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Abstract

In 1970, Kobayashi [6] has asked whether generic enough degree

hypersurfaces in ( )CPn  are hyperbolic. This problem is still open.

Shirosaki [10] and Fujimoto [4] constructed a hyperbolic hypersurface in

( )CP3  of degrees 10 and 8, respectively. That is the best result at

present in ( ).3 CP  In this paper we construct a family of hyperbolic

hypersurfaces in ( )CP2  of degree ,3 +∈≥ Zd  and a family of

hyperbolic hypersurfaces in ( )CP3  of degree +∈≥ Zd 7 .

1. Introduction

In [6], Kobayashi asked whether a generic hypersurface in the

complex projective space ( )CP n  of large degree is hyperbolic or not. This

problem is still open, but some papers were devoted to giving various
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examples of hyperbolic hypersurfaces. In 1997, Brody and Green [1] gave

an example of hyperbolic hypersurface in ( )CP3  of even degree .50≥

Afterwards, Nadel, Goul and Demailly obtained hyperbolic hypersurfaces

in ( )CP3  of degree ,21≥  of arbitrary degree 14≥  and of arbitrary

degree 11≥  in their papers [8], [5] and [3], respectively. Shirosaki [10]

and Fujimoto [4] constructed a hyperbolic hypersurface in ( )CP3  of

degree 10 and 8, respectively. On the other hand, Masuda and Noguchi
[7] proved that there exists a smooth hyperbolic hypersurface of every

degree ( )ndd ≥  for a positive integer ( )nd  depending only on n and some

concrete examples of hyperbolic hypersurfaces in ( )CP3  for .5≤n

The purpose of this paper is to give some new examples of hyperbolic
hypersurfaces in the complex projective space. We construct a family

of hyperbolic hypersurfaces in ( )CP3  of degree .6>d

2. Lemmas

We use the terminology in [9]. Let nff ...,,0  be entire functions on C

such that 0≡/jf  for at least one ( ).0 njj ≤≤  Then ( )nfff ...,,:
~

0=

becomes a representation of a holomorphic mapping f of C into ( ).CPn  If

( ) ( )ncczf ::0 "=  for all ( ),0
~ 1−−∈ fCz  where ncc ...,,0  are constants

at least one of which are not 0, then we say that f or ( )nff ::0 "  is

constant.

We shall need the following:

Lemma 1 [9, p. 291]. Let f be a nonconstant meromorphic function on

C and ( )qjaj ≤≤1  distinct points in { }.∞∪C  If all the zeros of jaf −

have the multiplicities at least jm  for each j, where jm  are arbitrarily

fixed positive integers ( )qj ≤≤1  and ∞−f  means ,1 f  then

.211
1
∑
=

≤







−

q

j jm
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Remark. If jaf −  has no zero, then we may consider jm11 −  as 1.

Let f be a holomorphic curve and H be a hyperplane of ( )CP n  which

does not contain the image of f. We denote by Hfz
∗deg  the degree

of the pull-backed divisor Hf ∗  at .Cz ∈  We say that f ramifies at least

( )0>d  over H if dHfz ≥∗deg  for all .1Hfz −∈  In case ,01 =− Hf  we

set .∞=d

Lemma 2 [2]. Assume that f is linearly non-degenerate and ramifies

at least d over ,jH  ,1 qj ≤≤  where the hyperplanes jH  are in general

position in ( ).CPn  Then

( ).11
1
∑
=

+≤







−

q

j j
n

d
n

Lemma 3. Every compact Riemann surface of genus greater than one

is hyperbolic.

For a projective algebraic curve V in ( )CP 2  we can take the

normalization ,
~

: VV →µ  namely, a compact Riemann surface V
~

 and a

holomorphic map µ onto V which is injective outside the inverse image of

the singular locus of V. By definition, the genus of V is the genus of .
~
V

Since each holomorphic map f of C into V can be lifted to a holomorphic

map f
~

 of C into V
~

 with ,
~
ff ⋅µ=  by Lemma 3, every holomorphic map

of C into V is a constant if the genus of V is greater than one. Therefore,

Lemma 3 remains valid for an algebraic curve in ( )CP 2  possibly with

singularities.

Next, we explain Plücker’s formula on the genus of an algebraic

curve in ( ).2 CP

Let ( )210 ,, uuuQ  be an irreducible homogeneous polynomial of

degree ( )1≥d  and consider the algebraic curve
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{( ) ( ) ( ) },0::;::: 210
2

210 =∈= uuuQCPuuuV

where ( )210 :: uuu  denotes homogeneous coordinates in ( ).2 CP  A point

( ) Vpppp ∈= 210 :::  is a singular point of V if and only if

( ) ( ) ( ) .0,,,,,, 210210210 210
=== pppQpppQpppQ uuu

For a singular point ,Vp ∈  we say that p is a node of V if the

complex Hessian

2

22

2

2

2

:

w

Q
vw

Q

wv
Q

v

Q

∂
∂

∂∂
∂

∂∂
∂

∂
∂

=ϕ

does not vanish at p, where v, w denote a system of inhomogeneous

coordinates in a neighborhood of p.

Plücker’s genus formula is stated as follows:

Lemma 4. Let V be an algebraic curve of degree d which is given as

the above and assume that V has no singularities than k nodes. Then the

genus g of V is given by

( ) ( ) .
2

21 kddg −−−=

3. A Family of Hyperbolic Hypersurface

of Degree ( )6>d  in ( )CP3

Theorem. Define the hypersurface X in ( )CP3  by

,02211 =++ βαβα EDCBAd

where ( ),6>d  ,iα  iβ  are  integers, and ,dii =β+α  ,3≥αi  ,3≥βi

.2,1=i

.,,,,
3

1

3

1

3

1

3

1

4

1
∑∑∑∑∑
=====

=====
i

ii
i

ii
i

ii
i

ii
i

ii xeExdDxcCxbBxaA
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If the coefficients satisfy the following conditions:

(1) ( ) ( ) ( ) ( ) ,3,,rank,,rank,,rank,,rank ==== debdceecbdcb  where

( ) ;,, 321
Tbbbb =

(2) ( ) ,2,rank =−− nedmcb  where ( ) ( ),,,det,,det dcedebm =  =n

( ) ( ).,,det,,det ecbdcb

Then there exists no nonconstant holomorphic mapping f of C into ( )CP3

such that ( ) ,XCf ⊂  i.e., X is hyperbolic.

Proof. Assume that a holomorphic mapping f of C into ( )CP3  with

reduced representation ( )4321 ,,, ffff  satisfies ( ) ,XCf ⊂  we denote

,,,,,
3

1

3

1

3

1

3

1

4

1
∑∑∑∑∑
=====

=====
i

iif
i

iif
i

iif
i

iif
i

iif feEfdDfcCfbBfaA

then

.02211 =++ βαβα
ffff

d
f EDCBA (1)

Now we proof ( ) constant.::: 4321 =ffff

1. Assume ,0≡/fA  ,0≡/fB  ,0≡/fC  ,0≡/fD  ;0≡/fE

Consider a holomorphic curve g in ( )CP1  defined by

( ) ( ).,: 111 CPCBACzg ff
d
f ∈∈ βα6

Take the following hypersurfaces in general position:

{ } { } { }.0,0,0 2132211 =+===== zzHzHzH

By the conditions of Theorem we see that g ramifies at least 6, 3, 3 over

,1H  ,2H  3H  respectively. It follows from Lemma 2 that

.2
3
11

3
11

6
11 ≤





 −+





 −+





 −

But it is impossible, a contradiction. So g is linearly degenerate, on the
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other hand, ,0≡/fA  ,0≡/fB  ,0≡/fC  ,0≡/fD  .0≡/fE  Hence there

exists 1,0 −≠c  such that

.11 βα= ff
d
f CcBA (2)

Combination with (1) we get

( ) .01 2211 =++ βαβα
ffff EDCBc (3)

We denote

( ) ( ) 22111,, 321
βαβα ++= EDCBcxxxQ (4)

obviously (2) is a hypersurface of degree ( )6>d  in ( ),2 CP  we can

compute its genus by Lemma 4. According to

( ) ( ) ( ) 0,,,,,, 321321321 321
=== xxxQxxxQxxxQ xxx

we get

( ) 01 1
12

1
12

1
11

1
11

22221111 =β+α+β+α+ −βαβ−α−βαβ−α EDeEDdCBcCBbc

(5)

( ) 01 1
22

1
22

1
21

1
21

22221111 =β+α+β+α+ −βαβ−α−βαβ−α EDeEDdCBcCBbc

(6)

( ) .01 1
32

1
32

1
31

1
31

22221111 =β+α+β+α+ −βαβ−α−βαβ−α EDeEDdCBcCBbc

(7)

Since ( ) ,0,,det ≠dcb  we get

( ) ( ) ( )dcbcdceEDCB ,,det1,,det 1
1

2
1 2211 α+β= −βαβ−α (8)

( ) ( ) ( )dcbcdebEDCB ,,det1,,det 1
1

2
1 2211 β+β= −βα−βα (9)

( ) ( ) ( ).,,det1,,det 2
1

2
1 2222 dcbcecbEDED α+β= −βαβ−α (10)

Solve this equations we get







=

=







=

=













=

=

=

=







=

=

.
or

0

0
or

0

0
or

0

0
or

0

0

nED

mCB

B

E

C

E

C

D

B

D
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Combine with this results and the conditions (1) and (2) of Theorem,
obviously

( ) ( ) 01,, 2211
321 =++= βαβα EDCBcxxxQ

at most five singularities. By Lemma 4 its genus:

( ) ( ) ( ) ( ) .155
2

2616
2

21 >=−−−≥−−−= kddg

By Lemma 3 it is hyperbolic. So ( ) const.:: 321 =fff  by the equation

(2) again we get ( ) .const::: 4321 =ffff

2. (i) If ,0≡fA  then

.02211 =+ βαβα
ffff EDCB

It is easy to get this equation when we take 0=c  in the equation (3),

from the above proof we know ( ) const.,:: 321 =fff  according to 0≡fA

again, ( ) .const::: 4321 =ffff

(ii) If there is one equal to zero among ,fB  ,fC  ,fE  ,fD  then we can

always get the following equation:

( ) ,044 =++ βα
ff

d
f QPfaM (11)

where α, β are positive integers and ;d=β+α  ,3≥α  .3≥β  ,fM  ,fP

fQ  is three linear combinations of the arbitrary two of { },,, 321 fff  and

,0≡/fP  0≡/fQ  (because of the condition (2) of Theorem).

The corresponding homogeneous polynomial of the equation (11) is:

( ) ( ) ,,, 44421
βα++= QPxaMxxxQ d (12)

where ;2211 xmxmM +=  ;2211 xpxpP +=  .2211 xqxqQ +=  We can compute

its singularities by Lemma 4:

( ) 01
1

1
1

1
4411

=β+α++= −βαβ−α− QPqQPpxaMdmQ d
x (13)

( ) 01
2

1
2

1
4422

=β+α++= −βαβ−α− QPqQPpxaMdmQ d
x (14)



www.p
phm

j.c
om

FANG TAO, ZHANG XUESHAN and WANG TIANBO310

( ) 01
4444

=+= −d
x xaMdaQ (15)










=+

=β+α

=β+α







=+

=







=+

=
⇒

.0

0

0

or
0

0
or

0

0

44

22

11

4444
xaM

PqQp

PqQp

xaM

Q

xaM

P

By the conditions (1) and (2) of the Theorem, obviously ( )421 ,, xxxQ

0=  has at most three singularities, so its genus ,1>  thus it is hyperbolic,

so ( ) .const::: 4321 =ffff  The proof is completed.
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