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Abstract

We study some geometric properties of shape functions of self-similar
solutions to the initial-boundary value problem with homogeneous
Neumann boundary condition for the semi-linear parabolic equation:

( ) ,11 uuuuuu p
x

q
xxt

−− −+=  where p, q are positive numbers.

These shapes of the solutions of the corresponding nonlinear ordinary
differential equation are of very different nature. The properties usually
depend on the critical value 3,1;2,1 == pq  and initial data as usual.

1. Introduction

In this paper, we consider a semi-linear parabolic equation:

( ) uuuuuu p
x

q
xxt

11 −− −+=   in  Q (1.1)

with homogeneous Neumann boundary condition

( ) ,0,0 =tux (1.2)

where ( ){ }.0,0,Q >>|= txtx
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Equation (1.1) appears in the description of a continuous medium for

which the constitutive relation for the stress contains a large linear

proportional to the strain, a small term which is quadratic in strain, and

a small dissipative term proportional to the strain rate. The inviscid form

of (1.1) arises in several applications, which includes nonlinear acoustic

propagation [19], the Gunn effect in semiconductors [17], rotating thin

liquid films [18], chloride concentration in kidney [16] and flow of

petroleum in underground reservoirs [5, 10]. This has also been

considered by Bukiet et al. [3] in the inviscid limit. Moreover, equation

(1.2) is appear in heat conduction and filtration process. One says that

the term xxu  is diffusion term, ( )x
q uu 1−  is convection term, uu p 1−  is

absorption term, see [22]. The actual physical model involving (1.1) which

is subject to random initial data and through analytical understanding is

beyond our ability. Thus, in this paper we consider simple case, where the

initial value ( ) ( )xuxu 00, =  is a deterministic function.

We are interested in nonnegative solutions of the nonlinear heat

equation (1.1) having the form

( ) ( ) ( ),:, ξ== α−β−α− gtxtgttxu (1.3)

where α, β are some real numbers and ( ) ., Qtx ∈

For equation (1.1), we substitute (1.3) into (1.1) and obtain

( )
12,

2
1

:,
1

1
12

1
: −==β

−
=

−
=α qp

pq
(1.4)

and g as a function of ,β−=ξ xt  is defined on [ ),,0 ∞  solves of ODE:

.
2

11 ggggqggg pq −− =′+α+′
ξ

+′′ (1.5)

The self-similar solutions play an important role in the large time

behavior of solutions of problem (1.1) with (1.2) and initial data .0u  We

observe that if ( )txu ,  solves (1.1), then the rescaled functions

( ) ( ) ( ) ( ) 0,,, 212 >ρρρρ= −−
ρ txutxu qq (1.6)
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define a one parameter family of solutions to (1.1). A solution ( )txu ,  is

said to be self-similar when ( ) ( )txutxu ,, =ρ  for every .0>ρ  It can be

easily verified that ( )txu ,  is a self-similar solution to (1.1) if and only if u

has the form (1.3), where g satisfies (1.5), β−=ξ xt  and α, β are as above.

In this note we shall classify completely positive solutions of (1.5)

according to the parameters p, q. In the mean time, we shall find

conditions on p, q which ensure the existence of the so-called very
singular (self-similar) solutions for (1.1). The very singular solution has a
stronger singularity at the origin than the singular solution of that
equation.

By a singular solution we mean a nonnegative and nontrivial solution

which satisfies the equation and initial-boundary conditions on ( )0,0\Q

and satisfy

( ) .00,suplim
0

>ε∀=
ε>

txu
xt

(1.7)

A singular solution is called a very singular solution if

( )∫ ε≤
∞=

xt
dxtxu .,lim

0
(1.8)

Note that condition (1.7) is equivalent to, if u is given by (1.3),

( ) .0lim =ξξ βα

∞→ξ
g (1.9)

Furthermore, if α<β<0  and the solution g of (1.5) satisfies (1.9),

then ( )txu ,  given explicitly by (1.3) satisfies (1.7) and (1.8), i.e., it is a

very singular self-similar solution of (1.1).

Here, we apply a shooting method and replace the condition at
infinity by the one at the origin. We thus study an initial value problem
(1.5) for 0>ξ  with:

( ) ( ) ,0,00 λ==′ gg (1.10)

here λ may be any positive number. This initial value problem (1.5) with

(1.10) for each 0>λ  a unique solution which we shall denote by ( )., λξg
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In many cases, it turns out that the limit

( ) ( )ξξ=λ α

∞→ξ
gL 2lim  exists, (1.11)

and we distinguish between fast and slow orbits according to whether

( ) 0=λL  or not respectively. As mentioned before the fast orbit brings

out a very singular solution of (1.1).

Our goal is to find values q, p and initial data λ which ensure that

( )λ⋅,g  is either sign changing solution or a global positive decaying

solution to ODE (1.5) with condition (1.10) (this is certainly the case

)0>α  and to give asymptotic behavior of solutions at near infinity.

Moreover, in the case ,0<α  we shall describe which values q, p and λ

give a global positive solutions blowing up to infinity and find its blow-up
rate at infinity. In the first case, the asymptotic behavior of solutions are
classified by either fast or slow orbits.

There have been many works on the deals with the existence,
uniqueness and geometric properties of shape functions of self-similar
solutions to a class of parabolic equations with absorption (or source,
convection) term. For instance, it is thoroughly treated on the porous
medium equation with absorption term;

qm
t uuu −∆=

with ,0>m  .1>q  For 1=m  (linear diffusion case), see [2], [6], for

1>m  (slow diffusion case), see [21] and for 10 << m  (fast diffusion

case), see [13], [14]. Recently some papers studied for a class of
convection-diffusion equation with absorption term;

( ) ,11 uuuuauu pq
t

−− −∇⋅±∆=

where .1, >qp  The key to prove their results is to deduce new equation

by rotating the coordinate axes and rescaling. They also derived some
estimates and used a convergence of rescaled solutions to self-similar
(non-radial) ones and thus concluded that the asymptotic of general
solutions is self-similar, see [15], [14], et al. Similar argument is used in a
convection-diffusion equation without absorption term, see [7], [8], for
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details. In addition, in papers [1], [11], [20], the very singular self-similar
solutions are considered on half line because there does not exists any
radial symmetric solution. Here, we use a simple method (via shooting) to
investigate the self-similar solutions under the homogeneous Neumann
boundary problem in one dimension and classify all the self-similar
solutions completely for .12,0 −=> pqq  Moreover, in each cases, we

may find rich geometric properties appeared before.

The plan of the paper is the following. In Section 2, we obtain basic

properties of g which will be useful in the proof of the main results. In
Section 3, we study the existence, nonexistence of global positive
solutions and find decay rates of global positive decay solutions in the
nice case .0>α  In Section 4, we study the existence and find blow-up

rate of infinite blow-up solutions in case .0<α

2. Preliminary Results

In this section we shall derive some basic properties of g which will be

useful in the proof of the main results. In fact, we first show that ( )ξ′g

has one sign depending on the sign of α and size of λ.

Lemma 2.1. Assume that ( ) .0,1,10 >λ>>>α qp  Let g be a

solution of (1.5), (1.10) such that 0>g  on [ ).,0 0ξ

Then

  (i) ( ) 0<ξ′g  for all ( )0,0 ξ∈ξ  and ,0 ∗λ<λ<

 (ii) ( ) 0=ξ′g  for all ( )0,0 ξ∈ξ  and ,∗λ=λ

(iii) ( ) 0>ξ′g  for all ( )0,0 ξ∈ξ  and ,∗λ>λ

where .
1

1 1
1
−∗









−

=λ
p

p

Proof. By (1.5), (1.10) we obtain ( ) 00 <αλ−λ=′′ pg  and ( ) ,00 =′g

the function g is strictly decreasing for small ξ. Suppose that there exists

1ξ  such that ( ) 0<ξ′g  on ( )1,0 ξ  and ( ) .01 =ξ′g  Using (1.5) one sees
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( ) .01 <ξ′′g  This contradicts to the left hand side of point .1ξ  By similar

method we easily prove (ii) and (iii). �

Lemma 2.2. Assume that ( ) .0,10,100 >λ<<<<<α pq  Let g

be a solution of (1.5), (1.10) such that 0>g  on [ ).,0 0ξ

Then ( ) 0>ξ′g  for all ( )0,0 ξ∈ξ  and .0>λ

Proof. The proof is similar to Lemma 2.1. �

Next, we show that there does not exist any zero of ( )ξg  for .
2
1≤α

Lemma 2.3. Assume that 
2
1

≤α  ( ,3≥p  2≥q  or ,10 << p

).10 << q  Let g be a solution of (1.5), (1.10).

Then 0>g  for any .0,0 >λ>ξ

Proof. Suppose that g has first zero 1ξ  and such that ( ) ,01 =ξg

( ) ( ) 0,01 >ξ<ξ′ gg  on ( ).,0 1ξ∈ξ

By integrating from 0 to ,1ξ  we obtain

( ) ( ) ( )∫ ∫
ξ ξ

λ++





 α−=ξ′

1 1

0 0
1 .

2
1 qp dssgdssgg

Since the sign of left hand side is negative and the sign of right hand side

is positive, this is impossible. �

3. The Case ( )1,10 >>>α pq

3.1. The case ( )3,2
2
1

0 ≥≥≤α< pq

In this subsection, we show that there does not exist any fast orbit if

α satisfies .
2
10 ≤α<

We denote by ( )max,0 ξ  the maximal existence interval of positive

solution. By Lemma 2.1, 0<′g  in ( )max,0 ξ  for any ( )∗λ∈λ ,0  and
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either

(1) ∞=ξmax  and ( ) ,0;lim =λξ∞→ξ g  or

(2) ∞<ξmax  and ( ) .0;max =λξg

Note that we easily see that the problem (1.5), (1.10) has global

positive decay solution for ( )∗λ∈λ ,0  by Lemmas 2.1 and 2.3.

Theorem 3.1. Assume .
2
10 ≤α<  For each ( ),,0 ∗λ∈λ  let ( )λξ;g

be the solution of (1.5), (1.10).

Then ,0>g  and 0<′g  in ( )∞,0  and ( ) .0;inflim 2 >λξξ α
∞→ξ g

Proof. Multiplying (1.5) by 12 −αξ  we have, for ( ),,0 maxξ∈ξ

.
2

12
2
1 12212 






 ′ξ

+α+′
ξ
−α

+′′ξ=
′






 ξ+′ξ −αα−α gggggg

By (1.5), we get

0
12

2
1 112212 >






 ′−′

ξ
−α

+′ξ=
′






 ξ+′ξ −−αα−α gqggggg qq

by Lemma 2.1.

Define the function ( ) ggF α−α ξ+′ξ=ξ 212
2
1

:  then ( )ξF  is strictly

increasing in ( ).,0 maxξ  Note that ( ) ,0lim 0 =ξ→ξ F  we have 0>F  in

( ).,0 maxξ  Since ,0<′g  we conclude that ∞=ξmax  and g decays to 0 as

ξ tends to infinite. Moreover, ( ) ( )ξ≥λξξ α Fg 2;2  and ( ) ,0>′ξF  hence

( ) .0;inflim 2 >λξξ α
∞→ξ g �

We shall see later that the limit ( )λξξ α
∞→ξ ;lim 2 g  exists for each

( ).,0 ∗λ∈λ  Thus we may conclude together with Theorem 3.1 that there

exist slow orbits only.
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3.2. The case ( )31,21
2
1

<<<<>α pq

In this subsection, we first show that the solution changes sign for

small λ and we next show that the solution becomes a positive global

solution decaying to zero for suitably large λ. We then prove that these

solutions are either slow or fast orbits. The slow orbits are ordered and
the minimal one becomes the fast orbit as we have seen in many cases,
see [3], [12] for example.

By Lemma 2.1, if g is a solution of problem (1.5), (1.10), then g

decreases as long as positive for any ∗λ<λ<0  and we first show that

Theorem 3.2. Assume that .
2
1>α

Then ( )λξ,g  changes the sign for sufficiently small .0>λ  That is,

.max ∞<ξ

Proof. We choose 0>ε=λ  is sufficiently small and let .
ε

=ε
gg

Thus, εg  such that in the following equation

( ) ( )





==′

>ξε=′ε+α+′
ξ

+′′

εε

ε
−

ε
−

ε
−

ε
−

εεε

.10,00

0in
2

1111

gg

ggggggg ppqq

Define the energy function ( ) ( ) .
1

2
: 1122 +

ε
−

εεε ε
+

−α+′= pp g
p

gggE  By

differentiating we have ( ) ( ) .0
2

2 112 <





 ε+
ξ′−=

ξ
−

ε
−

εε
qq gqggE

d
d

 Hence

( )εgE  is uniformly bounded by 
1

3
1

2
2 −

−
=

−
−α

p

p
p

 and ( ) +′ε
2g

( ) ( ) ,
1

2
:

1

3 112221
2 






 ε

+
−α+′=≤ε

−

− −
ε

−
εεεε

− ppp g
p

gggEg
p

p
 both εg  and

ε′g  are uniformly bounded with respect to 0≥ξ  and .0>ε  Therefore, it

follows by standard continuity arguments that

[ ]( )RCgg ,0in0as 2
0 →ε→ε
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for any ,0>R  where 0g  is the solution of the reduced problem

( ) ( )





==′

>ξ=α+′
ξ

+′′

.10,00

0in0
2

gg

ggg
(3.2.1)

We claim that 0g  has a zero when .
2
1>α  By contradiction suppose

that ( ) 00 >ξg  for .0>ξ  Thus, ( ) 00 <ξ′g  for any 0>ξ  and so

( ) 10 ≤ξg  for .0≥ξ  Integrating (3.2.1) over ( ),,0 ξ  we obtain

( ) ( ) ( )∫
ξ

−<





 α−=ξξ+ξ′

0 000 2
1

2
1

Adssggg  for large ξ

for some positive number A. This is impossible. Hence, 0g  has a zero.

Since 00 <′g  at the first zero of ,0g  it follows that for ε sufficiently

small, εg  has a zero as well. �

Next, we prove the existence of positive global decay solutions for

suitable large ( ).,0 ∗λ∈λ  Indeed, they have either fast or slow orbits and

so we obtain asymptotic behavior of solutions of the initial boundary

problem for ξ tends to infinity. We need the following lemmas

Lemma 3.3. Assume that 0>α  ( ).1,1 >> pq  Let g be a solution of

(1.5), (1.10) such that ( ) 0>ξg  for .0>ξ

Then ( ) ( ) .0lim,0lim =ξ′=ξ ∞→ξ∞→ξ gg

Proof. By Lemma 2.1, 0<′g  and g is bounded below by 0. Thus,

∞<→ 0gg  as .∞→ξ  First there exists sequence nξ  such that

( ) 0→ξ′ ng  as .∞→ξn

Now define the energy function ( ) .
1

2
: 122 +

+
−α+′= pg

p
gggE  By

differentiating we have ( ) ( ) .0
2

2 12 <





 +
ξ′−=

ξ
−qgqggE

d
d

 Hence ( )gE

is monotone decreasing for any ξ and so one deduces that ( ) 0→ξ′g  as

.∞→ξ  We claim that 0g  vanishes. By contradiction, we suppose that
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.00 >g  The equation (3.2.1) gives

( ) pqqq gggqggqg +′−λ+α−=′





 λ+
ξ

+′′ −−− 111
2

( ) .0
1 ggg pp −λ+α−≤+α−≤

Define the functions ( ) ( ) .
4

:,
2
1

: 1
2

1 ξλ+
ξ

=ξλ+ξ=ξ −− qq qAqa  Multiplying

this by ( )ξAe  and integrating we obtain

( ) ( ) ( ) ( ) .
0

0
1 ∫

ξ
ξ−− α−λ<ξ′ dseegg sAAp

Since

( )

( )
,2

1
lim 0 =

ξ
ξ

ξ

∞→ξ

∫
A

sA

e

dse

we infer

( ) ξ
ξ

−<ξ′ largefor
C

g

for some positive number C, which implies that ( ) −∞→ξg  as .+∞→ξ

This is impossible which completes the proof. �

We rewrite (1.5), (1.10) as







+−α−
ξ

−=′

=′
− .

2
1 pq ghqgghh

hg
(3.2.2)

The initial condition now becomes

( ) ( ) ,00,0 =λ= hg

that is, the orbits start on the positive g-axis. Since this axis consists of

regular points, the existence of a local solution ( )hg,  is ensured for every

.0>λ  All along g-axis, the vector field points into the fourth quadrant.

Hence, as long as the orbit exists and ,0>g  we have .0<h  Note that

this system has only two critical points ( ) ( ).,0,0,0 ∗λ
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Given any ,0>δ  we denote

{( ) }.0,0:, ghghg δ−>>λ<<= ∗
δL

By a similar argument as in [2] we obtain the following lemmas.

Lemma 3.4. For given ,0>δ  there exists 







δ
α

+δ=ξδ 2:  such that

δL  is positively invariant for .δξ>ξ  That is, ( ) ( )( ) δδδ ∈ξξ Lhg ,  implies

that the orbit ( ) ( )( )ξξ hg ,  of (3.2.2) remains in δL  for all .δξ≥ξ

Remark 3.5. Indeed, if ,1=δ  then ,0 ∗λ<< g  0>+′ gg  when

maxξ<ξ  and ξ close to .maxξ  Thus .max ∞=ξ

Remark 3.6. If λ is sufficiently close to ,∗λ  then ( ) 0, >λξg  for all

.0≥ξ  The proof is similar to Lemma 4 in reference [2], which implies

that the existence of the global positive decay solution for suitably large

.∗λ<λ

According to Lemmas 3.3 and 3.4 we have

Lemma 3.7. Suppose ( ) 0, >λξg  for all .0>ξ

Then either

0lim =′
∞→ξ g

g

or

.lim −∞=′
∞→ξ g

g

The proof is similar to the proof in paper [2]. For simplicity, we omit
the details.

Now we are going to deal with the behavior of positive solutions g of

(1.5), (1.10) as ξ goes to infinity. We know that if g remains positive it

must go to 0. It turns out that ( )gg ′,  can approach ( )0,0  along two

directions on phase plane only. Moreover, we know that the existence of
the strictly decaying positive solution by Remark 3.6 and then we may
suppose the existence of the global, positive solution.
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Proposition 3.8. Let g be a solution of (1.5), (1.10) such that 0>g

for any .0>ξ

Then the limit ( ) ( )ξξ=λ α
∞→ξ g2limL  exists in [ )∞+,0  and we have

( ) ,0Llim =λ⇒−∞=
′

∞→ξ g
g

( ) .0L0lim >λ⇒=
′

∞→ξ g
g

Proof. If ,lim −∞=
′

∞→ξ g
g

 then ( ) ( )ξ−=ξ keOg  as .∞→ξ  And so

( ) 02 →ξξ αg  as .∞→ξ  Thus ( ) .0L =λ

Now suppose that

.0lim =
′

∞→ξ g
g

Set ( ) ,
g
g

u
′

=ξ  then u such that

( ) ( ) ,00,
2

=ξϕ+α−=
ξ

+′ uuu

here ( ) .121 −− +−−=ξϕ pq guuqg  Note that ( ) 0→ξϕ  as .∞→ξ  By

simple calculation,

( ) ( ){ } ,
0

44

22

∫
ξξ

−
ϕ+α−=ξ dseseu

s

for any .0>ξ

And by the L’Höpital’s rule, we obtain

( )
( ){ }

.2
1

limlim

4

0
4

2

2

α−=

ξ

ϕ+α−
=ξξ

ξ

ξ

∞→ξ∞→ξ

∫
e

dses
u

s
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Thus, 
g
g

u
′

=  satisfies

( ) ( )
ξ
ξ

+
ξ
α−

=ξ
o

u
2

 for large ξ,

which leads to

( ) ( ) ( ){ } ( ) .0L,11L 2 >λ+ξλ=ξ α− og �

We also give the asymptotic behavior of ( )λξ,g  for suitably large

.∗λ<λ

Theorem 3.9. Let g be a solution of (1.5), (1.10) such that 0>g  for

any .0>ξ

1. If ( ) ,0L =λ  then there exists 0>A  such that

( ) { ( )},1, 22412

2

−−
ξ

−−α ξ+ξ−ξ=λξ obeAg

as .∞→ξ

2. If ( ) ,0L >λ  then

( ) ( ) { ( )},1L, 222 −−α− ξ+ξ−ξλ=λξ ocg

as ,∞→ξ  where 
( ) ( )

( )
( ) ( )[ ] 1

2
L2212:,

1

232
: −λα+α+α−=

−

−−
= qqc

q

qq
b

( )[ ] .L 1−λ+ p

Proof. 1. Define

( ) ( )ξξ+ξ=ξ ghQ 2
2
1

:

( ) ( ) ( ).12: 22 ξξ−α−ξξ= gQG

By direct calculation, we obtain

,12lim,
2
1

lim −α=−=
ξ ∞→ξ∞→ξ g

Q
g
h
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( ) ( ) .2:1214lim b
g
G

=−α−α=
∞→ξ

Therefore, there exists positive number A such that

( ) { ( )},1, 22412

2

−−
ξ

−−α ξ+ξ−ξ=λξ obeAg

as .∞→ξ

2. When ( ) ,0L >λ  we deduce

( )( ) ( ) α−ξϕξ=α+ξξξ
∞→ξ∞→ξ

4lim22lim 22 u

 ( ),lim248 12122 ugqg qp −−

∞→ξ
ξ−ξ+α−α−=

where ( ) .121 −− +−−=ξϕ pq guug

Since

( ) [( ) ( ) ( ) ]11
1

11
2

1212 limlim −−−−

∞→ξ

−−

∞→ξ
ξξ−ξ=ξ−ξ qqppqp guqgugqg

 ( )( ) ( )( ) ,L2L 11 −− λα+λ= qp q

we have

( )( ) ( )( ) ( )( ) .2:L4L2482lim 1122 cqu qp =λα+λ+α−α−=α+ξξξ −−

∞→ξ

Thus, 
g
g

u
′

=  satisfies

( ) ( )
33

22

ξ

ξ
+

ξ
+

ξ
α−

=ξ
oc

u   for large ξ,

which leads to

( ) ( ) { ( )},1L, 222 −−α− ξ+ξ−ξλ=λξ ocg

as .∞→ξ �

Finally, we show that positive solutions are ordered and cannot
intersect each other.
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Theorem 3.10. Assume that 0>α  and ig  are solutions of problem

(1.5), (1.10) with initial data ( ) ,00 >λ= iig  such that ( ) 0>ξig  for

0>ξ  and 12 λ>λ  for ( ) .2,1,,0 =λ∈λ ∗ ii

Then ( ) ( ) ( ) ( )ξ′<ξ′ξ>ξ 1212 , gggg  for any .0>ξ

Proof. Since ( ) ,00 <αλ−=′′ iig  ( ) 00 =′ig  and ,12 λ>λ  there exists

sufficiently small 00 >ξ  such that ( ) ( ) ( ) ( )ξ′<ξ′ξ>ξ 1212 , gggg  for any

.0 0ξ<ξ≤

Let =:R  supremum of all such 0ξ ’s, we claim that .∞=R  If it is

finite, let

( ) .:
1

2
g
g

H =ξ

We know that

( ) ( ) .00,10 =′> HH

Let 01 >ξ  be such that ( ) 1>ξH  for 10 ξ<ξ≤  and ( ) 11 =ξH  (such an

1ξ  would exist because we are assuming ).∞<R

But ( ) ( ) ( ) ,2
1 ξξ=ξ′ qWH  where W is the wronskian

( ) ( ) ( ) ( ) ( ).1212 ξ′ξ−ξξ′=ξ ggggW

Using equation (3.2.1), one sees that W satisfies the differential equation

( ( ) ( ) ) ( )( )2112
1

12
ggggWqgWeeW

d
d qhh ′′−′′++

ξ
=ξ

ξ
−ξξ

( ) ( ) [ ( ) ],2
1

2
1

12
1

1
1

21 gqgggggge qqqqh ′−+−= −−−−ξ

where ( ) ∫
ξ −+

ξ
=ξ

0
1

1

2
.

4
: dsqgh q

Since the right hand side is strictly positive for 10 ξ<ξ≤  this

implies that ( ) 0>ξW  and ( ) 0>ξ′H  for .0 1ξ<ξ<  This contradicts to

( ) ( ).10 1ξ=> HH  This completes the proof. �
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Remark 3.11. Indeed, by Theorem 3.10 we may find the fast orbit as

a monotone limit of slow orbits and we may easily prove the uniqueness

of fast and slow orbits, c.f. see [20].

4. The Case ( )10,100 <<<<<α pq

The standard theory of initial value problems imply the existence and

uniqueness of solutions in a neighborhood of the origin. At ,0=ξ

( ) .00 >αλ−=′′g  So in a small neighborhood of origin g is increasing and

positive. Lemma 2.2 implies that the solution is blow-up.

We first show that the solution does not blow-up in finite time and

then we show that there are only one type of positive solutions, that is,

slow orbits.

Lemma 4.1. Let g be a solution of problem (1.5), (1.10).

Then ( ) 0>ξ′g  for any 0>ξ  and ,0>λ  moreover g cannot blow-up

for finite ξ.

Proof. Let 00 >ξ  be the first zero for .g ′  We have ( ) .00 >ξ′′g  This

is impossible. Thus, ( ) 0>ξ′g  for any .0>ξ  (Indeed, by Lemmas 2.2 and

2.3.)

Suppose that g is blow-up at .∞<ξ  Set

( ) .
1

2
: 122 +

+
−α+′= pg

p
ggE (4.1)

Using (4.1), (1.5) one sees that ( ) ( ) ,0
2

2 12 <



 +
ξ′−=ξ′ −qqggE  for all

( ).,0 ξ∈ξ  Hence ( ) .0
1

2 12 <λ
+

−αλ≤ +p

p
gE  Since ,10 << q  we have

( ) ,0
1

2 1222 <≤λ
+

−α+′ − Eg
p

gg p

for all ( ).,0 ξ∈ξ
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This means that

( ) 212
1

2
g

p
g p 






 λ

+
+α−<′ −

on the same interval so ( ) .
1

2
exp 1









ξλ

+
+α−<ξ −p

p
g  This contradicts

to the assumption. Thus, g cannot blow-up for finite ξ. �

Lemma 4.2.

( ) .lim +∞=ξ
∞→ξ

g

Proof. Suppose that g is bounded. Since ,0>′g  we have 0gg →

∞<  as .∞→ξ  First there exists sequence nξ  such that ( ) 0→ξ′ ng  as

.∞→ξn

Now define the energy function ( ) ( ) .
1

2
: 122 +

+
−α+′= pg

p
gggE  By

differentiating we have ( ) ( ) .0
2

2 12 <





 +
ξ′−=

ξ
−qgqggE

d
d

 Hence ( )gE

is monotone decreasing for any ξ and so deduce that ( ) 0→ξ′g  as

.∞→ξ

By equation (1.5) we get

( )pq ggqgggg +′−α−=





 ′ξ

+′′ −

∞→ξ∞→ξ

1lim
2

lim

( ) .0
2
1

0000 >+α−>+α−= pp gggg

And so

( ),
2
1

2 00
pgggg +α−>′

ξ
+′′

for large .0>ξ

Integrating we obtain

( ) ( ) .
2
1

0
44

00

22

dseeggg
s

p ∫
ξξ

−
+α−>ξ′
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Since

,2
1

lim

4

0
4

2

2

=

ξ

ξ

ξ

∞→ξ

∫
e

dse
s

we infer

( )
ξ

>ξ′
C

g   for large ξ

for some positive number C, which implies that ( ) +∞→ξg  as .+∞→ξ

This is impossible which completes the proof. �

We next investigate the behavior of g for large ξ. Recall that u is

bounded by 1

1
2 −λ
+

+α− p

p
 as in the proof of Lemma 4.1.

Set ( ) ,
g
g

u
′

=ξ  then u such that

( ) ( ) 00,
2

=ξϕ+α−=
ξ

+′ uuu

here ( ) .121 −− +−−=ξϕ pq guuqg

By calculation, we know that

( ) ( ){ } ,
0

44

22

∫
ξξ

−
ϕ+α−=ξ dseseu

s

for any ,0>ξ  and by the L’Höpital’s rule, we obtain

( )
( ){ }

( )( ).22lim

1

limlim

4

0
4

2

2

ξϕ+α−=

ξ

ϕ+α−
=ξξ

∞→ξξ

ξ

∞→ξ∞→ξ

∫
e

dses
u

s

The last inequality yields that ( )ξu  at ∞ behaves like ( )( ) .22 ξξϕ+α−
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On the other hand, it is easy to see that

( ) 1
2

111
1

2
1

2 −−−− +







λ

+
+α−+λ

+
+α−≤ξϕ ppqp g

p
g

p
q

so it is clearly implies that ( ) 0→ξu  as ,∞→ξ  and then ( ) .0→ξϕ

Theorem 4.3. Assume that ( ).10,100 <<<<<α pq  Let g be a

solution of problem (1.5), (1.10).

Then there exists ( ) 0L >λ  such that

( ) ( ) { ( )},1L, 222 −−α− ξ+ξ−ξλ=λξ ocg

as ,∞→ξ  where ( ) ( )[ ] ( )[ ] .LL2212: 11 −− λ+λα+α+α−= pqqc

Proof. Since

,0lim =
′

∞→ξ g
g

( ) ,0lim =ξϕ
∞→ξ

we have ( ) α−=ξξ∞→ξ 2lim u  and

( )( ) ( ) α−ξϕξ=α+ξξξ
∞→ξ∞→ξ

4lim22lim 22 u

 ( ),lim248 12122 ugqg qp −−

∞→ξ
ξ−ξ+α−α−=

where ( ) .121 −− +−−=ξϕ pq guug

By simple calculation, we obtain

( ) [( ) ( ) ( ) ]11
1

11
2

1212 limlim −−−−

∞→ξ

−−

∞→ξ
ξξ−ξ=ξ−ξ qqppqp guqgugqg

 ( )( ) ( )( ) ,L2L 11 −− λα+λ= qp q

and so

( )( ) ( )( ) ( )( ) .2:L4L2482lim 1122 cqu qp =λα+λ+α−α−=α+ξξξ −−

∞→ξ
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Thus, 
g
gu
′=  satisfies

( ) ( )
,largefor

22
33

ξ
ξ

ξ
+

ξ
+

ξ
α−

=ξ
oc

u

which leads to

( ) ( ) { ( )},1L, 222 −−α− ξ+ξ−ξλ=λξ ocg

as .∞→ξ
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