ON VERTEX NUMBERING OF CERTAIN CLASSES OF GRAPHS

T. K. MATHEW VARKEY

Department of Mathematics
T. K. M. College of Engineering

Kollam-5, Kerala, India
e-mail: mathewvarkeytk@gmail.com

Abstract

A labeling or numbering of a graph G is an assignment f of labels to the vertices of G that induces for each edge $u v$ a labeling depending on the vertex labels $f(u)$ and $f(v)$. In this paper, we study some classes of graphs and their corresponding labelings or numbering.

1. Introduction

Unless mentioned or otherwise, a graph in this paper shall mean a simple finite graph without isolated vertices. For all terminology and notations in Graph Theory, we follow [3], and all terminology regarding to labeling, we follow [4]. In [6], we suggested a new labeling known as odd sequential labeling. Let G be a (p, q) graph. Let $G=(V, E)$. Consider an injective function $f: V(G) \rightarrow X$, where $X=\{0,1,2, \ldots, 2 q-1\}$ if G is a tree and $X=\{0,1,2, \ldots, q\}$ otherwise. Define the function $f^{*}: E(G)$ $\rightarrow N$, the set of all natural numbers such that $f^{*}(u v)=f(u)+f(v)$ for all edges $u v$. If the set of induced edges labels of $f^{*}(u v)$ is of the form

2000 Mathematics Subject Classification: 05C78.
Keywords and phrases: labeling, graceful graph, odd sequential graph, prime graph.
Received September 4, 2006; Revised February 8, 2007
$\{1,3,5, \ldots, 2 q-1\}$, then the labeling is known as odd sequential labeling and the corresponding graph is called odd sequential graph.

Another labeling has been suggested by Bermond [2], and named as graceful labeling. A graph $G=(V, E)$ is numbered if each vertex v is assigned to nonnegative integer $f(v)$ and each edge $u v$ is attributed the absolute value of the difference of numbers of its end points, that is, $|f(u)-f(v)|$. The numbering is called graceful if furthermore, we have the following three conditions: (a) All the vertices are labeled with distinct integers (i.e., f is an one-to-one). (b) The largest value of vertex labels is equal to the number of edges, i.e., $f(v) \in\{0,1,2, \ldots, q\}$ for all $v \in V(G)$. (c) The edges of G are distinctly labeled with the integers from 1 to q.

If a graph G admits such a numbering, then G is said to be graceful.
The notion of prime labeling of graph was defined in [4]. A graph G with n-vertices is said to have a prime labeling if its vertices are labeled with distinct integers $1,2, \ldots, n$ such that for each edge $u v$ the labels assigned to u and v are relatively prime. A graph which admits prime labeling is known as a prime graph.

2. On Ladder Graphs

Definition 2.1. The Ladder graph L_{n} is defined by the Cartesian product of the path P_{n} with K_{2} and it is denoted by $L_{n}=P_{n} \times K_{2}$. In [1], it is shown that, the ladder graph L_{n} is graceful and in [6], found that prime labeling of L_{n} and $L_{n} \odot K_{1}$. Now, we have the following.

Theorem 2.1. The ladder graph L_{n} is odd sequential for all $n \geq 2$.
Proof. Consider the ladder graph $L_{n}, n \geq 2$. Let $\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}\right.$, $\left.v_{2}, \ldots, v_{n}\right\}$ be the vertex set of L_{n}. Note that, L_{n} is a graph with $2 n$ vertices and $3 n-2$ edges.

The result is obvious for the case $n=2$. Since $P_{2} \times K_{2}$ is nothing but C_{4} which is obviously odd sequential. Hence consider $n \geq 3$.

Define a function $f: V\left(L_{n}\right) \rightarrow\{0,1,2, \ldots, 3 n-2=q\}$ such that

$$
\begin{array}{ll}
f\left(u_{2 i-1}\right)=6 i-6 ; & 1 \leq i \leq \frac{n}{2} \text { if } n \text { is even } \\
& 1 \leq i \leq \frac{n+1}{2} \text { if } n \text { is odd, } \\
f\left(v_{2 i-1}\right)=6 i-5 ; & 1 \leq i \leq \frac{n}{2} \text { if } n \text { is even } \\
& 1 \leq i \leq \frac{n+1}{2} \text { if } n \text { is odd, } \\
f\left(u_{2 i}\right)=6 i-3 ; & 1 \leq i \leq \frac{n}{2} \text { if } n \text { is even } \\
& 1 \leq i \leq \frac{n-1}{2} \text { if } n \text { is odd }
\end{array}
$$

and

$$
\begin{array}{ll}
f\left(v_{2 i}\right)=6 i-2 ; & 1 \leq i \leq \frac{n}{2} \text { if } n \text { is even } \\
& 1 \leq i \leq \frac{n-1}{2} \text { if } n \text { is odd. }
\end{array}
$$

(a) Clearly f is injective.
(b) Also, $\max _{v \in V} f(v)=3 n-2$, the number of edges.

Thus, $f(v) \in\{0,1, \ldots, 3 n-1\}$.
(c) It is obvious that the labels of the edges of L_{n} are all integers of the interval $[1,3 n-2]$.

That is, f is an odd sequential numbering. Hence, L_{n} is odd sequential.

The numbering for L_{10} is exhibited in Fig. 2.1

Figure 2.1

Theorem 2.2. The ladder graph $L_{n}+K_{1}, n \geq 3$ is prime if $2 n+1$ is prime.

Proof. Consider the ladder graph $L_{n}, n \geq 3$. Let $\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}\right.$, $\left.v_{2}, \ldots, v_{n}\right\}$ be the vertex set of L_{n} and w be the unique vertex of K_{1}. Note that, $L_{n}+K_{1}$ has $2 n+1$ vertices and $5 n-2$ edges. Define a function

$$
f: V\left(L_{n}+K_{1}\right) \rightarrow\{1,2, \ldots, 2 n+1\}
$$

such that $f\left(u_{i}\right)=i$ and $f\left(v_{i}\right)=2 n+1-i$ for $i=1,2, \ldots, n$ and $f(w)=2 n+1$. From the definition, it is clear that f is injective. Next, we have to show that each f values are relatively prime. Since $f\left(u_{i}\right)=i$ and $f\left(v_{i}\right)=2 n+1-i$. It is obvious that $\left(f\left(u_{i}\right), f\left(v_{i}\right)\right)=1, \quad\left(f\left(u_{i}\right), f(w)\right)=1$, $\left(f\left(v_{i}\right), f(w)\right)=1,\left(f\left(u_{i}\right), f\left(u_{i+1}\right)\right)=1$ and $\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=1$ for $i=1,2,3$, $\ldots, n-1$. It remains to show that $\left(f\left(u_{i}\right), f\left(v_{i}\right)\right)=1$ for $i=1,2,3, \ldots, n$.

That is, to show that $(i, 2 n+1-i)=1$.
Suppose

$$
\begin{aligned}
d & =(i, 2 n+1-i) \\
& \Rightarrow d \mid i \text { and } d \mid 2 n+1-i \\
& \Rightarrow d \mid i+2 n+1-i \\
& \Rightarrow d \mid 1, \text { since } 2 n+1 \text { is a prime. }
\end{aligned}
$$

Thus, f is a prime labeling. Hence, the graph $L_{n}+K_{1}$ is prime.

3. On Grid Graphs

Definition 3.1. The planar grid is the graph obtained by the cartesian product of two paths P_{m} and P_{n} and is denoted by $P_{m} \times P_{n}$.

In [5], it is shown that $P_{m} \times P_{n}$ has an α-valuation and $P_{m} \times P_{n}$ has a sequential labeling if m and n are even, $n>2$. Now we have the following.

Theorem 3.1. The planar grid $P_{m} \times P_{n}$ is odd sequential for m, $n \geq 2$.

Proof. Let $G=P_{m} \times P_{n}$. Let $u_{i j}$ be the (i, j) th vertex of G, for $i=1,2, \ldots, m ; j=1,2, \ldots, n$. Note that, G is a graph with $2 m n-m-n$ edges. Define a function $f: V(G) \rightarrow\{0,1,2, \ldots, q=2 m n-m-n\}$ such that $f\left(u_{i j}\right)=(i-1)+(2 m-1)(j-1)$ for $i=1,2, \ldots, m ; j=1,2, \ldots, n$.

Also,
$\max _{v \in V} f(v)=\max \left\{\max _{1 \leq i \leq m, 1 \leq j \leq n}(i-1)+(2 m-1)(j-1)\right\}=2 m n-m-n$,
the number of edges of $P_{m} \times P_{n}$.
Thus, $f(v) \in\{0,1,2, \ldots, q\}$. Clearly f is injective and it is easily verified that the above defined f is an odd sequential numbering. Thus, the graph G is odd sequential. Hence the theorem.

The numbering for $P_{6} \times P_{5}$ is exhibited in Fig. 3.1

Figure 3.1

4. On Cycle-Related Graphs

In [7], proved that $C_{n} \odot P_{3}$ is sequential for all odd n and $K_{2} \odot C_{n}$ is sequential for all odd n. Now, we have the following.

Theorem 4.1. Odd cycles are not odd sequential.
Theorem 4.2. C_{n} is odd sequential if $n=0(\bmod 4)$.
Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the set of vertices of the cycle C_{n} and it is of length n.

Define a function $f: V\left(C_{n}\right) \rightarrow\{0,1,2, \ldots, n\}$ such that $f\left(v_{2 i-1}\right)=2 i-1$, $i=1,2, \ldots, \frac{n}{2}$, and

$$
f\left(v_{2 i}\right)= \begin{cases}2(i-1) ; & i=1,2, \ldots, \frac{n}{4} \\ 2 i ; & i=\frac{n}{4}+1, \frac{n}{4}+2, \ldots, \frac{n}{4}+\frac{n}{4}=\frac{n}{2} .\end{cases}
$$

Clearly, we can see that f is injective. It is obvious that f is an odd sequential numbering. Hence, the graph C_{n} is odd sequential.

The odd sequential labeling for C_{16} is exhibited in Fig. 4.1

Figure 4.1

5. On Graceful Graphs

Definition 5.1. An α-valuation of a graph G is a graceful labeling f of G such that for each edge $u v$ of G either $f(x) \leq k<f(y)$ or $f(y) \leq k$ $<f(x)$ for some integer k, [4].

Definition 5.2. By $H_{n, n}$, we mean that the graph with vertex set $V\left(H_{n, n}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n} ; y_{1}, y_{2}, \ldots, y_{n}\right\}$ and the edge set $E\left(H_{n, n}\right)=$ $\left\{x_{i} y_{i} \mid 1 \leq i \leq n ; n-i+1 \leq j \leq n\right\}$.

The graph $H_{4,4}$ is as shown in Figure 5.1

Figure 5.1

Theorem 5.1. The graph $H_{n, n}$ is graceful for all $n \geq 3$. Furthermore it has an α-valuation.

Proof. Let (X, Y) be the partition of $H_{n, n}$, where $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. Note that, $H_{n, n}$ has $2 n$ vertices and $\frac{n(n+1)}{2}$ edges.

Define a function $f: V\left(H_{n, n}\right) \rightarrow\left\{0,1,2, \ldots, \frac{n(n+1)}{2}\right\}$ such that

$$
f\left(x_{i}\right)=\frac{n(n+1)}{2}-n+i \text { for } i=1,2, \ldots, n
$$

and

$$
f\left(y_{i}\right)=\left(\frac{n(n+1)}{2}-n\right)-\left(\frac{i(i+1)}{2}-i\right)
$$

for $i=1,2, \ldots, n$. Clearly, the definition of f tells that f is injective. Also, it is obvious that f is a graceful labeling. Hence, the graph $H_{n, n}$ is graceful.

Let $K=\max f\left(y_{i}\right)$ for all $i=1,2, \ldots, n$. Then $f\left(x_{i}\right)>K$ for all $i=1,2, \ldots, n$.

Therefore $f\left(y_{i}\right) \leq K<f\left(x_{i}\right)$ for all $i=1,2, \ldots, n$. Therefore, f is an α-valuation.

The graceful numbering for $H_{4,4}$ is exhibited in Figure 5.2.

Figure 5.2

References

[1] R. Bodendick, H. Schunacher and H. Weger, Uber eine speziette Klasse grozioser, Eulerscher Graphen, Mitt. Math. Gesellsch. Hamburg 10 (1975), 241-248.
[2] J.-C. Bermond, Graceful graphs, radio antennae and French windmills, Graph Theory and Combinatorics, pp. 18-37, Pitman, London, 1979.
[3] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, U. S. A., 1969.
[4] Joseph A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics 5 (2005), \#DS6.
[5] D. S. Jungreis and M. Reid, Labeling grids, Ars. Combin. 34 (1992), 167-182.
[6] T. K. Mathew Varkey, Some graph theoretic operations associated with graph labelings, Ph.D. Thesis, University of Kerala, 2000.
[7] G. Suresh Singh, Graph theory, a study of certain labeling problems, Ph.D. Thesis, University of Kerala, 1993.

