SOME EXAMPLES OF HYPERBOLIC HYPERSURFACES IN THE COMPLEX PROJECTIVE SPACE

FANG TAO, ZHANG XUESHAN and WANG TIANBO

Department of Mathematics Shanghai University of Engineering Science Shanghai 201620, P. R. China e-mail: ftwwww@163.com

Abstract

In 1970, Kobayashi [6] has asked whether generic enough degree hypersurfaces in $P^n(C)$ are hyperbolic. This problem is still open. Shirosaki [10] and Fujimoto [4] constructed a hyperbolic hypersurface in $P^3(C)$ of degrees 10 and 8, respectively. That is the best result at present in $P^3(C)$. In this paper we construct a family of hyperbolic hypersurfaces in $P^2(C)$ of degree $d \geq 3 \in Z^+$, and a family of hyperbolic hypersurfaces in $P^3(C)$ of degree $d \geq 7 \in Z^+$.

1. Introduction

In [6], Kobayashi asked whether a generic hypersurface in the complex projective space $P^n(C)$ of large degree is hyperbolic or not. This problem is still open, but some papers were devoted to giving various

2000 Mathematics Subject Classification: 30F45.

Keywords and phrases: hyperbolic hypersurfaces, nonconstant holomorphic mapping, complex projective space.

This work was supported by the Foundation Grant of Shanghai Municipal Education Commission, P. R. China.

Received November 6, 2006; Revised April 2, 2007

© 2007 Pushpa Publishing House

examples of hyperbolic hypersurfaces. In 1997, Brody and Green [1] gave an example of hyperbolic hypersurface in $P^3(C)$ of even degree ≥ 50 . Afterwards, Nadel, Goul and Demailly obtained hyperbolic hypersurfaces in $P^3(C)$ of degree ≥ 21 , of arbitrary degree ≥ 14 and of arbitrary degree ≥ 11 in their papers [8], [5] and [3], respectively. Shirosaki [10] and Fujimoto [4] constructed a hyperbolic hypersurface in $P^3(C)$ of degree 10 and 8, respectively. On the other hand, Masuda and Noguchi [7] proved that there exists a smooth hyperbolic hypersurface of every degree $d \geq d(n)$ for a positive integer d(n) depending only on n and some concrete examples of hyperbolic hypersurfaces in $P^3(C)$ for $n \leq 5$.

The purpose of this paper is to give some new examples of hyperbolic hypersurfaces in the complex projective space. We construct a family of hyperbolic hypersurfaces in $P^3(C)$ of degree d > 6.

2. Lemmas

We use the terminology in [9]. Let $f_0, ..., f_n$ be entire functions on C such that $f_j \not\equiv 0$ for at least one j $(0 \le j \le n)$. Then $\widetilde{f} := (f_0, ..., f_n)$ becomes a representation of a holomorphic mapping f of C into $P^n(C)$. If $f(z) = (c_0 : \cdots : c_n)$ for all $z \in C - \widetilde{f}^{-1}(0)$, where $c_0, ..., c_n$ are constants at least one of which are not 0, then we say that f or $(f_0 : \cdots : f_n)$ is constant.

We shall need the following:

Lemma 1 [9, p. 291]. Let f be a nonconstant meromorphic function on C and a_j ($1 \le j \le q$) distinct points in $C \cup \{\infty\}$. If all the zeros of $f - a_j$ have the multiplicities at least m_j for each j, where m_j are arbitrarily fixed positive integers ($1 \le j \le q$) and $f - \infty$ means 1/f, then

$$\sum_{j=1}^{q} \left(1 - \frac{1}{m_j}\right) \le 2.$$

Remark. If $f - a_j$ has no zero, then we may consider $1 - 1/m_j$ as 1.

Let f be a holomorphic curve and H be a hyperplane of $P^n(C)$ which does not contain the image of f. We denote by $\deg_z f^*H$ the degree of the pull-backed divisor f^*H at $z \in C$. We say that f ramifies at least d(>0) over H if $\deg_z f^*H \ge d$ for all $z \in f^{-1}H$. In case $f^{-1}H = 0$, we set $d = \infty$.

Lemma 2 [2]. Assume that f is linearly non-degenerate and ramifies at least d over H_j , $1 \le j \le q$, where the hyperplanes H_j are in general position in $P^n(C)$. Then

$$\sum_{j=1}^{q} \left(1 - \frac{n}{d_j}\right) \le (n+1).$$

Lemma 3. Every compact Riemann surface of genus greater than one is hyperbolic.

For a projective algebraic curve V in $P^2(C)$ we can take the normalization $\mu: \widetilde{V} \to V$, namely, a compact Riemann surface \widetilde{V} and a holomorphic map μ onto V which is injective outside the inverse image of the singular locus of V. By definition, the genus of V is the genus of \widetilde{V} . Since each holomorphic map f of C into V can be lifted to a holomorphic map \widetilde{f} of C into \widetilde{V} with $f = \mu \cdot \widetilde{f}$, by Lemma 3, every holomorphic map of C into V is a constant if the genus of V is greater than one. Therefore, Lemma 3 remains valid for an algebraic curve in $P^2(C)$ possibly with singularities.

Next, we explain Plücker's formula on the genus of an algebraic curve in $\mathbb{P}^2(\mathbb{C})$.

Let $Q(u_0, u_1, u_2)$ be an irreducible homogeneous polynomial of degree $d(\ge 1)$ and consider the algebraic curve

$$V := \{(u_0 : u_1 : u_2) \in P^2(C); Q(u_0 : u_1 : u_2) = 0\},\$$

where $(u_0:u_1:u_2)$ denotes homogeneous coordinates in $P^2(C)$. A point $p:=(p_0:p_1:p_2)\in V$ is a singular point of V if and only if

$$Q_{u_0}(p_0, p_1, p_2) = Q_{u_1}(p_0, p_1, p_2) = Q_{u_2}(p_0, p_1, p_2) = 0.$$

For a singular point $p \in V$, we say that p is a node of V if the complex Hessian

$$\varphi := \begin{vmatrix} \frac{\partial^2 Q}{\partial v^2} & \frac{\partial^2 Q}{\partial v \partial w} \\ \frac{\partial^2 Q}{\partial w \partial v} & \frac{\partial^2 Q}{\partial w^2} \end{vmatrix}$$

does not vanish at p, where v, w denote a system of inhomogeneous coordinates in a neighborhood of p.

Plücker's genus formula is stated as follows:

Lemma 4. Let V be an algebraic curve of degree d which is given as the above and assume that V has no singularities than k nodes. Then the genus g of V is given by

$$g = \frac{(d-1)(d-2)}{2} - k.$$

3. A Family of Hyperbolic Hypersurface

of Degree
$$d(>6)$$
 in $P^3(C)$

Theorem. Define the hypersurface X in $P^3(C)$ by

$$A^{d} + B^{\alpha_1}C^{\beta_1} + D^{\alpha_2}E^{\beta_2} = 0.$$

where d(>6), α_i , β_i are integers, and $\alpha_i + \beta_i = d$, $\alpha_i \ge 3$, $\beta_i \ge 3$, i = 1, 2.

$$A = \sum_{i=1}^4 a_i x_i, \ B = \sum_{i=1}^3 b_i x_i, \ C = \sum_{i=1}^3 c_i x_i, \ D = \sum_{i=1}^3 d_i x_i, \ E = \sum_{i=1}^3 e_i x_i.$$

If the coefficients satisfy the following conditions:

- (1) rank(b, c, d) = rank(b, c, e) = rank(e, c, d) = rank(b, e, d) = 3, where $b = (b_1, b_2, b_3)^T$;
- (2) $\operatorname{rank}(b mc, d ne) = 2$, where $m = \det(b, e, d)/\det(e, c, d)$, $n = \det(b, c, d)/\det(b, c, e)$.

Then there exists no nonconstant holomorphic mapping f of C into $P^3(C)$ such that $f(C) \subset X$, i.e., X is hyperbolic.

Proof. Assume that a holomorphic mapping f of C into $P^3(C)$ with reduced representation (f_1, f_2, f_3, f_4) satisfies $f(C) \subset X$, we denote

$$A_f = \sum_{i=1}^4 a_i f_i, \ B_f = \sum_{i=1}^3 b_i f_i, \ C_f = \sum_{i=1}^3 c_i f_i, \ D_f = \sum_{i=1}^3 d_i f_i, \ E_f = \sum_{i=1}^3 e_i f_i,$$

then

$$A_f^d + B_f^{\alpha_1} C_f^{\beta_1} + D_f^{\alpha_2} E_f^{\beta_2} = 0.$$
(1)

Now we proof $(f_1:f_2:f_3:f_4) =$ constant.

1. Assume $A_f \neq 0$, $B_f \neq 0$, $C_f \neq 0$, $D_f \neq 0$, $E_f \neq 0$;

Consider a holomorphic curve g in $P^1(C)$ defined by

$$g: z \in C \mapsto (A_f^d, B_f^{\alpha_1} C_f^{\beta_1}) \in P^1(C).$$

Take the following hypersurfaces in general position:

$$H_1 = \{z_1 = 0\}, H_2 = \{z_2 = 0\}, H_3 = \{z_1 + z_2 = 0\}.$$

By the conditions of Theorem we see that g ramifies at least 6, 3, 3 over H_1 , H_2 , H_3 respectively. It follows from Lemma 2 that

$$\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{3}\right)\leq 2.$$

But it is impossible, a contradiction. So g is linearly degenerate, on the

other hand, $A_f\not\equiv 0,\ B_f\not\equiv 0,\ C_f\not\equiv 0,\ D_f\not\equiv 0,\ E_f\not\equiv 0.$ Hence there exists $c\not\equiv 0,\ -1$ such that

$$A_f^d = cB_f^{\alpha_1} C_f^{\beta_1}. \tag{2}$$

Combination with (1) we get

$$(c+1)B_f^{\alpha_1}C_f^{\beta_1} + D_f^{\alpha_2}E_f^{\beta_2} = 0.$$
(3)

We denote

$$Q(x_1, x_2, x_3) = (c+1)B^{\alpha_1}C^{\beta_1} + D^{\alpha_2}E^{\beta_2}$$
(4)

obviously (2) is a hypersurface of degree d(>6) in $P^2(C)$, we can compute its genus by Lemma 4. According to

$$Q_{x_1}(x_1, x_2, x_3) = Q_{x_2}(x_1, x_2, x_3) = Q_{x_3}(x_1, x_2, x_3) = 0$$

we get

$$(c+1)\alpha_1b_1B^{\alpha_1-1}C^{\beta_1} + \beta_1c_1B^{\alpha_1}C^{\beta_1-1} + \alpha_2d_1D^{\alpha_2-1}E^{\beta_2} + \beta_2e_1D^{\alpha_2}E^{\beta_2-1} = 0$$
(5)

$$(c+1)\alpha_1b_2B^{\alpha_1-1}C^{\beta_1} + \beta_1c_2B^{\alpha_1}C^{\beta_1-1} + \alpha_2d_2D^{\alpha_2-1}E^{\beta_2} + \beta_2e_2D^{\alpha_2}E^{\beta_2-1} = 0$$
(6)

$$(c+1)\alpha_1b_3B^{\alpha_1-1}C^{\beta_1} + \beta_1c_3B^{\alpha_1}C^{\beta_1-1} + \alpha_2d_3D^{\alpha_2-1}E^{\beta_2} + \beta_2e_3D^{\alpha_2}E^{\beta_2-1} = 0.$$

$$(7)$$

Since $det(b, c, d) \neq 0$, we get

$$B^{\alpha_1 - 1}C^{\beta_1} = \beta_2 D^{\alpha_2} E^{\beta_2 - 1} \det(e, c, d) / (c + 1)\alpha_1 \det(b, c, d)$$
 (8)

$$B^{\alpha_1}C^{\beta_1-1} = \beta_2 D^{\alpha_2} E^{\beta_2-1} \det(b, e, d)/(c+1)\beta_1 \det(b, c, d)$$
 (9)

$$D^{\alpha_2 - 1} E^{\beta_2} = \beta_2 D^{\alpha_2} E^{\beta_2 - 1} \det(b, c, e) / (c + 1) \alpha_2 \det(b, c, d). \tag{10}$$

Solve this equations we get

$$\begin{cases} D=0 \\ B=0 \end{cases} \text{ or } \begin{cases} D=0 \\ C=0 \end{cases} \text{ or } \begin{cases} E=0 \\ C=0 \end{cases} \text{ or } \begin{cases} B=mC \\ B=0 \end{cases}$$

Combine with this results and the conditions (1) and (2) of Theorem, obviously

$$Q(x_1, x_2, x_3) = (c+1)B^{\alpha_1}C^{\beta_1} + D^{\alpha_2}E^{\beta_2} = 0$$

at most five singularities. By Lemma 4 its genus:

$$g = \frac{(d-1)(d-2)}{2} - k \ge \frac{(6-1)(6-2)}{2} - 5 = 5 > 1.$$

By Lemma 3 it is hyperbolic. So $(f_1:f_2:f_3)=$ const. by the equation (2) again we get $(f_1:f_2:f_3:f_4)=$ const.

2. (i) If $A_f \equiv 0$, then

$$B_f^{\alpha_1} C_f^{\beta_1} + D_f^{\alpha_2} E_f^{\beta_2} = 0.$$

It is easy to get this equation when we take c=0 in the equation (3), from the above proof we know $(f_1:f_2:f_3)=$ const., according to $A_f\equiv 0$ again, $(f_1:f_2:f_3:f_4)=$ const.

(ii) If there is one equal to zero among B_f , C_f , E_f , D_f , then we can always get the following equation:

$$(M_f + a_4 f_4)^d + P_f^{\alpha} Q_f^{\beta} = 0, (11)$$

where α , β are positive integers and $\alpha + \beta = d$; $\alpha \geq 3$, $\beta \geq 3$. M_f , P_f , Q_f is three linear combinations of the arbitrary two of $\{f_1, f_2, f_3\}$, and $P_f \neq 0$, $Q_f \neq 0$ (because of the condition (2) of Theorem).

The corresponding homogeneous polynomial of the equation (11) is:

$$Q(x_1, x_2, x_4) = (M + a_4 x_4)^d + P^{\alpha} Q^{\beta}, \tag{12}$$

where $M = m_1x_1 + m_2x_2$; $P = p_1x_1 + p_2x_2$; $Q = q_1x_1 + q_2x_2$. We can compute its singularities by Lemma 4:

$$Q_{x_1} = dm_1(M + a_4x_4)^{d-1} + \alpha p_1 P^{\alpha - 1} Q^{\beta} + \beta q_1 P^{\alpha} Q^{\beta - 1} = 0$$
 (13)

$$Q_{x_2} = dm_2 (M + \alpha_4 x_4)^{d-1} + \alpha p_2 P^{\alpha - 1} Q^{\beta} + \beta q_2 P^{\alpha} Q^{\beta - 1} = 0$$
 (14)

$$Q_{x_4} = da_4 (M + a_4 x_4)^{d-1} = 0 (15)$$

$$\Rightarrow \left\{ \begin{array}{l} P=0 \\ M+a_4x_4=0 \end{array} \right. \text{or} \left\{ \begin{array}{l} Q=0 \\ M+a_4x_4=0 \end{array} \right. \text{or} \left\{ \begin{array}{l} \alpha p_1Q+\beta q_1P=0 \\ \alpha p_2Q+\beta q_2P=0 \\ M+a_4x_4=0. \end{array} \right.$$

By the conditions (1) and (2) of the Theorem, obviously $Q(x_1, x_2, x_4)$ = 0 has at most three singularities, so its genus > 1, thus it is hyperbolic, so $(f_1: f_2: f_3: f_4)$ = const. The proof is completed.

References

- [1] R. Brody and M. Green, A family of smooth hyperbolic hypersurfaces in $P^3(C)$, Duke Math. J. 44 (1977), 873-874.
- [2] H. Cartan, Sur les zéros des combinaisons de p fonctions holomorphes données, Matematika 7 (1933), 5-31.
- [3] J.-P. Demailly, Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, 1995, 285-360, Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997.
- [4] H. Fujimoto, A family of hyperbolic hypersurfaces in the complex projective space, Complex Variables Theory Appl. 43(3-4) (2001), 273-283.
- [5] J. Goul, Algebraic families of smooth hyperbolic surfaces of low degree in $P^3(C)$, Manuscripta Math. 90 (1996), 521-532.
- [6] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, 1970.
- [7] K. Masuda and J. Noguchi, A construction of hyperbolic hypersurface of $P^n(C)$, Math. Ann. 304 (1996), 339-362.
- [8] A. Nadel, Hyperbolic surfaces in $P^{3}(C)$, Duke Math. J. 58 (1989), 749-771.
- [9] M. Shirosaki, On polynomials which determine holomorphic mappings, J. Math. Soc. Japan 49(2) (1997), 289-298.
- [10] M. Shirosaki, A hyperbolic hypersurface of degree 10, Kodai Math. J. 23 (2000), 376-379.