SOME EXAMPLES OF HYPERBOLIC HYPERSURFACES IN THE COMPLEX PROJECTIVE SPACE

FANG TAO, ZHANG XUESHAN and WANG TIANBO

Department of Mathematics
Shanghai University of Engineering Science
Shanghai 201620, P. R. China
e-mail: ftwwww@163.com

Abstract

In 1970, Kobayashi [6] has asked whether generic enough degree hypersurfaces in $P^{n}(C)$ are hyperbolic. This problem is still open. Shirosaki [10] and Fujimoto [4] constructed a hyperbolic hypersurface in $P^{3}(C)$ of degrees 10 and 8, respectively. That is the best result at present in $P^{3}(C)$. In this paper we construct a family of hyperbolic hypersurfaces in $P^{2}(C)$ of degree $d \geq 3 \in Z^{+}$, and a family of hyperbolic hypersurfaces in $P^{3}(C)$ of degree $d \geq 7 \in Z^{+}$.

1. Introduction

In [6], Kobayashi asked whether a generic hypersurface in the complex projective space $P^{n}(C)$ of large degree is hyperbolic or not. This problem is still open, but some papers were devoted to giving various

2000 Mathematics Subject Classification: 30F45.
Keywords and phrases: hyperbolic hypersurfaces, nonconstant holomorphic mapping, complex projective space.
This work was supported by the Foundation Grant of Shanghai Municipal Education Commission, P. R. China.

Received November 6, 2006; Revised April 2, 2007
© 2007 Pushpa Publishing House
examples of hyperbolic hypersurfaces. In 1997, Brody and Green [1] gave an example of hyperbolic hypersurface in $P^{3}(C)$ of even degree ≥ 50. Afterwards, Nadel, Goul and Demailly obtained hyperbolic hypersurfaces in $P^{3}(C)$ of degree ≥ 21, of arbitrary degree ≥ 14 and of arbitrary degree ≥ 11 in their papers [8], [5] and [3], respectively. Shirosaki [10] and Fujimoto [4] constructed a hyperbolic hypersurface in $P^{3}(C)$ of degree 10 and 8, respectively. On the other hand, Masuda and Noguchi [7] proved that there exists a smooth hyperbolic hypersurface of every degree $d \geq d(n)$ for a positive integer $d(n)$ depending only on n and some concrete examples of hyperbolic hypersurfaces in $P^{3}(C)$ for $n \leq 5$.

The purpose of this paper is to give some new examples of hyperbolic hypersurfaces in the complex projective space. We construct a family of hyperbolic hypersurfaces in $P^{3}(C)$ of degree $d>6$.

2. Lemmas

We use the terminology in [9]. Let f_{0}, \ldots, f_{n} be entire functions on C such that $f_{j} \not \equiv 0$ for at least one $j(0 \leq j \leq n)$. Then $\tilde{f}:=\left(f_{0}, \ldots, f_{n}\right)$ becomes a representation of a holomorphic mapping f of C into $P^{n}(C)$. If $f(z)=\left(c_{0}: \cdots: c_{n}\right)$ for all $z \in C-\tilde{f}^{-1}(0)$, where c_{0}, \ldots, c_{n} are constants at least one of which are not 0 , then we say that f or $\left(f_{0}: \cdots: f_{n}\right)$ is constant.

We shall need the following:
Lemma 1 [9, p. 291]. Let f be a nonconstant meromorphic function on C and $a_{j}(1 \leq j \leq q)$ distinct points in $C \cup\{\infty\}$. If all the zeros of $f-a_{j}$ have the multiplicities at least m_{j} for each j, where m_{j} are arbitrarily fixed positive integers $(1 \leq j \leq q)$ and $f-\infty$ means $1 / f$, then

$$
\sum_{j=1}^{q}\left(1-\frac{1}{m_{j}}\right) \leq 2
$$

Remark. If $f-a_{j}$ has no zero, then we may consider $1-1 / m_{j}$ as 1 .

Let f be a holomorphic curve and H be a hyperplane of $P^{n}(C)$ which does not contain the image of f. We denote by $\operatorname{deg}_{z} f^{*} H$ the degree of the pull-backed divisor $f^{*} H$ at $z \in C$. We say that f ramifies at least $d(>0)$ over H if $\operatorname{deg}_{z} f^{*} H \geq d$ for all $z \in f^{-1} H$. In case $f^{-1} H=0$, we set $d=\infty$.

Lemma 2 [2]. Assume that f is linearly non-degenerate and ramifies at least d over $H_{j}, \quad 1 \leq j \leq q$, where the hyperplanes H_{j} are in general position in $P^{n}(C)$. Then

$$
\sum_{j=1}^{q}\left(1-\frac{n}{d_{j}}\right) \leq(n+1)
$$

Lemma 3. Every compact Riemann surface of genus greater than one is hyperbolic.

For a projective algebraic curve V in $P^{2}(C)$ we can take the normalization $\mu: \widetilde{V} \rightarrow V$, namely, a compact Riemann surface \tilde{V} and a holomorphic map μ onto V which is injective outside the inverse image of the singular locus of V. By definition, the genus of V is the genus of \tilde{V}. Since each holomorphic map f of C into V can be lifted to a holomorphic map \tilde{f} of C into \tilde{V} with $f=\mu \cdot \tilde{f}$, by Lemma 3, every holomorphic map of C into V is a constant if the genus of V is greater than one. Therefore, Lemma 3 remains valid for an algebraic curve in $P^{2}(C)$ possibly with singularities.

Next, we explain Plücker's formula on the genus of an algebraic curve in $P^{2}(C)$.

Let $Q\left(u_{0}, u_{1}, u_{2}\right)$ be an irreducible homogeneous polynomial of degree $d(\geq 1)$ and consider the algebraic curve

$$
V:=\left\{\left(u_{0}: u_{1}: u_{2}\right) \in P^{2}(C) ; Q\left(u_{0}: u_{1}: u_{2}\right)=0\right\}
$$

where ($u_{0}: u_{1}: u_{2}$) denotes homogeneous coordinates in $P^{2}(C)$. A point $p:=\left(p_{0}: p_{1}: p_{2}\right) \in V$ is a singular point of V if and only if

$$
Q_{u_{0}}\left(p_{0}, p_{1}, p_{2}\right)=Q_{u_{1}}\left(p_{0}, p_{1}, p_{2}\right)=Q_{u_{2}}\left(p_{0}, p_{1}, p_{2}\right)=0
$$

For a singular point $p \in V$, we say that p is a node of V if the complex Hessian

$$
\varphi:=\left|\begin{array}{cc}
\frac{\partial^{2} Q}{\partial v^{2}} & \frac{\partial^{2} Q}{\partial v \partial w} \\
\frac{\partial^{2} Q}{\partial w \partial v} & \frac{\partial^{2} Q}{\partial w^{2}}
\end{array}\right|
$$

does not vanish at p, where v, w denote a system of inhomogeneous coordinates in a neighborhood of p.

Plücker's genus formula is stated as follows:
Lemma 4. Let V be an algebraic curve of degree d which is given as the above and assume that V has no singularities than k nodes. Then the genus g of V is given by

$$
g=\frac{(d-1)(d-2)}{2}-k .
$$

3. A Family of Hyperbolic Hypersurface of Degree $d(>6)$ in $P^{3}(C)$

Theorem. Define the hypersurface X in $P^{3}(C)$ by

$$
A^{d}+B^{\alpha_{1}} C^{\beta_{1}}+D^{\alpha_{2}} E^{\beta_{2}}=0,
$$

where $d(>6), \quad \alpha_{i}, \quad \beta_{i}$ are integers, and $\alpha_{i}+\beta_{i}=d, \quad \alpha_{i} \geq 3, \quad \beta_{i} \geq 3$, $i=1,2$.

$$
A=\sum_{i=1}^{4} a_{i} x_{i}, B=\sum_{i=1}^{3} b_{i} x_{i}, C=\sum_{i=1}^{3} c_{i} x_{i}, D=\sum_{i=1}^{3} d_{i} x_{i}, E=\sum_{i=1}^{3} e_{i} x_{i} .
$$

If the coefficients satisfy the following conditions:
(1) $\operatorname{rank}(b, c, d)=\operatorname{rank}(b, c, e)=\operatorname{rank}(e, c, d)=\operatorname{rank}(b, e, d)=3$, where $b=\left(b_{1}, b_{2}, b_{3}\right)^{T} ;$
(2) $\operatorname{rank}(b-m c, d-n e)=2$, where $m=\operatorname{det}(b, e, d) / \operatorname{det}(e, c, d), \quad n=$ $\operatorname{det}(b, c, d) / \operatorname{det}(b, c, e)$.

Then there exists no nonconstant holomorphic mapping f of C into $P^{3}(C)$ such that $f(C) \subset X$, i.e., X is hyperbolic.

Proof. Assume that a holomorphic mapping f of C into $P^{3}(C)$ with reduced representation $\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ satisfies $f(C) \subset X$, we denote

$$
A_{f}=\sum_{i=1}^{4} a_{i} f_{i}, B_{f}=\sum_{i=1}^{3} b_{i} f_{i}, C_{f}=\sum_{i=1}^{3} c_{i} f_{i}, D_{f}=\sum_{i=1}^{3} d_{i} f_{i}, E_{f}=\sum_{i=1}^{3} e_{i} f_{i},
$$

then

$$
\begin{equation*}
A_{f}^{d}+B_{f}^{\alpha_{1}} C_{f}^{\beta_{1}}+D_{f}^{\alpha_{2}} E_{f}^{\beta_{2}}=0 . \tag{1}
\end{equation*}
$$

Now we proof ($\left.f_{1}: f_{2}: f_{3}: f_{4}\right)=$ constant.

1. Assume $A_{f} \not \equiv 0, B_{f} \not \equiv 0, C_{f} \equiv 0, D_{f} \not \equiv 0, E_{f} \not \equiv 0 ;$

Consider a holomorphic curve g in $P^{1}(C)$ defined by

$$
g: z \in C \mapsto\left(A_{f}^{d}, B_{f}^{\alpha_{1}} C_{f}^{\beta_{1}}\right) \in P^{1}(C) .
$$

Take the following hypersurfaces in general position:

$$
H_{1}=\left\{z_{1}=0\right\}, H_{2}=\left\{z_{2}=0\right\}, H_{3}=\left\{z_{1}+z_{2}=0\right\} .
$$

By the conditions of Theorem we see that g ramifies at least $6,3,3$ over H_{1}, H_{2}, H_{3} respectively. It follows from Lemma 2 that

$$
\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{3}\right) \leq 2 .
$$

But it is impossible, a contradiction. So g is linearly degenerate, on the
other hand, $A_{f} \not \equiv 0, \quad B_{f} \not \equiv 0, \quad C_{f} \not \equiv 0, \quad D_{f} \not \equiv 0, \quad E_{f} \not \equiv 0$. Hence there exists $c \neq 0,-1$ such that

$$
\begin{equation*}
A_{f}^{d}=c B_{f}^{\alpha_{1}} C_{f}^{\beta_{1}} \tag{2}
\end{equation*}
$$

Combination with (1) we get

$$
\begin{equation*}
(c+1) B_{f}^{\alpha_{1}} C_{f}^{\beta_{1}}+D_{f}^{\alpha_{2}} E_{f}^{\beta_{2}}=0 \tag{3}
\end{equation*}
$$

We denote

$$
\begin{equation*}
Q\left(x_{1}, x_{2}, x_{3}\right)=(c+1) B^{\alpha_{1}} C^{\beta_{1}}+D^{\alpha_{2}} E^{\beta_{2}} \tag{4}
\end{equation*}
$$

obviously (2) is a hypersurface of degree $d(>6)$ in $P^{2}(C)$, we can compute its genus by Lemma 4 . According to

$$
Q_{x_{1}}\left(x_{1}, x_{2}, x_{3}\right)=Q_{x_{2}}\left(x_{1}, x_{2}, x_{3}\right)=Q_{x_{3}}\left(x_{1}, x_{2}, x_{3}\right)=0
$$

we get

$$
\begin{equation*}
(c+1) \alpha_{1} b_{1} B^{\alpha_{1}-1} C^{\beta_{1}}+\beta_{1} c_{1} B^{\alpha_{1}} C^{\beta_{1}-1}+\alpha_{2} d_{1} D^{\alpha_{2}-1} E^{\beta_{2}}+\beta_{2} e_{1} D^{\alpha_{2}} E^{\beta_{2}-1}=0 \tag{5}
\end{equation*}
$$

$(c+1) \alpha_{1} b_{2} B^{\alpha_{1}-1} C^{\beta_{1}}+\beta_{1} c_{2} B^{\alpha_{1}} C^{\beta_{1}-1}+\alpha_{2} d_{2} D^{\alpha_{2}-1} E^{\beta_{2}}+\beta_{2} e_{2} D^{\alpha_{2}} E^{\beta_{2}-1}=0$
$(c+1) \alpha_{1} b_{3} B^{\alpha_{1}-1} C^{\beta_{1}}+\beta_{1} c_{3} B^{\alpha_{1}} C^{\beta_{1}-1}+\alpha_{2} d_{3} D^{\alpha_{2}-1} E^{\beta_{2}}+\beta_{2} e_{3} D^{\alpha_{2}} E^{\beta_{2}-1}=0$.

Since $\operatorname{det}(b, c, d) \neq 0$, we get

$$
\begin{align*}
& B^{\alpha_{1}-1} C^{\beta_{1}}=\beta_{2} D^{\alpha_{2}} E^{\beta_{2}-1} \operatorname{det}(e, c, d) /(c+1) \alpha_{1} \operatorname{det}(b, c, d) \tag{8}\\
& B^{\alpha_{1}} C^{\beta_{1}-1}=\beta_{2} D^{\alpha_{2}} E^{\beta_{2}-1} \operatorname{det}(b, e, d) /(c+1) \beta_{1} \operatorname{det}(b, c, d) \tag{9}\\
& D^{\alpha_{2}-1} E^{\beta_{2}}=\beta_{2} D^{\alpha_{2}} E^{\beta_{2}-1} \operatorname{det}(b, c, e) /(c+1) \alpha_{2} \operatorname{det}(b, c, d) . \tag{10}
\end{align*}
$$

Solve this equations we get

$$
\left\{\begin{array} { l }
{ D = 0 } \\
{ B = 0 }
\end{array} \text { or } \left\{\begin{array} { l }
{ D = 0 } \\
{ C = 0 }
\end{array} \text { or } \left\{\begin{array} { l }
{ E = 0 } \\
{ C = 0 }
\end{array} \text { or } \left\{\begin{array} { l }
{ E = 0 } \\
{ B = 0 }
\end{array} \text { or } \left\{\begin{array}{l}
B=m C \\
D=n E .
\end{array}\right.\right.\right.\right.\right.
$$

Combine with this results and the conditions (1) and (2) of Theorem, obviously

$$
Q\left(x_{1}, x_{2}, x_{3}\right)=(c+1) B^{\alpha_{1}} C^{\beta_{1}}+D^{\alpha_{2}} E^{\beta_{2}}=0
$$

at most five singularities. By Lemma 4 its genus:

$$
g=\frac{(d-1)(d-2)}{2}-k \geq \frac{(6-1)(6-2)}{2}-5=5>1 .
$$

By Lemma 3 it is hyperbolic. So $\left(f_{1}: f_{2}: f_{3}\right)=$ const. by the equation (2) again we get ($\left.f_{1}: f_{2}: f_{3}: f_{4}\right)=$ const.
2. (i) If $A_{f} \equiv 0$, then

$$
B_{f}^{\alpha_{1}} C_{f}^{\beta_{1}}+D_{f}^{\alpha_{2}} E_{f}^{\beta_{2}}=0 .
$$

It is easy to get this equation when we take $c=0$ in the equation (3), from the above proof we know $\left(f_{1}: f_{2}: f_{3}\right)=$ const., according to $A_{f} \equiv 0$ again, $\left(f_{1}: f_{2}: f_{3}: f_{4}\right)=$ const.
(ii) If there is one equal to zero among $B_{f}, C_{f}, E_{f}, D_{f}$, then we can always get the following equation:

$$
\begin{equation*}
\left(M_{f}+a_{4} f_{4}\right)^{d}+P_{f}^{\alpha} Q_{f}^{\beta}=0, \tag{11}
\end{equation*}
$$

where α, β are positive integers and $\alpha+\beta=d ; \alpha \geq 3, \beta \geq 3 . M_{f}, P_{f}$, Q_{f} is three linear combinations of the arbitrary two of $\left\{f_{1}, f_{2}, f_{3}\right\}$, and $P_{f} \not \equiv 0, Q_{f} \equiv 0$ (because of the condition (2) of Theorem).

The corresponding homogeneous polynomial of the equation (11) is:

$$
\begin{equation*}
Q\left(x_{1}, x_{2}, x_{4}\right)=\left(M+a_{4} x_{4}\right)^{d}+P^{\alpha} Q^{\beta}, \tag{12}
\end{equation*}
$$

where $M=m_{1} x_{1}+m_{2} x_{2} ; P=p_{1} x_{1}+p_{2} x_{2} ; Q=q_{1} x_{1}+q_{2} x_{2}$. We can compute its singularities by Lemma 4 :

$$
\begin{align*}
& Q_{x_{1}}=d m_{1}\left(M+a_{4} x_{4}\right)^{d-1}+\alpha p_{1} P^{\alpha-1} Q^{\beta}+\beta q_{1} P^{\alpha} Q^{\beta-1}=0 \tag{13}\\
& Q_{x_{2}}=d m_{2}\left(M+a_{4} x_{4}\right)^{d-1}+\alpha p_{2} P^{\alpha-1} Q^{\beta}+\beta q_{2} P^{\alpha} Q^{\beta-1}=0 \tag{14}
\end{align*}
$$

$$
\begin{align*}
Q_{x_{4}} & =d a_{4}\left(M+a_{4} x_{4}\right)^{d-1}=0 \tag{15}\\
& \Rightarrow\left\{\begin{array} { c }
{ P = 0 } \\
{ M + a _ { 4 } x _ { 4 } = 0 }
\end{array} \text { or } \left\{\begin{array} { c }
{ Q = 0 } \\
{ M + a _ { 4 } x _ { 4 } = 0 }
\end{array} \text { or } \left\{\begin{array}{c}
\alpha p_{1} Q+\beta q_{1} P=0 \\
\alpha p_{2} Q+\beta q_{2} P=0 \\
M+a_{4} x_{4}=0
\end{array}\right.\right.\right.
\end{align*}
$$

By the conditions (1) and (2) of the Theorem, obviously $Q\left(x_{1}, x_{2}, x_{4}\right)$ $=0$ has at most three singularities, so its genus >1, thus it is hyperbolic, so $\left(f_{1}: f_{2}: f_{3}: f_{4}\right)=$ const. The proof is completed.

References

[1] R. Brody and M. Green, A family of smooth hyperbolic hypersurfaces in $P^{3}(C)$, Duke Math. J. 44 (1977), 873-874.
[2] H. Cartan, Sur les zéros des combinaisons de p fonctions holomorphes données, Matematika 7 (1933), 5-31.
[3] J.-P. Demailly, Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, 1995, 285-360, Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997.
[4] H. Fujimoto, A family of hyperbolic hypersurfaces in the complex projective space, Complex Variables Theory Appl. 43(3-4) (2001), 273-283.
[5] J. Goul, Algebraic families of smooth hyperbolic surfaces of low degree in $P^{3}(C)$, Manuscripta Math. 90 (1996), 521-532.
[6] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, 1970.
[7] K. Masuda and J. Noguchi, A construction of hyperbolic hypersurface of $P^{n}(C)$, Math. Ann. 304 (1996), 339-362.
[8] A. Nadel, Hyperbolic surfaces in $P^{3}(C)$, Duke Math. J. 58 (1989), 749-771.
[9] M. Shirosaki, On polynomials which determine holomorphic mappings, J. Math. Soc. Japan 49(2) (1997), 289-298.
[10] M. Shirosaki, A hyperbolic hypersurface of degree 10, Kodai Math. J. 23 (2000), 376-379.

