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Abstract

In this paper using the theory of large deviations, many hypotheses
testing for a model consisting of three or more independent objects are
studied (this problem has been proposed by Ahlswede and Haroutunian).

We assume that M probability distributions are given and objects
independent of each other follow to one among them. Through Sanov’s
theorem and its applications in hypotheses testing, we expand this
procedure for the calculation of the matrix of all possible pairs of the
error probability exponents in optimal testing.

1. Introduction

The approach to statistical problems based on considering
probabilities of large deviations has been in use to statistical inference
since the paper by Bahadur [3] where considering the problem of
discrimination between two simple hypotheses he showed that, if the
hypotheses are fixed, then the error probabilities decrease exponentially
as the sample size tends to infinity; the corresponding optimal exponent
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is specified by what is now known as Chernoff’s function.

Recently Ahlswede and Haroutunian formulated an ensemble of new
problems on multiple hypotheses testing for many objects on
identification of hypotheses. The problem of hypotheses testing for the
model consisting of two independent objects with two possible
hypothetical distributions was investigated in [1, 2] (without usage of the
theory of large deviations).

Our aim in the present paper is to obtain the solution of the problem
proposed by Ahlswede and Haroutunian that generalizes those
investigated in [11] via the theory of large deviations for testing of many
hypotheses concerning one object. In fact, we study the model consisting

of ( )3≥K  objects which independently follow to one of the given ( )2≥M

probability distributions. Recently, Tuncel [12] also published an
interesting consideration of the problem of multiple hypotheses optimal
testing, which differs from the approach provided in [1, 2], [11].

In the next section we recall main definitions, notations, basic
concepts, theorems for the case of one object and theory of large deviation
techniques and in Section 3 we formulate and prove the results on three
independent objects testing.

2. Preliminaries

The large deviation principle (LDP) characterizes the limiting

behavior, as ,0→δ  of a family of probability measures { }δP  on ( )BX ,  in

terms of a rate function. For any set ,A  A  denotes the closure of ,A  0A

the interior of A  and cA  the complement of .A

Definition 1. A rate function I is a lower semicontinuous mapping

[ ).,0: ∞→XI

Define the level set ( ) ( ){ },: γ≤=γ
∆

xIxM I  .0≥γ∀  It is a closed

subset of .X

A good rate function is a rate function for which all the level sets

( )γIM  are compact subsets of .X
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The effective domain of I, denoted by ,ID  is the set of points in X  of

finite rate, that is, ( ){ }.: ∞<=
∆

xIxID

Definition 2. { }γP  satisfies the LDP with a rate function I if, for all

,BA ∈

( ) ( ) ( ) ( ).inflogsuplimloginfliminf
000

xIPPxI
xx AA

AA
∈

δ
→δ

δ
→δ∈

−≤δ≤δ≤− (1)

Let BA ∈  and δP  satisfy the LDP and also,

( ) ( ) .infinf
0 A

AA
IxIxI

xx

∆

∈∈
== (2)

Then
( ) .loglim

0
AA IP −=δ

→δ
(3)

The set A  that satisfies (2) is called an I continuity set. In general,

the LDP implies a precise limit in (3) only for I continuity sets.

Before paying attention to Sanov’s theorem it is necessary to describe
the concept of empirical distribution.

Let { }K...,,2,1=X  be a finite set of size K. Then the set of all

probability distributions (PDs) on X  is denoted by ( ).XP  For PDs, P and

Q, ( )PH  denotes entropy and ( )QPD  denotes the information

divergence (or the Kullback-Leibler distance):

( ) ( ) ( ) ( ) ( ) ( )
( )∑ ∑

∈ ∈

∆∆ =−=
X Xx x

xQ
xPxPQPDxPxPPH .log,log

The type of a vector ( ) N
Nxxx X∈= ...,,, 21x  is the empirical

distribution given by ( ) ( )x|⋅= −∆
xNNxQ 1  for all ,X∈x  where ( )x|xN

denotes the number of occurrences of x in x.

The subset of ( )XP  consisting of all possible types of sequences

NX∈x  is denoted by ( ).XPN  For ( )XPNQ ∈  the set of sequences of

type class Q will be denoted by ( ).XN
QT
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Notice that by the definition of ( )xQ  we can show that ( )xI  is equal

with Kullback-Leibler distance, for more details see [7].

Theorem 1 (Sanov’s theorem) [6, 11]. Let A  be a set of distributions

from P  such that its closure is equal to the closure of its interior. Then for

the empirical distribution xQ  of a vector x from a strictly positive

distribution P on :X

( ) ( ).inf:log
1

lim PQDQP
N Q

N

N
xx

x
x

A
A

∈∞→
=






 ∈−

Let { }K...,,2,1=X  be the finite set such that M incompatible

hypotheses MHHH ...,,, 21  consist in that the random variable X taking

values on X  has one of M distributions ....,,, 21 MPPP  For decision

making N independent experiences are carried out.

By means of non-randomized test ( )xNϕ  on the basis of a sample x of

length N we must accept one of the hypotheses. To this aim we can divide

the sample space NX  into M disjoint subsets

( ){ } .,1,: MmmN
N
m ==ϕ=

∆
xxA

The probability of the erroneous acceptance of the hypothesis lH

provided that the hypothesis mH  is true, for lm ≠  is denoted as follows:

( ) ( ) ( )∑
∈

∆
| ==ϕα

N
l

N
m

N
l

N
mN

N
lm PP

A

A

x

x .

For lm =  we denote by ( )Nmm ϕα |  the probability to reject mH

when it is true and we have

( ) ( )∑
≠

|
∆

| ϕα=ϕα
ml

N
N

lmN
N

mm . (4)

The matrix ( ) { ( )}N
N

lmN ϕα=ϕ |
∆

A  is called the power of the test. We

consider the rates of exponential decrease of the error probabilities and

call them reliabilities
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( ) ( ).log1lim NlmNlm N
E ϕα−=ϕ |∞→

∆
| (5)

From (4) and (5), we derive

.min lmmlmm EE |≠| = (6)

Definition 3. The test sequence ( )...,, 21 ϕϕ=ϕ∗  is called LAO if for

given values of the elements 1111 ...,, −|−| MMEE  it provides maximal

values for all other elements of ( ).∗ϕE

Consider for given positive and finite numbers 1111 ...,, −|−| MMEE

the following family of regions:

{ ( ) } ,1,1,: −=≤= |
∆

MlEPQDQ llllR (7a)

{ ( ) } ,1,1,: −=>= |
∆

MlEPQDQ lllMR (7b)

( ) MlNl
N
l ,1, ==

∆
XPRR ∩ (7c)

and the following numbers:

( ) ,1,1, −=== |
∆

|
∗
|

∗
| MlEEEE llllllll (8a)

( ) ( )( ) ,1,1,,,1,inf −=≠===
∈

∆
|

∗
|

∗
| MllmMmPQDEEE m

Q
lllmlm

lR
(8b)

( ) ( )( ) ,1,1,inf...,, 1111 −===
∈

∆
−|−|

∗
|

∗
| MmPQDEEEE m

Q
MMMmMm

lR
(8c)

( ) .min...,,
1,1

1111 lM
Ml

MMMMMM EEEEE |
−=

∆
−|−|

∗
|

∗
| == (8d)

With assumption ,lRA =  mPP =  in Sanov’s theorem for conditions

(7), (8) we have (see Figure 1)
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Figure 1. Interpretation of the construction of the test.

( ) ( ) ( ).inflog1limlog1lim mQl
N

mNN
N

lmN
PQDP

NN lR
R

∈∞→
∗

|∞→
=−=ϕα− (9)

We use the notation ,21
NN yy ≈  when ( ) ( ) ,21 N

NN ygyg ε+=  where

,0→εN  for .∞→N  Now, using (9) we write

( ) ( ).inf m
Q

lm PQDE
lR∈

∗
| ≈ϕ (10)

Therefore the value of ( )∗
| ϕα Nlm  is equal to

( ) ( ( )) ( ( )).expinfexp ∗
|∈

∗
| ϕ−≈−≈ϕα NlmmQNlm NEPQDN

lR
(11)

In fact the error probability ( )Nlm ϕα |  still goes to zero with

exponential rate ( )mQ
PQD

lR∈
inf  for mP  not in the set of .lR

Theorem 2. For a fixed family of distributions mPP ...,,1  on a finite

set X  the following two statements hold. If positive finite numbers

1111 ...,, −|−| MMEE  satisfy conditions:

( ),min 1
,2

11 PPDE l
Ml=

| <

#

( ) ( ) ,1,2,min,minmin
,11,1

−=






<
+=

|
∗
|

−=
| MmPPDEEE ml

Mml
lllm

ml
MM (12)

then:

(a) There exists a LAO sequence of tests ,∗ϕN  the reliability matrix

{ ( )}∗∗
|

∗ ϕ= lmEE  of which is defined in (8), and all the elements ∗
|mmE  of

it are positive.



www.p
phm

j.c
om

ON THE THEORY OF LARGE DEVIATIONS … 351

(b) Even if one of conditions in (12) is violated, then the reliability

matrix of an arbitrary test necessarily has an element equal to zero (the

corresponding error probability does not tend exponentially to zero).

Proof. See [10].

Remark 1. From definitions (8) and (12), it follows that

,1,1, −== ∗
|

∗
| MmEE Mmmm  and .,, MmlEE lmmm ≠= ∗

|
∗
| (13)

Remark 2. If one preliminary given element ,mmE |  ,,1 Mm =  of the

reliability matrix of an object is equal to zero, then the corresponding

element of the matrix determined as functions of ,mmE |  is defined as in

the case of Stain’s lemma [6]:

( ) ,,,1, mlMlPPDE lmml ≠==′ |

and the remaining elements of the matrix are defined by ,0>| llE  ,ml ≠

,1,1 −= Ml  as follows from Theorem 2.

3. LAO Testing of Hypotheses for

Three Independent Objects

Let ,1x  2x  and 3x  be independent RV taking values in some finite

set X  with one of M PDs, which are characteristics of the corresponding

independent objects, the random vector ( )321 ,, XXX  assume values

( ) .,, 321 XXX ××∈xxx

Let ( ) (( ) ( ) ( )),,,...,,,,...,,,,,, 3213213
1

2
1

1
1321 NNNnnn xxxxxxxxx=xxx ,X∈ix

,3,2,1=i  ,,1 Nn =  be a sequence of results of N independent

observations of the vector ( ).,, 321 XXX  We must define unknown PDs of

the objects on the base of observed data. The selection for each object is

denoted by .NΦ  The objects independence test NΦ  may be considered to

be the tests ,1
Nϕ  2

Nϕ  and 3
Nϕ  for the respective separate objects. We

denote the whole compound test sequence by Φ.



www.p
phm

j.c
om

LEADER NAVAEI and MASOUD YARMOHAMMADI352

Assume ( )Nlllmmm Φα | 321321 ,,,,  to be the probability of the erroneous

acceptance by the test NΦ  of the hypotheses ( )
321

,, lll HHH  provided

that ( )
321

,, mmm HHH  is true, where ( ) ( ),,,,, 321321 lllmmm ≠  ,im

,,1 Mli =  .3,2,1=i  The probability to reject a true hypothesis

( )
321

,, mmm HHH  in analogy with (4) is the following:

( ) ( )
( ) ( )

∑
≠

|
∆

| Φα=Φα
321321

321321321321
,,,,

,,,,,,,, .
mmmlll

N
N

lllmmmN
N

mmmmmm (14)

We also study corresponding limits ( )NlllmmmE Φ| 321321 ,,,,  of error

probability exponents of the sequence of tests Φ, called reliabilities:

( )Φ| 321321 ,,,, lllmmmE

( ) .3,2,1,,1,,log1lim
321321 ,,,, ==Φα−= |∞→

∆
iMlm

N iiNlllmmmN
(15)

We denote by ( )iE ϕ  the reliability matrices of the sequences of tests

,iϕ  ,3,2,1=i  for each of the objects.

Using (14) and (15), it follows that

( )
( ) ( )

( ).min
321321

321321
321321 ,,,,,,,,,,,, Φ=Φ |≠| lllmmmmmmlllmmmmmm EE (16)

In this section we use the following lemma.

Lemma 1. If elements ( ),i
lmE ϕ|  ,,1, Mlm =  ,3,2,1=i  are strictly

positive, then the following equalities hold for ( ) :,, 321 ϕϕϕ=Φ

( ) ( )∑
=

|| ϕ=Φ
3

1
,,,, ,

321321
i

i
lmlllmmm ii

EE  if ,ii lm ≠  ,3,2,1=i (17a)

( )Φ| 321321 ,,,, lllmmmE

( )∑
≠

| ϕ=
ki

i
lm ii

E ,  if ,kk lm =  ,ii lm ≠  ,ki ≠  ,3,2,1, =ki (17b)
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( )Φ| 321321 ,,,, lllmmmE

( ),i
lm ii

E ϕ= |  if ,kk lm =  ,ii lm ≠  ,ki ≠  .3,2,1, =ik (17c)

The relation (17a) also holds, if the reliabilities ( ) ,0=ϕ|
i

lmE  for

several m, l and several i.

Proof. From the independence of the objects we can write

( ) ( )∏
=

|| ϕα=Φα
3

1
,,,, ,

321321
i

i
lmN

N
lllmmm ii

 if ,ii lm ≠  ,ki ≠ (18a)

( ) [ ] ( ) ( )∏
≠

||| ϕαϕα−=Φα
ki

i
Nlm

k
NlmN

N
lllmmm iikk

,1
321321 ,,,,

if ,kk lm =  ,ki ≠  ,ii lm ≠  ,3,2,1, =ki (18b)

( ) ( ) [ ( )]∏
≠

||| ϕα−ϕα=Φα
ki

k
Nlm

i
NlmN

N
lllmmm kkii

,1
321321 ,,,,

if ,kk lm =  ,ki ≠  ,ii lm ≠  .3,2,1, =ik (18c)

In view of the definitions (14) and (15), from the equalities (18) we
obtain relations (17).

Definition 4. The test sequence ( )...,, 21 ϕϕ=Φ∗  is called LAO for

the model with three objects if for given positive values of certain

( )13 −M  elements of the reliability matrix ( )∗ΦE  the procedure provides

maximal values for other elements in it.

Our aim is to find LAO test from the set of compound tests =Φ

( )321 ,, ϕϕϕ  when strictly positive elements ,,,,, mmMmmmE |

,,,,, mMmmmmE |  and ,,,,, MmmmmmE |  ,1,1 −= Mm  of the reliability

matrix are given.

Remark 3. Notice that the elements ,,,,, mmMmmmE |

,,,,, mMmmmmE |  ,,,,, MmmmmmE |  ,1,1 −= Mm  of the test for three

objects can be positive on the three subsets of tests ( ):,, 321 ϕϕϕ=Φ
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{ ( ) ( ) },1,1,3,2,1,0:,, 321 −==>ϕϕϕϕ=Φ= |
∆

MmiE i
mmA

{ ( ) [ ] ( ) ,0:1,1:,, 321 =ϕ−∈′∃ϕϕϕ=Φ= ′|′
∆ i

mmEMmB  for two i, but

( ) ,0>ϕ′|′
j

mmE  ,ji ≠  and for other ,Mm <

( ) ,0>ϕ|
i

mmE  },3,2,1, =ji

{ ( ) [ ] ( ) ,0:1,1:,, 321 =ϕ−∈′∃ϕϕϕ=Φ= ′|′
∆ i

mmEMmC  and for other ,Mm <

( ) ,0>ϕ|
i

mmE  }.3,2,1=i

Consider for given positive elements ,,,,, mmMmmmE |  ,,,,, mMmmmmE |

and ,,,,, MmmmmmE |  ,,1 Mm =  the family of regions:

( ) { ( ) ,:
321 ,,,, mmmmmmm

i
m EPQDQ |

∆
≤=R  ,Mmi =  ,mmj =  },ji ≠

,1,1 −= Mm   ,3,2,1=i

( ) { ( ) ,:
321 ,,,, mmmmmmm

i
M EPQDQ |

∆
>=R  ,Mmi =  ,mmj =  },ji ≠

,1,1 −= Mm  3,2,1=i

and the following numbers:

,,,,,,,,, mmMmmmmmMmmm EE |
∆∗

| =

1,1,,,,,,,,, −== |
∆∗

| MlEE mMmmmmmMmmmm

MmmmmmMmmmmm EE ,,,,,,,, |
∆∗

| = (19a)

∗
| 321321 ,,,, lllmmmE

( ) 3,2,1,,,,,inf
:

=≠=≠=
∈

∆
kikilmlmPQD kkiim

QQ
ii

il
R

(19b)
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∗
| 321321 ,,,, lllmmmE

( )∑
∈≠

∆
==≠=

i
il

i

QQki

kkiim kilmlmPQD

R:,

3,2,1,,,,inf (19c)

∗
|

∗
|

∆∗
| +=

321321321321321321 ,,,,,,,,,,,, mlmmmmmmlmmmlllmmm EEE

.3,2,1,,
321321 ,,,, =≠+ ∗

| ilmE iilmmmmm (19d)

Theorem 3. If all distributions ,mP  ,,1 Mm =  are different, that is,

( ) ,0>ml PPD  ,ml ≠  ,,1 Mm =  then the following three statements are

valid:

(a) When given elements ,,,,, mmMmmmE |  mMmmmmE ,,,, |  and

,,,,, MmmmmmE |  ,1,1 −= Mm  satisfy the following conditions:

( ) ( ),min,,max 1
,2

,1,11,1,11,,11,1,11,1,1,1,1 PPDEEE l
Ml

MMM
=

||| < (20)

mmMmmmE ,,,,0 |<

( ) ,1,2,min,minmin
,1

,,,,
1,1

−=






<
+=

∗
|

−=
MmPPDE ml

Mml
mmlmmm

ml
(21)

mMmmmmE ,,,,0 |<

( ) ,1,2,min,minmin
,1

,,,,
1,1

−=






<
+=

∗
|

−=
MmPPDE ml

Mml
mlmmmm

ml
(22)

MmmmmmE ,,,,0 |<

( ) ,1,2,min,minmin
,1

,,,,
1,1

−=






<
+=

∗
|

−=
MmPPDE ml

Mml
lmmmmm

ml
(23)

then there exists a LAO test sequence ,A∈Φ∗  the reliability matrix of

which ( ) { ( )}∗
|

∗ Φ=Φ
321321 ,,,, lllmmmEE  is defined in (19) and all elements

of it are positive.

(b) Even if one of conditions (20)-(23) is violated, there exists at least

one element of the matrix ( )∗ΦE  equal to 0.
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(c) For given positive numbers mMmmmmE ,,,, |  and ,,,,, mmMmmmE |

,,,,, MmmmmmE |  ,1,1 −= Mm  the reliability matrix ( )ΦE  of the tests

B∈Φ  and C∈Φ  necessarily contains elements equal to zero.

Proof. (a) Equalities (20)-(23) imply that inequalities (12) hold
simultaneously for the three objects. Using equality (13) we can rewrite
(12) for three objects as follows:

( ( )) ( ) ,3,2,1,minmax 1
,2

1 =<ϕ
=

| iPPDE l
Ml

i
M (24)

( )i
MmE ϕ< |0

( ) ( ) .3,2,1,1,2,min,minmin
,1

1

1,1
=−=







 ϕ<
+=

∗
|

−=
iMmPPDE ml

Mml
im

ml
(25)

We shall prove, for example, inequality (25), as consequences of the

inequality (22). Consider the test A∈Φ  such that

( ) mMmmmmmMmmmm EE ,,,,,,,, || =Φ  and ( ) ,,,,,,,,,
∗

|| =Φ mlmmmmmlmmmm EE

,1,1 −= ml  .1,1 −= Mm  The corresponding error probabilities

( )NmMmmmm Φα | ,,,,  and ( )Nmlmmmm Φα | ,,,,  are given as products

defined by (18b). Because ,A∈Φ

( ) ( ( )) .3,2,1,1,2,01log1lim =−==ϕα−−=ϕ |∞→

∆
| iMm

N
E i

NlmN
i

lm (26)

Due to (15), (18c), (22), and (26) we obtain

( ) ( ) ,1,2,2
,,,, −=ϕ=Φ ∗

|
∗

| MmEE MmmMmmmm (27)

( ) ( ) .1,2,2
,,,, −=ϕ=Φ ∗

|
∗

| MmEE lmmlmmmm (28)

Therefore (25) is a consequence of (19).

It follows from (13), (24) and (25) that conditions (12) of Theorem 2
hold for three objects.

According to Theorem 2, there exist LAO sequences of tests 1,∗ϕ  and

2,∗ϕ  for the first and the second objects such that the elements of the
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matrices ( ),1,∗ϕE  ( )2,∗ϕE  and ( )3,∗ϕE  are determined through (8). We

consider the sequence of tests ,∗Φ  which is composed of the three of the

sequences of tests ,1,∗ϕ  2,∗ϕ  and .3,∗ϕ  We shall show that ∗Φ  is LAO

and other elements of the matrix ( )∗ΦE  are determined according to (24),

(25).

From (24), (25), (13) and (12), it follows that the requirements of
lemma are fulfilled. Using lemma we can deduce that the reliability

matrix ( )∗ΦE  can be obtained from matrices ( )1,∗ϕE  and ( )2,∗ϕE  as in

(17).

When conditions (20)-(23) hold, we obtain (19) according to (17), (8),

(13), (27) and (28), that the elements ( ),
2121 ,,

∗
| ΦllmmE  ,ii lm ≠

,33 ii lm −− =  2,1=i  of the matrix ( )∗ΦE  are determined by relation

(19b). The equality in (19b) is a particular case of (16). From (19), it

follows that all elements of ( )∗ΦE  are positive.

Now, we show that the compound test ∗Φ  for two objects is LAO, that
is, it is optimal.

Suppose that for given ,,,,, mmMmmmE |  mMmmmmE ,,,, |  and

,,,,, MmmmmmE |  ,1,1 −= Mm  there exists a test A∈Φ′  with matrix

( ),Φ′E  such that it has at least one element exceeding the respective

element of the matrix ( ).∗ΦE

This contradicts the fact that LAO tests have been used for the

objects ,1X  2X  and .3X

(b) When one of the inequalities (20)-(23) is violated, then from (19b)

we see that some of the elements in the matrix ( )∗ΦE  must be equal to

zero.

(c) When ,B∈Φ  then from (13) and (17a) it follows that

.0,,,, =|′′′ MMMmmmE  Consider ( ) C∈ϕϕϕ=Φ 321 ,,  and ( )2ϕ′|′ mmE  ,0>
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then

( ( )) .001log1lim0 2
,,,, =+ϕα−−+= ′|′∞→
′|′′′ mmNMmMmmm N

E
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