ESTIMATION OF THE CHANGE-POINTS OF THE MEAN RESIDUAL LIFE FUNCTION

SARA DIALLO
Université du Havre
LMAH, Faculté des Sciences et Techniques
B. P. 540, 76058 Le Havre Cedex, France
e-mail: sara.diallo617@univ-lehavre.fr

Abstract

Estimators for location and size of a discontinuity or change-point in a smooth mean residual life model are proposed. The proposed estimators also apply to the detection of discontinuities in derivatives and therefore to the detection of change-points of slope and of higher order curvature. The proposed estimators are based on a comparison of left and right one-sided kernel smoothers. Weak convergence of a stochastic process in local differences to a Gaussian process is established for properly scaled versions of estimators for the location of a change-point. The continuous mapping theorem can then be invoked to obtain asymptotic distributions and corresponding rates of convergence for change-point estimators.

1. Introduction

Nonparametric methods are usually applied in order to obtain a smooth fit of a curve without having to specify a parametric class of function. Sometimes a generally smooth curve might contain an isolated discontinuity or change-point in the curve or in a (possibly higher order) derivative, and in many cases interest focuses on the occurrence of such change-points.

[^0]Received July 17, 2006

The analysis of change-points describing sudden, localized changes typically occurring in economics, medicine and the physical sciences has recently found increasing interest. General smoothness assumptions, allowing for a large class of functions to be considered, seem to be more appropriate in a variety of applied problems than parametric modeling.

The problem of estimating the location of the change-point of a mean residual life function (MRLF) is considered here.

Although the change-point has received relatively little attention in literature, some estimates of the change-point have been studied by Mi [11] and Ebrahimi [4]. We will consider estimates of the change-point of the MRLF via a kernel estimate of the MRLF. That is, if X is a realvalued random variable with the distribution function F, survival function $\bar{F}(x)=1-F(x)$ and such that $E\left(X^{+}\right)<\infty$; for example, X might represent the time of advice. The mean residual life function (MRLF for short) or the remaining life expectancy at age $x, M(x)$ of X is defined by (see, e.g., Kotz and Shanbhag [10], Hall and Wellner [8] and Guess and Proschan [7])

$$
M(x)=E(X-x \mid X>x)= \begin{cases}\int_{x}^{\infty} \bar{F}(y) d y \\ \bar{F}(x) & \text { if } \bar{F}(x)>0 \\ 0 & \text { otherwise }\end{cases}
$$

Given a sample X_{1}, \ldots, X_{n} from F, then Yang [14] proposed a natural nonparametric estimate of $M(x)$ is the random function $e_{n}(x)$ defined by

$$
\begin{equation*}
e_{n}(x)=\frac{\int_{x}^{\infty} \bar{F}_{n}(y) d y}{\bar{F}_{n}(x)} \mathbb{I}_{\left[X_{(n)}>x\right]}, \tag{1.1}
\end{equation*}
$$

where $X_{(n)}=\max _{1 \leq i \leq n} X_{i}$ that is the average, less x, of the observations exceeding x; and $\bar{F}_{n}(x)$ is the empirical survival function defined by $\bar{F}_{n}(x)=1-F_{n}(x)$, where $F_{n}(x)=\frac{1}{n} \sum_{1}^{n} \mathbb{I}_{\left[X_{i} \leq x\right]}$ is the empirical distribution. In order to introduce a kernel-type estimator for $M(x)$, let us use by $K(\cdot)$ (a probability density on the real line). Its corresponding survival function
will be denoted by $\mathbb{K}(t)=\int_{t}^{\infty} K(u) d u$. Also, we will need a sequence of smoothing parameters (or bandwidths) $h=h_{n}>0$. The expected value of the empirical MRL estimator was derived by Abdous and Berred [1],

$$
\begin{equation*}
\mathbb{E}\left(e_{n}(x)\right)=e(x)\left(1-F^{n}(x)\right) \tag{1.2}
\end{equation*}
$$

It follows that the bias of the empirical estimator is $-e(x) F^{n}(x)$ and hence $e_{n}(x)$ is asymptotically unbiased, with bias decaying exponentially to zero as $n \rightarrow \infty$. When $\mathbb{E}\left(X^{2}\right)<\infty$, Abdous and Berred [1] also provided the variance of $e_{n}(x)$:

$$
\begin{align*}
\operatorname{Var}\left(e_{n}(x)\right)= & e^{2}(x) F^{n} \times\left(1-F^{n}(x)\right) \\
& +\mathcal{V} a r[X-x \mid X>x] \sum_{j=1}^{n} \frac{1}{j} B(n, j, \bar{F}(x)), \tag{1.3}
\end{align*}
$$

where $B(n, j, \bar{F}(x))=\binom{n}{j} \bar{F}^{j} \times F^{n-j}(x)$. Therefore, $\operatorname{Var}\left(e_{n}(x)\right) \rightarrow 0$ as $n \rightarrow \infty$ when $\mathbb{E}\left(X^{2}\right)<\infty$.

Throughout this paper, we suppose that the MRLF M is l times continuously differentiable for some $l \geq 0, M \in \mathcal{C}^{l}$ and a kernel smoother with a kernel function of the order k is chosen, that is, the kernel function with exactly $(k-1)$ vanishing moments.

However, the focus of this paper is to use the nonparametric regression method of the change-point to estimate the change-point of the MRLF. Smooth approximation of the change-point model by a model which contains a point of most rapid change and the corresponding statistical inference was considered by Müller and Wang [12] in the context of hazard functions under random censoring. Let $v \geq 0$ be an integer and $k \geq 2$ be an even integer. Assume that a change-point exists for $M^{(v)}$ at $\tau, \quad 0<\tau<1$, in the following sense: There exists a
$g \in \mathcal{C}^{(k+v)}([0,1])$ such that

$$
\begin{equation*}
M^{(v)}(t)=g^{(v)}(t)+\Delta_{v} I_{[\tau, 1]}(t), \quad \Delta_{v}>0,0 \leq t \leq 1 . \tag{1.4}
\end{equation*}
$$

The case $\Delta_{v}<0$ can be treated analogously. Define $M_{+}^{(v)}(\tau)$ $=\lim _{x \downarrow \tau} M^{(v)}(x), M_{-}^{(v)}(\tau)=\lim _{x \uparrow \tau} M^{(v)}(x)$ and $M^{(v)}(\tau)=M_{+}^{(v)}(\tau)$ and observe that

$$
\begin{equation*}
\Delta_{v}=M_{+}^{(v)}(\tau)-M_{-}^{(v)}(\tau), \tag{1.5}
\end{equation*}
$$

where Δ_{v} is the jump size at the possible change-point τ of the v th derivative. The case $\Delta_{v}=0$ corresponds to the nonexistence of a changepoint at τ. The change-point MRL function model (1.4) differs from the model of a change-point in the sequence of random variable (e.g., Hinkley [9], Deshayes and Picard [3], Worstley [13] in which the first k observations among X_{1}, \ldots, X_{k} are independent and identically distributed with a common cumulative distribution function (c.d.f.) F while X_{k+1}, \ldots, X_{n} are independent and identically distributed with a common c.d.f. G. In (1.4), the change-point τ is an unknown point in the domain of the common p.d.f. of all observations. In terms of the MRL function, this change-point is the unknown time at which the MRL function jumps.

The main results of this paper concern weak convergence of estimators $\hat{\tau}$ of the location of the change-point τ. The paper is organized as follows: Section 2 presents a discussion of kernel estimators using kernel functions with one-sided support and their application to changepoint estimation, which is based on maximizing the difference between one-sided kernel smoothers. Section 3 is devoted to the study of a functional limit theorem for a local deviation process. The functional mapping theorem is used to obtain the distribution limit for the estimated change-point. The proofs of Section 3 are given in Section 4.

2. Change-point Estimators

We consider $M(x)$ as a function on its own, we can convolve $e_{n}(x)$
with $K_{h}(\cdot)=K(\cdot / h) / h$ and obtain the following kernel estimators:

$$
\begin{equation*}
\hat{M}^{(v)}(x)=\frac{1}{h^{v+1}} \int_{-\infty}^{+\infty} K^{(v)}\left(\frac{x-u}{h}\right) e_{n}(u) d u . \tag{2.1}
\end{equation*}
$$

Here $h=h_{n}$ is a sequence of bandwidths which is required to satisfy

$$
\begin{equation*}
h \rightarrow 0, n h^{2 v+1} \rightarrow+\infty \text { as } n \rightarrow \infty, \lim _{n \rightarrow \infty} \sup n h^{2(k+v)+1}<\infty, \tag{2.2}
\end{equation*}
$$

$K^{(v)}$ is the kernel function, which is assumed to be the v th derivative of a function K with compact support $[-1,1]$ and $e_{n}(x)$ is defined by (1.1).

Let $K_{+}^{(v)}$ and $K_{-}^{(v)}$ be one-sided kernel functions with support $\left(K_{+}^{(v)}\right)$ $=[-1,0]$ and support $\left(K_{+}^{(v)}\right)=[0,1]$ and define one-sided estimates for the v th derivative $M^{(v)}(x)$:

$$
\begin{equation*}
\hat{M}_{ \pm}^{(v)}(x)=\frac{1}{h^{v+1}} \int_{-\infty}^{+\infty} K_{ \pm}^{(v)}\left(\frac{x-u}{h}\right) e_{n}(u) d u . \tag{2.3}
\end{equation*}
$$

The idea is to base inference for change-points on differences between right and left sided estimates:

$$
\begin{equation*}
\hat{\Delta}^{(v)}(x)=\hat{M}_{+}^{(v)}(x)-\hat{M}_{-}^{(v)}(x) . \tag{2.4}
\end{equation*}
$$

Intuitively, the location of the maximum of these differences will be a reasonable estimator for the location of the change-point. Let $\mathcal{Q} \subset$] 0,1 [be a closed interval such that $\tau \in \mathcal{Q}$. Define the estimators

$$
\begin{equation*}
\hat{\tau}=\inf \left\{\rho \in \mathcal{Q}: \hat{\Delta}^{(v)}(\rho)=\sup _{x \in \mathcal{Q}} \hat{\Delta}^{(v)}(x)\right\} \tag{2.5}
\end{equation*}
$$

for the location of the change-point τ and

$$
\begin{equation*}
\hat{\Delta}^{(v)}(\hat{\tau})=\hat{M}_{+}^{(v)}(\hat{\tau})-\hat{M}_{-}^{(v)}(\hat{\tau}) \tag{2.6}
\end{equation*}
$$

for the jump size in the v th derivative. Defining $\hat{\tau}$ as maximizer over \mathcal{Q} instead of $[0,1]$ serves the sole purpose of excluding change-points located arbitrarily close to the boundary.

Assume that for some integer $\mu \geq 0$,

$$
\begin{align*}
& K \in \mathcal{C}^{\mu+v}([-1,1]) \cap \mathcal{H}_{0, k}([-1,1]), \tag{2.7}\\
& K^{(j)}(-1)=K^{(j)}(1)=0, \quad 0 \leq j<\mu+v, \tag{2.8}
\end{align*}
$$

where k as before is an even integer $k \geq 2, v<k$ and

$$
\mathcal{H}_{v, l}\left(\left[a_{1}, a_{2}\right]\right)=\left\{\begin{array}{c}
f \in \mathcal{C}\left(\left[a_{1}, a_{2}\right]\right): \text { support }(f)=\left[a_{1}, a_{2}\right], \\
\int f(x) x^{j} d x=\left\{\begin{array}{ll}
=(-1) v!, & \text { if } j=v, \\
=0, & \text { if } 0 \leq j<, j \neq v, \\
\neq 0, & \text { if } j=l,
\end{array}\right\} .
\end{array}\right.
$$

It then follows by integration by parts that

$$
\begin{align*}
& K^{(v)} \in \mathcal{C}^{\mu}([-1,1]) \cap \mathcal{H}_{v, k+v}([-1,1]), \tag{2.9}\\
& K^{(v+j)}(-1)=K^{(v+j)}(1)=0, \quad 0 \leq j<\mu . \tag{2.10}
\end{align*}
$$

According to (2.10), the kernel $K^{(v)}$ is $(\mu-1)$ times differentiable on \mathbb{R} and $K^{(\mu-1)}$ is absolutely continuous. Similarly, assume for kernels K_{+} and K_{-},

$$
\begin{align*}
& K_{+} \in \mathcal{C}^{v+\mu}([-1,0]) \cap \mathcal{H}_{0, k}([-1,0]), \tag{2.11}\\
& K_{-} \in \mathcal{C}^{v+\mu}([0,1]) \cap \mathcal{H}_{0, k}([0,1]), \tag{2.12}\\
& K_{+}^{(j)}(-1)=K_{+}^{(j)}(0)=0, \quad 0 \leq j<v+\mu, \\
& K_{-}^{(j)}(1)=K_{-}^{(j)}(0)=0, \quad 0 \leq j<v+\mu, \tag{2.13}
\end{align*}
$$

which again imply that

$$
\begin{align*}
& K_{+}^{(v)} \in \mathcal{C}^{\mu}([-1,0]) \cap \mathcal{H}_{v, k+v}([-1,0]), \\
& K_{+}^{(j+v)}(-1)=K_{+}^{(j+v)}(0)=0, \quad 0 \leq j<\mu, \tag{2.14}\\
& K_{-}^{(v)} \in \mathcal{C}^{\mu}([0,1]) \cap \mathcal{H}_{v, k+v}([0,1]), \\
& K_{-}^{(j+v)}(1)=K_{-}^{(j+v)}(0)=0, \quad 0 \leq j<\mu . \tag{2.15}
\end{align*}
$$

Observe that K_{+}(respectively, K_{-}) acts on the right half side (r.h.s.) (respectively, left half side (l.h.s.)) of t according to the convolution property in definition (2.3), so that application of these kernels corresponds to employing smoothing windows $[t, t+h]$ (respectively, $[t-h, t])$. Observe that it follows from (2.13) that if $K_{-}^{(v)}$ satisfies (2.15), then a kernel $K_{+}^{(v)}$ defined by

$$
\begin{equation*}
K_{+}^{(v)}(x)=(-1)^{v} K_{-}^{(v)}(-x) \tag{2.16}
\end{equation*}
$$

satisfies (2.14). An additional assumption we make is

$$
\begin{equation*}
K_{-}^{(v+\mu)}(0)>0, \quad(v+\mu) \text { is odd and } \mu \geq 1 \tag{2.17}
\end{equation*}
$$

Similar conditions follow for $K_{+}^{(v+\mu)}$, assuming (2.16).

3. Weak Convergence of Local Deviation Processes and Asymptotic Distributions of Change-point Estimators

In this section, a functional limit theorem for a process operating on increments of one-sided function estimates near τ is derived. The functional mapping theorem is then applied to obtain the limit distributions for change-point estimators $\hat{\tau}$. A similar device was used by Eddy [5, 6] in the context of estimating the mode of a probability density.

Let

$$
\hat{\delta}_{v}(y)=\hat{\Delta}^{(v)}(\tau+y h)=\hat{M}_{+}^{(v)}(\tau+y h)-\hat{M}_{-}^{(v)}(\tau+y h)
$$

and define for some $0<T<\infty,-T \leq z \leq T$, the sequence of stochastic processes

$$
\begin{equation*}
\zeta_{n}(z)=\left(n h^{2 v+1}\right)^{(\mu+v+1) /(2(\mu+v))}\left(\hat{\delta}_{v}\left(\frac{z}{\left(n h^{2 v+1}\right)^{1 /(2(\mu+v))}}\right)-\hat{\delta}_{v}(0)\right) \tag{3.1}
\end{equation*}
$$

The scaling is chosen in such a way that processes ζ_{n} converge weakly.
Observe that $\zeta_{n} \in \mathcal{C}([-T, T])$. The following functional limit theorem holds.

Theorem 3.1. Assume that (1.1), (2.2) and (2.8)-(2.17) hold. Then

$$
\begin{equation*}
\zeta_{n} \rightarrow \zeta \text { a.s. on } \mathcal{C}([-T, T]) \tag{3.2}
\end{equation*}
$$

where ζ is a continuous Gaussian process with moment structure

$$
\begin{align*}
& \mathbb{E}(\zeta(z))=-\frac{\Delta_{v} z^{\mu+v+1} K_{-}^{(\mu+v)}(0)}{(\mu+v+1)!} \tag{3.3}\\
& \operatorname{cov}\left(\zeta\left(z_{1}\right), \zeta\left(z_{2}\right)\right)=2 z_{1} z_{2} \sigma^{2} \int\left(K_{-}^{(v+1)}(v)\right)^{2} d v \tag{3.4}
\end{align*}
$$

where $\sigma^{2}=\operatorname{Var}\left(e_{n}\right)$.
Since the Gaussian limit process ζ is determined by its first and second moments, according to (3.3) and (3.4), it can be equally written as

$$
\begin{equation*}
\zeta(z)=-\frac{\Delta_{v} z^{\mu+v+1} K_{-}^{\mu+v}(0)}{(\mu+v+1)!}+Y z \tag{3.5}
\end{equation*}
$$

where $Y \sim \mathcal{N}\left(0,2 \sigma^{2} \int\left(K_{-}^{(\mu+v)}(v)\right)^{2} d v\right)$.
The proof of Theorem 3.1 follows from a sequence of lemmas in Section 4.

Asymptotic distributions of estimated change-points (2.5) can now be obtained as a consequence of this functional limit theorem. Under (2.17), the limit process ζ of (3.5) is seen to have a unique maximum at

$$
\begin{equation*}
Z^{*}=\left[\frac{Y(\mu+v)!}{\Delta_{v} K_{-}^{(\mu+v)}(0)}\right]^{1 /(\mu+v)} \tag{3.6}
\end{equation*}
$$

Let Z_{n} be the location of the maximum of ζ_{n}. By construction,

$$
\begin{equation*}
\hat{\tau}=\tau+\frac{Z_{n} h}{\left(n h^{2 v+1}\right)^{1 /(2(\mu+v))}} \tag{3.7}
\end{equation*}
$$

Corollary 3.1. Under the assumption of Theorem 3.1,

$$
\begin{equation*}
\left(n h^{2 v+1}\right)^{1 / 2}\left(\frac{\hat{\tau}-\tau}{h}\right)^{\mu+v} \rightarrow_{\mathcal{D}} \mathcal{N}\left(0,2\left(\frac{(\mu+v)!}{\Delta_{v}\left(K_{-}^{(\mu+v)}(0)\right)}\right)^{2} \sigma^{2} \int\left(K_{-}^{(\mu+v)}(v)\right)^{2} d v\right) \tag{3.8}
\end{equation*}
$$

Consider for instance the important cases $\mu=1, v=0, k=2$. If the usual bandwidth choice $h=d n^{-1 / 5}$ is made and $d>0$, then (3.8) becomes

$$
\left(n^{3 / 5}(\hat{\tau}-\tau) \rightarrow_{\mathcal{D}} \mathcal{N}\left(0,2 d \sigma^{2} \frac{\int\left(K_{-}^{(1)}(v)\right)^{2} d v}{\Delta_{v}\left(K_{-}^{(1)}(0)\right)^{2}}\right)\right.
$$

Another application of the functional mapping theorem shows that $\zeta_{n}\left(Z_{n}\right) \rightarrow_{\mathcal{D}} \zeta\left(Z^{*}\right)$ and therefore

$$
\left(n h^{2 v+1}\right)^{1 / 2}\left\{\frac{\zeta_{n}\left(Z_{n}\right)}{\left(n h^{2 v+1}\right)^{(\mu+v+1) /(2(\mu+v))}}\right\} \rightarrow_{\mathcal{P}} 0
$$

This implies $\left(n h^{2 v+1}\right)^{1 / 2}\left\{\hat{\Delta}^{(v)}(\hat{\tau})-\hat{\Delta}^{(v)}(\tau)\right\} \rightarrow_{\mathcal{P}} 0$, where $\hat{\Delta}^{(v)}(\cdot)$ is defined in (2.4). According to Lemma 4.6,

$$
\left(n h^{2 v+1}\right)^{1 / 2}\left\{\hat{\Delta}^{(v)}(\tau)-\Delta_{v}\right\} \rightarrow_{\mathcal{D}} \mathcal{N}\left(0,2 \sigma^{2} \int\left(K_{-}^{(v)}(v)\right)^{2} d v\right)
$$

and combining these results one obtains for the jump size estimator $\hat{\Delta}^{(v)}(\hat{\tau})$.

Corollary 3.2.

$$
\begin{equation*}
\left(n h^{2 v+1}\right)^{1 / 2}\left\{\hat{\Delta}^{(v)}(\hat{\tau})-\Delta_{v}\right\} \rightarrow_{\mathcal{D}} \mathcal{N}\left(0,2 \sigma^{2} \int\left(K_{-}^{(v)}(v)\right)^{2} d v\right) \tag{3.9}
\end{equation*}
$$

4. Auxiliary Results and Proofs

The following sequence of lemmas leads to the proof of Theorem 3.1.

Lemma 4.1.

$$
\begin{equation*}
\mathbb{E}\left(\zeta_{n}(z)\right)=-\frac{\Delta_{v} z^{\mu+v+1} K_{-}^{(\mu+v)}(0)}{(\mu+v+1)!}+o(1) \tag{4.1}
\end{equation*}
$$

Proof. Observe that, following (1.2) and (2.3),

$$
\hat{M}_{ \pm}^{(v)}(x, h)=\frac{1}{h^{v+1}} \int_{-\infty}^{+\infty} K_{ \pm}^{(v)}\left(\frac{x-u}{h}\right) e_{n}(u) d u
$$

then

$$
\begin{aligned}
\mathbb{E}\left(\hat{M}_{ \pm}^{(v)}(\tau+y h)\right)= & \frac{1}{h^{v+1}} \int K_{ \pm}^{(v)}\left(\frac{\tau+y h-u}{h}\right) \mathbb{E}\left(e_{n}(u)\right) d u \\
= & \underbrace{\frac{1}{h^{v}} \int K_{ \pm}^{(v)}(v) M(\tau+y h-v h) d v}_{I} \\
& -\underbrace{\frac{1}{h^{v}} \int K_{ \pm}^{(v)}(v) M(\tau+y h-v h) F^{n}(\tau+y h-v h) d v}_{I I} \\
= & \frac{1}{h^{v}} \int K_{ \pm}^{(v)}(v) M(\tau+y h-v h) d v+O\left(\left[h^{v}\right]^{-1}\right) .
\end{aligned}
$$

Therefore, defining

$$
\delta_{v}(y)=\frac{1}{h^{v}} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right) M(\tau+y h-v h) d v
$$

we obtain

$$
\begin{equation*}
\mathbb{E}\left(\hat{\delta}_{v}(y)\right)=\delta_{v}(y)+O\left(\left[h^{v}\right]^{-1}\right) \tag{4.2}
\end{equation*}
$$

Observing (1.4), (2.11), (2.12), (2.13), evenness of k and (2.16) and employing a Taylor expansion and mean values $\xi_{1 n}=\tau+\xi_{1}(y-v) h$, $\xi_{2 n}=\tau+\xi_{2}(y-v) h$, then

$$
\begin{aligned}
\delta_{v}(y)= & \frac{1}{h^{v}} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right)\left[M(\tau+y h-v h)\left(1_{\{v>y\}}+1_{\{v \leq y\}}\right)\right] d v \\
= & \underbrace{\frac{1}{h^{v}} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right)\left(\sum_{j=0}^{k+v-1} \frac{(y-v)^{j}}{j!} h^{j} M_{+}^{(j)}(\tau) 1_{\{v \leq y\}}\right) d v}_{(A)} \\
& +\underbrace{\frac{1}{h^{v}} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right)\left(\sum_{j=0}^{k+v-1} \frac{(y-v)^{j}}{j!} h^{j} M_{-}^{(j)}(\tau) 1_{\{v>y\}}\right) d v}_{(B)}
\end{aligned}
$$

$$
+\underbrace{\frac{1}{h^{v}} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right) \frac{(y-v)^{k+v}}{(k+v)!} h^{k+v} M_{+}^{(k+v)}\left(\xi_{1 n}\right) 1_{\{v \leq y\}} d v}_{(C)}
$$

$$
+\underbrace{\frac{1}{h^{v}} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right) \frac{(y-v)^{k+v}}{(k+v)!} h^{k+v} M_{-}^{(k+v)}\left(\xi_{2 n}\right) 1_{\{v>y\}} d v}_{(D)}
$$

$$
\begin{aligned}
C+D= & \frac{1}{h^{v}} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right) \frac{(y-v)^{k+v}}{(k+v)!} h^{k+v}\left(M_{+}^{(k+v)}\left(\xi_{1 n}\right)\right. \\
& \left.-M_{+}^{(k+v)}(\tau)+M_{+}^{(k+v)}(\tau)\right) 1_{\{v \leq y\}} d v \\
& +\frac{1}{h^{v}} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right) \frac{(y-v)^{k+v}}{(k+v)!} h^{k+v}\left(M_{-}^{(k+v)}\left(\xi_{2 n}\right)\right. \\
& \left.-M_{-}^{(k+v)}(\tau)+M_{-}^{(k+v)}(\tau)\right) 1_{\{v>y\}} d v \\
= & \frac{1}{h^{v}} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right) \frac{(y-v)^{k+v}}{(k+v)!} h^{k+v}\left(M_{+}^{(k+v)}\left(\xi_{1 n}\right)\right. \\
& \left.-M_{+}^{(k+v)}(\tau)\right) \times 1_{\{v \leq y\}} d v \\
& +\frac{1}{h^{v}} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right) \frac{(y-v)^{k+v}}{(k+v)!} h^{k+v}\left(M_{-}^{(k+v)}\left(\xi_{2 n}\right)\right. \\
& \left.-M_{-}^{(k+v)}(\tau)\right) \times 1_{\{v>y\}} d v \\
& +\frac{1}{h^{v}} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right) \frac{(y-v)^{k+v}}{(k+v)!} h^{k+v} M_{-}^{(k+v)}(\tau) 1_{\{v>y\}} d v
\end{aligned}
$$

Let

$$
\begin{aligned}
Q_{n}(y)= & \frac{1}{h^{v}} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right) \frac{(y-v)^{k+v}}{(k+v)!} h^{k+v}\left(M_{+}^{(k+v)}\left(\xi_{1 n}\right)\right. \\
& \left.-M_{+}^{(k+v)}(\tau)\right) \times 1_{\{v \leq y\}} d v \\
& +\frac{1}{h^{v}} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right) \frac{(y-v)^{k+v}}{(k+v)!} h^{k+v}\left(M_{-}^{(k+v)}\left(\xi_{2 n}\right)\right. \\
& \left.-M_{-}^{(k+v)}(\tau)\right) \times 1_{\{v>y\}} d v \\
= & \frac{h^{k}}{(k+v)!} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right)(y-v)^{k+v}\left(M_{+}^{(k+v)}\left(\xi_{1 n}\right)\right. \\
& \left.-M_{+}^{(k+v)}(\tau)+M_{+}^{(k+v)}(\tau)\right) 1_{\{v \leq y\}} d v \\
& +\frac{h^{k}}{(k+v)!} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right)(y-v)^{k+v}\left(M_{+}^{(k+v)}\left(\xi_{2 n}\right)\right. \\
& \left.-M_{+}^{(k+v)}(\tau)+M_{-}^{(k+v)}(\tau)\right) 1_{\{v>y\}} d v .
\end{aligned}
$$

Then

$$
\begin{aligned}
A+B+C+D= & Q_{n}(y) \\
& +\underbrace{\frac{1}{h^{v}} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right)\left(\sum_{j=0}^{k+v} \frac{(y-v)^{j}}{j!} h^{j} M_{+}^{(j)}(\tau) 1_{\{v \leq y\}}\right) d v}_{(E)} \\
& +\underbrace{\frac{1}{h^{v}} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right)\left(\sum_{j=0}^{k+v} \frac{(y-v)^{j}}{j!} h^{j} M_{-}^{(j)}(\tau) 1_{\{v>y\}}\right) d v}_{(F)}
\end{aligned}
$$

and by (2.11), (2.12) and (2.13), we have

$$
F=\underbrace{\frac{1}{h^{v}} \sum_{j=0}^{k+v} \frac{h^{j}}{j!} M_{-}^{(j)}(\tau) \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right)(y-v)^{j} 1_{\{v>y\}} d v}_{=0},
$$

and

$$
\begin{aligned}
E= & \frac{1}{h^{v}} \sum_{j=0}^{k+v} \frac{h^{j}\left(M_{+}^{(j)}(\tau)-M_{-}^{(j)}(\tau)\right)}{j!} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right)(y-v)^{j} 1_{\{v \leq y\}} d v \\
= & \frac{\left(M_{+}^{(v)}(\tau)-M_{-}^{(v)}(\tau)\right)}{v!} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right)(y-v)^{v} 1_{\{v \leq y\}} d v \\
& +\underbrace{\frac{1}{h^{v}} \sum_{j=0}^{v-1} \frac{h^{j}\left(M_{+}^{(j)}(\tau)-M_{-}^{(j)}(\tau)\right)}{j!} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right)(y-v)^{j} 1_{\{v \leq y\}} d v}_{=0} \\
& +\underbrace{\frac{1}{h^{v}} \sum_{j=v+1}^{k+v} \frac{h^{j}\left(M_{+}^{(j)}(\tau)-M_{-}^{(j)}(\tau)\right)}{j!} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right)(y-v)^{j} 1_{\{v \leq y\}} d v}_{=0},
\end{aligned}
$$

hence

$$
\begin{aligned}
\delta_{v}(y) & =Q_{n}(y)+\frac{\left(M_{+}^{(v)}(\tau)-M_{-}^{(v)}(\tau)\right)}{v!} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right)(y-v)^{v} 1_{\{v \leq y\}} d v \\
& =\frac{1}{v!} \Delta_{v} \int_{-1}^{1}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right)(y-v)^{v} 1_{\{v \leq y\}} d v+Q_{n}(y),
\end{aligned}
$$

where $Q_{n}(y)$ is defined above.
Observe that

$$
\begin{equation*}
R_{n}(y)=\left|Q_{n}(y)-Q_{n}(0)\right|=o\left(h^{k} y\right), \tag{4.3}
\end{equation*}
$$

since, for instance, for the difference of the first term on the r.h.s. of Q_{n} for $y>0$,

$$
\begin{aligned}
& \int_{-1}^{y}\left(K_{+}^{(v)}(v)-K_{-}^{(v)}(v)\right)(-v)^{k+v}\left(M_{+}^{(k+v)}\left(\tau+\xi_{1}(-v) h\right)-M_{+}^{(k+v)}(\tau)\right) d v \\
= & \int_{-1}^{y}\left(K_{+}^{(v)}(v-y)-K_{-}^{(v)}(v-y)\right)(y-v)^{k+v}\left(M_{+}^{(k+v)}\left(\xi_{1 n}\right)-M_{+}^{(k+v)}(\tau)\right) d v
\end{aligned}
$$

and analogous calculations for $y<0$, and for the difference of the second term on the r.h.s. of Q_{n} yields (4.3). Observing, for $y \geq 0$, under (2.16),

$$
\begin{aligned}
\frac{1}{v!} \int_{0}^{y} K_{-}^{(v)}(v)(y-v)^{v} d v & =\int_{0}^{y}\left[\sum_{i=0}^{\mu-1} \frac{v^{i}}{i!} K_{-}^{(v+i)}(0)+\frac{v^{\mu}}{\mu!} K_{-}^{(v+\mu)}(\xi)\right] \frac{(y-v)^{v}}{v!} d v \\
& =\frac{y^{\mu+v+1}}{(\mu+v+1)!}\left(K_{-}^{(v+\mu)}(0)+O(y)\right), \quad \text { as } y \rightarrow 0
\end{aligned}
$$

and analogously, for $y \leq 0$,

$$
\frac{1}{v!} \int_{0}^{y} K_{-}^{(v)}(v)(y-v)^{v} d v=\frac{-y^{\mu+v-1}}{(\mu+v+1)!}\left(K_{-}^{(v+\mu)}(0)+O(y)\right), \quad \text { as } y \rightarrow 0
$$

one obtains, noting that $K_{-}^{(v+\mu)}(0)=(-1)^{\mu+v} K_{+}^{(v+\mu)}(0)$ and that $(\mu+v)$ is odd

$$
\begin{equation*}
\delta_{v}(y)-\delta_{v}(0)=\frac{-\Delta_{v} K_{-}^{(v+\mu)}(0) y^{\mu+v+1}}{(\mu+v+1)!}\left(1+O(y)+o\left(h^{k} y\right)\right), \quad \text { as } y \rightarrow 0 \tag{4.4}
\end{equation*}
$$

The result follows.

Lemma 4.2.

$$
\begin{equation*}
\operatorname{cov}\left(\zeta_{n}\left(z_{1}\right), \zeta_{n}\left(z_{2}\right)\right)=2 z_{1} z_{2} \sigma^{2} \int\left(K_{-}^{(v+1)}(v)\right)^{2} d v+O\left(\frac{1}{\left(n h^{2 v+1}\right)^{1 / 2(v+\mu)}}\right) \tag{4.5}
\end{equation*}
$$

Proof. Abbreviate $\alpha=2 v+1, \beta=\frac{(\mu+v+1)}{(2(\mu+v))}$ and $\gamma=\frac{1}{(2(\mu+v))}$.

$$
\begin{align*}
\zeta_{n}(z)-\mathbb{E}\left(\zeta_{n}(z)\right)= & \frac{\left(n h^{\alpha}\right)^{\beta}}{h^{v+1}} \int\left[\left(K_{+}^{(v)}\left(\frac{\tau+(z h) /\left(n h^{\alpha}\right)^{\gamma}-v}{h}\right)-K_{+}^{(v)}\left(\frac{\tau-v}{h}\right)\right)\right. \\
& \left.-\left(K_{-}^{(v)}\left(\frac{\tau+(z h) /\left(n h^{\alpha}\right)^{\gamma}-v}{h}\right)-K_{-}^{(v)}\left(\frac{\tau-v}{h}\right)\right)\right] \\
& \times\left(e_{n}(v)-\mathbb{E}\left(e_{n}(v)\right)\right) d v . \tag{4.6}
\end{align*}
$$

This implies

$$
\begin{aligned}
\operatorname{cov}\left(\zeta_{n}\left(z_{1}\right), \zeta_{n}\left(z_{2}\right)\right)= & \frac{\left(n h^{\alpha}\right)^{2 \beta}}{h^{2 v+2}} \sigma^{2} \\
& \times\left[\int\left[K_{+}^{(v)}\left(\frac{\tau+\left(z_{1} h\right) /\left(n h^{\alpha}\right)^{\gamma}-v}{h}\right)-K_{+}^{(v)}\left(\frac{\tau-v}{h}\right)\right] d v\right. \\
& \times \int\left[K_{+}^{(v)}\left(\frac{\tau+\left(z_{2} h\right) /\left(n h^{\alpha}\right)^{\gamma}-v}{h}\right)-K_{+}^{(v)}\left(\frac{\tau-v}{h}\right)\right] d v \\
& -\int\left[K_{+}^{(v)}\left(\frac{\tau+\left(z_{1} h\right) /\left(n h^{\alpha}\right)^{\gamma}-v}{h}\right)-K_{+}^{(v)}\left(\frac{\tau-v}{h}\right)\right] d v \\
& \times \int\left[K_{-}^{(v)}\left(\frac{\tau+\left(z_{2} h\right) /\left(n h^{\alpha}\right)^{\gamma}-v}{h}\right)-K_{-}^{(v)}\left(\frac{\tau-v}{h}\right)\right] d v \\
& -\int\left[K_{+}^{(v)}\left(\frac{\tau+\left(z_{2} h\right) /\left(n h^{\alpha}\right)^{\gamma}-v}{h}\right)-K_{+}^{(v)}\left(\frac{\tau-v}{h}\right)\right] d v \\
& \times \int\left[K_{-}^{(v)}\left(\frac{\tau+\left(z_{1} h\right) /\left(n h^{\alpha}\right)^{\gamma}-v}{h}\right)-K_{-}^{(v)}\left(\frac{\tau-v}{h}\right)\right] d v \\
& +\int\left[K_{-}^{(v)}\left(\frac{\tau+\left(z_{1} h\right) /\left(n h^{\alpha}\right)^{\gamma}-v}{h}\right)-K_{-}^{(v)}\left(\frac{\tau-v}{h}\right)\right] d v \\
& \left.\times \int\left[K_{-}^{(v)}\left(\frac{\tau+\left(z_{2} h\right) /\left(n h^{\alpha}\right)^{\gamma}-v}{h}\right)-K_{-}^{(v)}\left(\frac{\tau-v}{h}\right)\right] d v\right]
\end{aligned}
$$

By the assumptions, observing the compactness of supports,

$$
\begin{align*}
& K_{ \pm}^{(v)}\left(\frac{\tau+(z h) /\left(n h^{\alpha}\right)^{\gamma}-v}{h}\right)-K_{ \pm}^{(v)}\left(\frac{\tau-v}{h}\right) \\
= & K_{ \pm}^{(v+1)}\left(\frac{\tau-v}{h}\right) \frac{z}{\left(n h^{\alpha}\right)^{2 \gamma}} \\
& +O\left(\frac{1}{\left(n h^{\alpha}\right)^{2 \gamma}}\right) 1_{\left\{K_{ \pm}^{(v+1)}\left(\frac{\tau-v}{h}\right) \neq 0\right\} \cup\left\{K_{ \pm}^{(v)}\left(\frac{\tau+(z h) /\left(n h^{\alpha}\right)^{\gamma}-v}{h}\right) \neq 0\right\}} \tag{4.8}
\end{align*}
$$

Inserting this into (4.7) and observing

$$
\begin{equation*}
1^{1}\left\{K_{+}^{(v+1)}\left(\frac{\tau-v}{h}\right) \neq 0\right\} \cup\left\{K_{+}^{(v)}\left(\frac{\tau+(z h) /\left(n h^{\alpha}\right)^{\gamma}-v}{h}\right) \neq 0\right\}=O(h), \tag{4.9}
\end{equation*}
$$

all the $O(\cdot)$ terms combined result in a summary $O(\cdot)$ term of $O\left(1 /\left(n h^{\alpha}\right)^{\gamma}\right)$. Observing $2 \beta-2 \gamma=1$ and combining

$$
\begin{align*}
& \int K_{ \pm}^{(\mathrm{v}+1)}\left(\frac{\tau-v}{h}\right) d u \int K_{ \pm}^{(v+1)}\left(\frac{\tau-v}{h}\right) d u=\frac{h}{n} \int\left(K_{ \pm}^{(v+1)}(v)\right)^{2} d u+O\left(\frac{1}{n^{2}}\right) \\
& \begin{aligned}
\int K_{ \pm}^{(v+1)}\left(\frac{\tau-v}{h}\right) d u \int K_{ \pm}^{(v+1)}\left(\frac{\tau-v}{h}\right) d u & =\frac{h}{n} \int K_{+}^{(v+1)}(v) K_{-}^{(v+1)}(v) d v+O\left(\frac{1}{n^{2}}\right) \\
& =O\left(\frac{1}{n^{2}}\right)
\end{aligned}
\end{align*}
$$

with (4.7), where the differences are substituted by the leading terms of (4.8), completes the proof.

Lemma 4.3. For fixed $z, z \in[-T, T]$,

$$
\zeta_{n}(z)-\mathbb{E}\left(\zeta_{n}(z)\right) \rightarrow_{\mathcal{D}} \mathcal{N}\left(0,2 z^{2} \sigma^{2} \int\left(K_{-}^{(v+1)}(v)\right)^{2} d v\right)
$$

Lemma 4.4. For fixed $z_{1}, z_{2}, \ldots, z_{l}, z_{i} \in[-T, T]$,

$$
\begin{equation*}
\left(\zeta_{n}\left(z_{1}\right)-\mathbb{E}\left(\zeta_{n}\left(z_{1}\right)\right), \ldots, \zeta_{n}\left(z_{l}\right)-\mathbb{E}\left(\zeta_{n}\left(z_{l}\right)\right)\right) \rightarrow_{\mathcal{D}} \mathcal{N}(0, A) \tag{4.11}
\end{equation*}
$$

where $A=\left(a_{i j}\right)_{1 \leq i, j \leq l}$ and $a_{i j}=2 z_{i} z_{j} \sigma^{2} \int\left(K_{-}^{(v+1)}(v)\right)^{2} d v$.
Lemma 4.5. The sequence $\bar{\zeta}_{n}(\cdot)=\zeta_{n}(\cdot)-\mathbb{E}\left(\zeta_{n}(\cdot)\right)$ is tight.
Proof. We show that there exists a constant $c>0$ such that

$$
\begin{equation*}
\mathbb{E}\left(\bar{\zeta}_{n}\left(z_{1}\right)-\bar{\zeta}_{n}\left(z_{2}\right)\right)^{2} \leq c\left(z_{1}-z_{2}\right)^{2} \tag{4.12}
\end{equation*}
$$

for n sufficiently large. According to Billingsley [2], the moment condition (4.12) implies tightness $\bar{\zeta}_{n}$. Using the same notation as in the proof of Lemma 4.2 and defining

$$
A_{ \pm}(z)=\left\{u \in[0,1]: K_{ \pm}^{(v)}\left(\frac{\tau+z b /\left(n h^{\alpha}\right)^{\gamma}-u}{h}\right) \neq 0\right\}
$$

the Lipschitz continuity of $K^{(v)}$ implies

$$
\begin{aligned}
& \mathbb{E}\left(\bar{\zeta}_{n}\left(z_{1}\right)-\bar{\zeta}_{n}\left(z_{2}\right)\right)^{2} \\
\leq & \frac{\left(n h^{\alpha}\right)^{2 \beta}}{h^{2 v+2}} \sigma^{2}\left[\int \frac { | z _ { 1 } - z _ { 2 } | } { (n h ^ { \alpha }) ^ { \gamma } } \left(1_{\left.\left.A_{+}\left(z_{1}\right) \cup A_{+}\left(z_{2}\right)+1_{A_{-}\left(z_{1}\right) \cup A_{-}\left(z_{2}\right)}\right) d u\right]^{2}}^{\leq}\right.\right. \\
= & c\left|z_{1}-z_{2}\right|^{2}
\end{aligned}
$$

since $2 \beta-2 \gamma=1$ and

$$
\left[\int\left(1_{A_{+}\left(z_{1}\right) \cup A_{+}\left(z_{2}\right)}+1_{A_{-}\left(z_{1}\right) \cup A_{-}\left(z_{2}\right)}\right) d u\right]^{2}=O\left(h / n^{2}\right) .
$$

Proof. Proof of Theorem 3.1.
Weak convergence of the processes $\bar{\zeta}_{n}$ follows now from applying Lemmas 4.4 and 4.5. The moment structure of the limit process ζ is a consequence of Lemmas 4.1 and 4.2.

The following lemma is used in the proof of Corollary 3.2.

Lemma 4.6.

$$
\left(n h^{2 v+1}\right)^{1 / 2}\left\{\hat{\Delta}^{(v)}(\tau)-\Delta_{v}\right\} \rightarrow_{\mathcal{D}} \mathcal{N}\left(0,2 \sigma^{2} \int\left(K_{-}^{(v)}(v)\right)^{2} d v\right)
$$

Acknowledgements

The author is grateful to Professor A. Berred for many valuable comments. The author would also like to thank the editors and the referee for a very careful reading of the manuscript and useful suggestions.

References

[1] Belkacem Abdous and Alexandre Berred, Mean residual life estimation, J. Statist. Plann. Inference 37 (2004), 327-337.
[2] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
[3] J. Deshayes and D. Picard, Lois asymptotiques des test et estimateurs de rupture dans un modele statistique classique, Ann. Inst. H. Poincare 20 (1984), 309-327.
[4] Nader Ebrahimi, On estimating change point in a mean residual life function, Sankhya: The Indian Journal of Statistic 53 (1991), 206-219.
[5] W. F. Eddy, Optimum kernel estimators of the mode, Ann. Statist. 8 (1980), 870-882.
[6] W. F. Eddy, The asymptotic distributions of kernel estimators of the mode, Ann. Stat. 59 (1982), 279-290.
[7] F. Guess and F. Proschan, Mean residual life, Handbook of Statistics, Vol. 7, P. R. Rao Krishnaiah and C. R. Rao, eds., Amsterdam, North-Holland, 1988, pp. 215-224.
[8] W. J. Hall and J. A. Wellner, Mean residual life, Statistics and Related Topics, M. Csörgő, D. A. Dawson, J. N. K. Rao and A. K. Md. E. Saleh, eds., Amsterdam, NorthHolland, 1981, pp. 169-184.
[9] D. V. Hinkley, Inference about the change-point in a sequence of random variables, Biometrika 57 (1970), 1-17.
[10] S. Kotz and D. N. Shanbhag, Some new approaches to probability distributions, Adv. Appl. Prob. 12 (1980), 903-921.
[11] Jie Mi, Estimation related to mean residual life, J. Nonparametr. Stat. 4 (1994), 179-190.
[12] H. G. Müller and J. L. Wang, Nonparametric analysis of changes in hazard rates for censored survival data: An alternative to change-point models, Biometrika 77 (1990), 305-314.
[13] K. J. Worstley, Confidence regions and tests for a change-point in a sequence of exponential family of random variables, Biometrika 73 (1986), 91-104.
[14] G. L. Yang, Estimation of a biometric function, Stochastic Process. Appl. 6 (1978), 112-116.

[^0]: 2000 Mathematics Subject Classification: Primary 62G05; Secondary 62F12, 62G30.
 Keywords and phrases: mean residual life function, jump size, kernel estimation, weak convergence, smoothing, Hille's theorem, survival function.

