ON VERTEX NUMBERING OF CERTAIN CLASSES OF GRAPHS

T. K. MATHEW VARKEY

Department of Mathematics
T. K. M. College of Engineering
Kollam-5, Kerala, India
e-mail: mathewvarkeytk@gmail.com

Abstract

A labeling or numbering of a graph G is an assignment f of labels to the vertices of G that induces for each edge uv a labeling depending on the vertex labels f(u) and f(v). In this paper, we study some classes of graphs and their corresponding labelings or numbering.

1. Introduction

Unless mentioned or otherwise, a graph in this paper shall mean a simple finite graph without isolated vertices. For all terminology and notations in Graph Theory, we follow [3], and all terminology regarding to labeling, we follow [4]. In [6], we suggested a new labeling known as odd sequential labeling. Let G be a (p, q) graph. Let G = (V, E). Consider an injective function $f: V(G) \to X$, where $X = \{0, 1, 2, ..., 2q - 1\}$ if G is a tree and $X = \{0, 1, 2, ..., q\}$ otherwise. Define the function $f^* : E(G) \to N$, the set of all natural numbers such that $f^*(uv) = f(u) + f(v)$ for all edges uv. If the set of induced edges labels of $f^*(uv)$ is of the form

2000 Mathematics Subject Classification: 05C78.

Keywords and phrases: labeling, graceful graph, odd sequential graph, prime graph.

Received September 4, 2006; Revised February 8, 2007

© 2007 Pushpa Publishing House

 $\{1, 3, 5, ..., 2q-1\}$, then the labeling is known as *odd sequential labeling* and the corresponding graph is called *odd sequential graph*.

Another labeling has been suggested by Bermond [2], and named as graceful labeling. A graph G=(V,E) is numbered if each vertex v is assigned to nonnegative integer f(v) and each edge uv is attributed the absolute value of the difference of numbers of its end points, that is, |f(u)-f(v)|. The numbering is called graceful if furthermore, we have the following three conditions: (a) All the vertices are labeled with distinct integers (i.e., f is an one-to-one). (b) The largest value of vertex labels is equal to the number of edges, i.e., $f(v) \in \{0, 1, 2, ..., q\}$ for all $v \in V(G)$. (c) The edges of G are distinctly labeled with the integers from 1 to g.

If a graph *G* admits such a numbering, then *G* is said to be *graceful*.

The notion of prime labeling of graph was defined in [4]. A graph G with n-vertices is said to have a *prime labeling* if its vertices are labeled with distinct integers 1, 2, ..., n such that for each edge uv the labels assigned to u and v are relatively prime. A graph which admits prime labeling is known as a $prime\ graph$.

2. On Ladder Graphs

Definition 2.1. The Ladder graph L_n is defined by the Cartesian product of the path P_n with K_2 and it is denoted by $L_n = P_n \times K_2$. In [1], it is shown that, the ladder graph L_n is graceful and in [6], found that prime labeling of L_n and $L_n \odot K_1$. Now, we have the following.

Theorem 2.1. The ladder graph L_n is odd sequential for all $n \geq 2$.

Proof. Consider the ladder graph L_n , $n \ge 2$. Let $\{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n\}$ be the vertex set of L_n . Note that, L_n is a graph with 2n vertices and 3n-2 edges.

The result is obvious for the case n=2. Since $P_2 \times K_2$ is nothing but C_4 which is obviously odd sequential. Hence consider $n \geq 3$.

Define a function $f:V(L_n)\to\{0,\,1,\,2,\,...,\,3n-2=q\}$ such that

$$f(u_{2i-1})=6i-6; \qquad 1\leq i\leq \frac{n}{2} \text{ if } n \text{ is even}$$

$$1\leq i\leq \frac{n+1}{2} \text{ if } n \text{ is odd,}$$

$$f(v_{2i-1})=6i-5; \qquad 1\leq i\leq \frac{n}{2} \text{ if } n \text{ is even}$$

$$1\leq i\leq \frac{n+1}{2} \text{ if } n \text{ is odd,}$$

$$f(u_{2i})=6i-3; \qquad 1\leq i\leq \frac{n}{2} \text{ if } n \text{ is even}$$

$$1\leq i\leq \frac{n-1}{2} \text{ if } n \text{ is even}$$

$$1\leq i\leq \frac{n-1}{2} \text{ if } n \text{ is odd,}$$

and

$$f(v_{2i})=6i-2;$$
 $1\leq i\leq \frac{n}{2} \text{ if } n \text{ is even}$
$$1\leq i\leq \frac{n-1}{2} \text{ if } n \text{ is odd.}$$

- (a) Clearly f is injective.
- (b) Also, $\max_{v \in V} f(v) = 3n 2$, the number of edges.

Thus,
$$f(v) \in \{0, 1, ..., 3n - 1\}.$$

(c) It is obvious that the labels of the edges of L_n are all integers of the interval [1, 3n-2].

That is, f is an odd sequential numbering. Hence, \mathcal{L}_n is odd sequential.

The numbering for L_{10} is exhibited in Fig. 2.1

Figure 2.1

Theorem 2.2. The ladder graph $L_n + K_1$, $n \ge 3$ is prime if 2n + 1 is prime.

Proof. Consider the ladder graph L_n , $n \geq 3$. Let $\{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n\}$ be the vertex set of L_n and w be the unique vertex of K_1 . Note that, $L_n + K_1$ has 2n + 1 vertices and 5n - 2 edges. Define a function

$$f: V(L_n + K_1) \rightarrow \{1, 2, ..., 2n + 1\}$$

such that $f(u_i) = i$ and $f(v_i) = 2n + 1 - i$ for i = 1, 2, ..., n and f(w) = 2n + 1. From the definition, it is clear that f is injective. Next, we have to show that each f values are relatively prime. Since $f(u_i) = i$ and $f(v_i) = 2n + 1 - i$. It is obvious that $(f(u_i), f(v_i)) = 1$, $(f(u_i), f(w)) = 1$, $(f(v_i), f(w)) = 1$, $(f(u_i), f(u_{i+1})) = 1$ and $(f(v_i), f(v_{i+1})) = 1$ for i = 1, 2, 3, ..., n - 1. It remains to show that $(f(u_i), f(v_i)) = 1$ for i = 1, 2, 3, ..., n.

That is, to show that (i, 2n + 1 - i) = 1.

Suppose

$$d = (i, 2n + 1 - i)$$

$$\Rightarrow d \mid i \text{ and } d \mid 2n + 1 - i$$

$$\Rightarrow d \mid i + 2n + 1 - i$$

$$\Rightarrow d \mid 1, \text{ since } 2n + 1 \text{ is a prime.}$$

Thus, f is a prime labeling. Hence, the graph $L_n + K_1$ is prime.

3. On Grid Graphs

Definition 3.1. The *planar grid* is the graph obtained by the cartesian product of two paths P_m and P_n and is denoted by $P_m \times P_n$.

In [5], it is shown that $P_m \times P_n$ has an α -valuation and $P_m \times P_n$ has a sequential labeling if m and n are even, n > 2. Now we have the following.

Theorem 3.1. The planar grid $P_m \times P_n$ is odd sequential for m, $n \ge 2$.

Proof. Let $G = P_m \times P_n$. Let u_{ij} be the (i, j)th vertex of G, for i = 1, 2, ..., m; j = 1, 2, ..., n. Note that, G is a graph with 2mn - m - n edges. Define a function $f: V(G) \to \{0, 1, 2, ..., q = 2mn - m - n\}$ such that $f(u_{ij}) = (i-1) + (2m-1)(j-1)$ for i = 1, 2, ..., m; j = 1, 2, ..., n.

Also,

$$\max_{v \in V} f(v) = \max\{\max_{1 \leq i \leq m, \, 1 \leq j \leq n} (i-1) + (2m-1)(j-1)\} = 2mn - m - n,$$
 the number of edges of $P_m \times P_n$.

Thus, $f(v) \in \{0, 1, 2, ..., q\}$. Clearly f is injective and it is easily verified that the above defined f is an odd sequential numbering. Thus, the graph G is odd sequential. Hence the theorem.

The numbering for $P_6 \times P_5$ is exhibited in Fig. 3.1

Figure 3.1

4. On Cycle-Related Graphs

In [7], proved that $C_n \odot P_3$ is sequential for all odd n and $K_2 \odot C_n$ is sequential for all odd n. Now, we have the following.

Theorem 4.1. Odd cycles are not odd sequential.

Theorem 4.2. C_n is odd sequential if $n = 0 \pmod{4}$.

Proof. Let $v_1, v_2, ..., v_n$ be the set of vertices of the cycle C_n and it is of length n.

Define a function $f:V(C_n)\to\{0,1,2,...,n\}$ such that $f(v_{2i-1})=2i-1,$ $i=1,\,2,\,...,\,\frac{n}{2}$, and

$$f(v_{2i}) = \begin{cases} 2(i-1); & i = 1, 2, ..., \frac{n}{4} \\ 2i; & i = \frac{n}{4} + 1, \frac{n}{4} + 2, ..., \frac{n}{4} + \frac{n}{4} = \frac{n}{2}. \end{cases}$$

Clearly, we can see that f is injective. It is obvious that f is an odd sequential numbering. Hence, the graph C_n is odd sequential.

The odd sequential labeling for \mathcal{C}_{16} is exhibited in Fig. 4.1

Figure 4.1

5. On Graceful Graphs

Definition 5.1. An α -valuation of a graph G is a graceful labeling f of G such that for each edge uv of G either $f(x) \leq k < f(y)$ or $f(y) \leq k < f(x)$ for some integer k, [4].

Definition 5.2. By $H_{n,n}$, we mean that the graph with vertex set $V(H_{n,n})=\{x_1,\,x_2,\,...,\,x_n;\,y_1,\,y_2,\,...,\,y_n\}$ and the edge set $E(H_{n,n})=\{x_iy_i\,|\,1\leq i\leq n;\,n-i+1\leq j\leq n\}.$

The graph $\,H_{4,\,4}\,$ is as shown in Figure 5.1

Figure 5.1

Theorem 5.1. The graph $H_{n,n}$ is graceful for all $n \ge 3$. Furthermore it has an α -valuation.

Proof. Let (X, Y) be the partition of $H_{n,n}$, where $X = \{x_1, x_2, ..., x_n\}$ and $Y = \{y_1, y_2, ..., y_n\}$. Note that, $H_{n,n}$ has 2n vertices and $\frac{n(n+1)}{2}$ edges.

Define a function $f:V(H_{n,\,n}) \to \left\{0,\,1,\,2,\,...,\,\frac{n(n+1)}{2}\right\}$ such that

$$f(x_i) = \frac{n(n+1)}{2} - n + i \text{ for } i = 1, 2, ..., n$$

and

$$f(y_i) = \left(\frac{n(n+1)}{2} - n\right) - \left(\frac{i(i+1)}{2} - i\right)$$

for i = 1, 2, ..., n. Clearly, the definition of f tells that f is injective. Also, it is obvious that f is a graceful labeling. Hence, the graph $H_{n,n}$ is graceful.

Let $K = \max f(y_i)$ for all i = 1, 2, ..., n. Then $f(x_i) > K$ for all i = 1, 2, ..., n.

Therefore $f(y_i) \le K < f(x_i)$ for all i = 1, 2, ..., n. Therefore, f is an α -valuation.

The graceful numbering for $H_{4,4}$ is exhibited in Figure 5.2.

Figure 5.2

References

- [1] R. Bodendick, H. Schunacher and H. Weger, Uber eine speziette Klasse grozioser, Eulerscher Graphen, Mitt. Math. Gesellsch. Hamburg 10 (1975), 241-248.
- [2] J.-C. Bermond, Graceful graphs, radio antennae and French windmills, Graph Theory and Combinatorics, pp. 18-37, Pitman, London, 1979.
- [3] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, U. S. A., 1969.
- [4] Joseph A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics 5 (2005), #DS6.
- [5] D. S. Jungreis and M. Reid, Labeling grids, Ars. Combin. 34 (1992), 167-182.
- [6] T. K. Mathew Varkey, Some graph theoretic operations associated with graph labelings, Ph.D. Thesis, University of Kerala, 2000.
- [7] G. Suresh Singh, Graph theory, a study of certain labeling problems, Ph.D. Thesis, University of Kerala, 1993.

