-point t and
A& = MM - MM () (2.6)

for the jump size in the vth derivative. Defining © as maximizer over Q
instead of [0, 1] serves the sole purpose of excluding change-points

located arbitrarily close to the boundary.
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Assume that for some integer p > 0,
K e C*™Y([-1, 1) N Ho (-1, 1]), 2.7
KWD) = KDQ) =0, 0<j<p+v, 2.8)
where k as before is an even integer k > 2, v < k and

f € a1, ag]) : support(f) = [a;, az],

Hy.i([ar, ag]) = _ = (<!, if j=v,
J.f(x)xfdx: =0, if0<j< j=v,
# 0, if j =1,
It then follows by integration by parts that
K™ € ([, 1) N Hy, g (1, 1]), (2.9)
KO-y = KV )1) =0, 0<j<p (2.10)

According to (2.10), the kernel K ™) is (u—1) times differentiable on R

and Kt ig absolutely continuous. Similarly, assume for kernels K.,
and K_,

K, e C"™([-1, 0]) N Hg, 1 ([-1, 0]), (2.11)
K_ e cV™([0, 1]) N Hy ([0, 1]), (2.12)
KV(1) = KD0)=0, 0<j<v+p,

KV1) =kD0)=0, 0<j<v+p, (2.13)

which again imply that

K e e([-1, 0]) N My, sy ([1, 0),
K£j+v)(_1) _ K&J‘r\’)(o) =0, 0<j<up, (2.14)
KEV) € C”([O’ 1]) N Hv,k+v([0’ 1])’

KU™M@) = KU™M0)=0, 0<j<p (2.15)
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Observe that K, (respectively, K_) acts on the right half side (r.h.s.)

(respectively, left half side (l.h.s.)) of ¢ according to the convolution
property in definition (2.3), so that application of these kernels

corresponds to employing smoothing windows [t, ¢ + k] (respectively,
[t — h, t]). Observe that it follows from (2.13) that if K*) satisfies (2.15),

then a kernel K&V) defined by
KM(x) = (1) KV (=x) (2.16)
satisfies (2.14). An additional assumption we make is

KY™(0) > 0, (v+p) is odd and p > 1. 2.17)

Similar conditions follow for KJ()’“*), assuming (2.16).

3. Weak Convergence of Local Deviation Processes and
Asymptotic Distributions of Change-point Estimators

In this section, a functional limit theorem for a process operating on
increments of one-sided function estimates near t is derived. The
functional mapping theorem is then applied to obtain the limit
distributions for change-point estimators . A similar device was used by

Eddy [5, 6] in the context of estimating the mode of a probability density.
Let

§.(v) = AVt + yh) = MWV (x + yh) - MY (c + yh)

and define for some 0 < T < oo, -T < z < T, the sequence of stochastic

processes

£, (z) = (nh2v+1 )(H+v+1)/(2(ll+\/))(8v( z ] 3 SV(O)J 3.1)

(nh2v+1 )1/(2(;1-%—\/))

The scaling is chosen in such a way that processes (,, converge weakly.

Observe that ¢,, € C([-T, T]). The following functional limit theorem
holds.
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Theorem 3.1. Assume that (1.1), (2.2) and (2.8)-(2.17) hold. Then
¢, > ¢ as. on C([-T,T)), (3.2)

where C is a continuous Gaussian process with moment structure

p+v+1 - (u+v)

E((e) = - 22 K20 3.3)
(L+v+1)!

cov(Ele), L(z2)) = 2m20° [ (KO Ve) P, (3.0

where o2 = Var(e,).

Since the Gaussian limit process { is determined by its first and
second moments, according to (3.3) and (3.4), it can be equally written as

AVZH+V+1KH+V(O)

+ Yz, 3.5
(W+v+1) ‘ (3-5)

&(z) =

where Y ~ N(O, ZGQJ(KE”W)(U))Z dvj.

The proof of Theorem 3.1 follows from a sequence of lemmas in

Section 4.

Asymptotic distributions of estimated change-points (2.5) can now be
obtained as a consequence of this functional limit theorem. Under (2.17),

the limit process ¢ of (3.5) is seen to have a unique maximum at

1/(u+v)
!
7* = Y(u+v) (3.6)
A KHHY)(0)
Let Z,, be the location of the maximum of (,,. By construction,
T=1 Znh (3.7

* (nh 2 )

Corollary 3.1. Under the assumption of Theorem 3.1,

2
ap2viy/2( T @t} e f ) )2 de
(nh®'*H)! ( - j —>p N[O’z(AV(K(W)(o))J 2[4 d } (3.8)
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Consider for instance the important cases p =1, v =0, £k = 2. If the

usual bandwidth choice & = dn~Y/? is made and d > 0, then (3.8) becomes

I (Kg)(v))2 dv

35(n 2
(n°(t -1) >p N|0, 2do S KOOF |

Another application of the functional mapping theorem shows that

¢,(Z,) »p C(Z") and therefore

(nh2"+1)1/2{ Cn(Zn) } >p 0.

(nh2v+1 )(u+v +1)/(2(u+v))

This implies (nh?*! )1/ 2 {A(V)(%) - A(V)(r)} —p 0, where AV)() is defined
in (2.4). According to Lemma 4.6,

(A2 W2 AV ()~ A} —p N(o, 202 [ (KU (0)) duj,
and combining these results one obtains for the jump size estimator
AV,
Corollary 3.2.

RGO~ AL o /\/(0, 207 [ (K (0)? dv). (3.9)

4. Auxiliary Results and Proofs

The following sequence of lemmas leads to the proof of Theorem 3.1.

Lemma 4.1.

szp+v+1K£p+v)(0)

B (e) = Ty

+o(1). (4.1)

Proof. Observe that, following (1.2) and (2.3),

MW, h) = hvlﬂ j: Kiv)(x - ujen(u)du,
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then

EM Y (c + yh)) = ——

hV+1

KSR B, () du

- hi j KM @) M(x + yh - vh)dv

I

- hLVJ'KQ)(v)M(T + yh — vh)F™(x + yh - vh)dv

II
- hi j KM @)M(x + yh - vh)dv + O([RVT™Y).
Therefore, defining
5) = L[| KOV0) - KO MG+ b = oha,

we obtain

E(Sy(y)) = 8,(3)+ O([R*T ™). (4.2)

Observing (1.4), (2.11), (2.12), (2.13), evenness of k& and (2.16) and

employing a Taylor expansion and mean values &, =1+ & (y —v)h,

€9, = T+ Eg(y —v)h, then

) = L | (RE0) = KOO+ 3h o) Ly + ey Do

- el S =0 )
-], &0 -EYw) Zé T W MY )Ly |dv
J:

(4)

I (v) &Nl =0 ;i)
| EY W - KYw) ]ZO S MOy fde

(B)
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1 ! (V)v V) (v - ) k+v ar(k+v)
s [ &0 - kO E ey R M gy do

(©)

(v) ™) & — Y iy (k+v)
e 00 - KO Qo b 1o

(D)

C+D = 1.[ (Kv) U) K(V())((k )) hk+V(Mk+V)(§ n)

ME(@) + ME) @)1peydv

J‘ (K(V)(U) K(v)(v))(y( )) hk+V(M(}’+V)(§ )

M£k+v)(,c) + M£k+v)(‘f))1{v>y}dv

_ (v) (v) (y - ) +v +v
- ) - K e e )

- M) x Lyeyydo

J. (K(v)(v) K(v)(v))((k )) hk+V(M(k+V)(§ )

- MEkJrV)(‘C)) x1gsy1du

B e O T e O T oY gy () g v
to [ EDE) - KO S R 01y

e L KO0 0 By
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Let
-1 ! (v) e (y - ) k+v ar(k+v)
Q) == | (Ke) - K)o SR e,)
- M) x Ly do
1 ! (V)U (V)v (v - ) k+v qr(k+v)
e ®D) - K Bt e e,
- MEkJrV)(‘C)) X 1{v>y}dv
hk (v (v) k+v (k+v)
(,M),j (KNw) - KO) (0 -0 (1 ey,)
- M @)+ MEY @)Ly dv
h* ! My ) kv r(RtY)
) BV - KO oo ey,
- M)+ ME @)1y, do.
Then

A+B+C+D=Q,(v)

1t (v) (v) = (y—v)j i 2 ()
+hTI_1(K+ (v)-KM(v)) ;ThJM+J ()1gpeyy |dv

(E)

1Y ) W[ S o=y i 6)
+h—vjll(K+ (v)- KN (v)) JZOThJM] (D) 1pysyy |dv

(F)
and by (2.11), (2.12) and (2.13), we have

kR+v |
1 h’ j ! v v /

= nY 27 MSJ)(T)J. ) (KW () - KV ) (y - v)' L5 yydv,

=0~ )

=0
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and

k+ i j ]

N i) = ) 1 v v j

7ol (M (T).‘ ~"(1) j (KYM(w) - KM ) (y - v) Ly<y)dv
hY =0 o B

V) (2 V(1
(M (t) - MZ( ))J. (K(V (v) - K(V)(U))(y—v) 1{v<y

V!

1 = hJ(M(])(r) MY (T))J. (KM w) - KMW) (y - v) Lyp<yrdv

A%
" “~

=0

k+v i () - () . .
+L Z h](M+] (3' MY ( ))J._ll(K_(*_V)(U)—KSV)(U))(y—U)] 1{y£y}dv’

\'%
h Jj=v+1

=0

hence

50() = (o) + DO [ e010) - KO o) 3 - 1)1
Vi -1

1
= % AVL (KO) - KY)0) (5= 1) Lpeyydv + @u(y),

where @,,(y) is defined above.

Observe that
R,(y) = | Q. (») - @,(0)] = o(r"y), (4.3)

since, for instance, for the difference of the first term on the r.h.s. of @,

for y > 0,

|7 &0 - KOw) o) e + gy copm) - ME @)

- [ &0 - )= KO0 - 3) (0 - 0 M ey) - ME @) do
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and analogous calculations for y < 0, and for the difference of the second

term on the r.h.s. of @,, yields (4.3). Observing, for y > 0, under (2.16),

-1

10 (v — o (IS0 i)y 2 O e ey | 0= 0)
V!IOK_ ©) (v — v)’ dv jolz K¢ (0)+u! K (g)| 2= av

i=0

B yp,+v+1 (V)
= ———— (KY"™M(0)+ O(y)), asy—>0
(W+v+1)
and analogously, for y < 0,
(KO )y - o)do = =2 ()
T K@ 6 0o = B (KO0 4 00), as y >0,

one obtains, noting that K"*(0) = (-1)**Y K+ (0) and that (u + v) is
odd

(v+p) p+v+1
KO (14 0() + ofhty), as y > 0. (4.4

B,()-8,(0) = O

The result follows.

Lemma 4.2.

cov( 1), Ca22) = 221200% [ ()P + o{ (nh2v+11)1 /sz- ws)

(u+v+1) 1

@) T )

En(e) ~ B, (2 >>_<n’zﬂ) IH@)[H(zh)/(;w— J Km(r}:vn

] (Km(r ) - J : K<>(Tm

< (e (v) - Ble, (v))dv. (4.6)

Proof. Abbreviate o =2v+1, B =
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(nh*)*
h2\/+2

i
. I{ng{

KV)

cov(Cp (21 ), Cplze)) =

T+ (z21h)/(nh*) —v
h

T+ (29h)/(nh) —v |
h

T+ (,zlh)/(nho‘)y -v |

of e+ CalohY —

=]
|
|
|
§

n

v)

r+(zgh>/(nh°‘w—v} Kv>(
N {K@ +(zlh>/(nh°‘>y—vJ K@(

y J.{KEV)[T + (29h)

By the assumptions, observing the compactness of supports,

of ey o

—

- KV

/(nh®)" —v
h

ng)[r e k) vJ kYY)
iv+1)(_] (nhi 5

1

(nh® )2 /(nh®)"

JI{K§V+1)(%)¢0}U{K§V)[M2’Z)——11

oo

h

ox

}

171

dv

dv

j_w(%ﬂdv}.

. 4.8
)
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Inserting this into (4.7) and observing

g st ) <O

all the O(-) terms combined result in a summary O(-) term of O(1/(nh®)").
Observing 2B — 2y = 1 and combining

(v+1)fT -V (vi)( T -V _h (v+1) [, 12 1
[ o E e e T (L) du+o[?j,

(v+1)( T =V (v+))fr -V :ﬁ (v+1) (v+1) 1
J.Ki ( 7 jduJ.Ki ( A jdu nJ-KJr (V)KL (v)dv+0(n2J

1
- 0(—2] (4.10)

n

with (4.7), where the differences are substituted by the leading terms of
(4.8), completes the proof.

Lemma 4.3. For fixed z, z € [-T, T,
n() = BC(2) >p N[0, 26%2 [ (KO () do |
Lemma 4.4. For fixed z, 29, ..., 2, 2; € [-T, T,
(Cn(z1) = B(Cp(21)) - Cn(21) = B(Cn(27) »p N(O, 4), (411
where A = (a;)1<; j and a;; = 2zizj02j(K£V+1)(v))2dv.
Lemma 4.5. The sequence C,,(-) = £, (-) — B(C,, (") is tight.
Proof. We show that there exists a constant ¢ > 0 such that

E(Cn(21) - Cal2a))f < (o1 — 29)° (4.12)

for n sufficiently large. According to Billingsley [2], the moment condition
(4.12) implies tightness (,. Using the same notation as in the proof of

Lemma 4.2 and defining

Ai(z) _ {u c [O, 1] . Kiv)('f + Zb/(nha)y — LLJ 2 0}’

h
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the Lipschitz continuity of K v) implies

E(C,(21) - Cpl22))?

2
(nh*)P | 112 - 2|
< B 2v+2 GQJ (rlzha)i (LA, (2)UA. (20) + 1A_(2)UA_(29)) A

<dz -2

since 2 — 2y =1 and

2
|:j (1A+(21 )UAJr(ZQ) + lAf(zl)UAf(ZZ))du:| = O(h/nz)
Proof. Proof of Theorem 3.1.

Weak convergence of the processes En follows now from applying
Lemmas 4.4 and 4.5. The moment structure of the limit process ( is a
consequence of Lemmas 4.1 and 4.2.

The following lemma is used in the proof of Corollary 3.2.

Lemma 4.6.

(nh2v+1 )1/2 {A(v)(,t) _ Av} S5 N(O, 202j (KEV)(U))Q dvj
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