
www.p
phm

j.c
om

Adv. in Comput. Sci. & Eng. 1(1) (2007), 25-46

 :tionClassifica jectSub sMathematic 2000 65, 68Wxx.

Keywords and phrases: optimization, scheduling, automated schedule generation,

accreditation, course scheduling.

Received January 5, 2007

 2007 Pushpa Publishing House

COURSE SCHEDULER: AN AUTOMATED

SCHEDULE GENERATOR

TAREK SOBH, RIK COUSENS and SAROSH PATEL

Department of Computer Science and Engineering
University of Bridgeport
Connecticut, U. S. A.
e-mail: sobh@bridgeport.edu

Abstract

A typical problem in a college of engineering is trying to find the best set

of courses to offer students in a given semester, taking into consideration

which courses are needed by students, and the availability of instructors

capable of teaching those classes. The optimal solution, of course, is to

offer all courses that will allow all students to graduate in the minimum

number of semesters. This allows students to finish their course-work

quickly so that they can enter the work force.

The job of determining which courses to schedule (usually done by a

department chairperson) requires information about what the student-

body needs and information about instructor availability/capability. The

most difficult part of this process is to determine which instructors

should teach which courses, and in which time-slots they should teach

them, and still be able to satisfy all of the students.

Selection of instructors is determined by the fact that an instructor

knows the course material and that he/she is available to teach a given

course. Instructors may have preferences as to what time of day to teach,

or on which days of the week they would like to instruct the courses for

which they are responsible. Instructors may not be available if they are

already teaching too many courses, as defined by the individual

learning-institution.

w
w
w
.p
ph

m
j.c

om

TAREK SOBH, RIK COUSENS and SAROSH PATEL26

There are several difficulties in determining when to offer a given
course. For example, consider an engineering major senior who has
taken almost all of the courses required to satisfy the requirements for
his/her degree. Because he/she has nearly satisfied the degree-
requirement, the student has a limited choice of courses to study. This is
a problem for the department chairperson, since they must offer
appropriate courses to the student to ensure he/she will have enough
credits to graduate. This document will present a set of algorithms and
software components which will aid a department chairperson in the
scheduling process.

1. Introduction

In an institution of higher-education; for example, a college of
engineering, there are students who wish to acquire a degree in a given
discipline.

A student is a person who wishes to acquire a degree in a given
discipline. By attending lectures, reading textbooks, and completing
projects, the student assimilates the information, increasing their
knowledge about the discipline. In order to obtain the degree, the student
must take a prescribed set of courses in order to satisfy the degree-
requirements of the institution.

The information that the student must learn (as dictated by the
learning-institution) is disseminated to the students by an instructor.
The instructor has already acquired the information required by either
having learned the course-material in an engineering educational setting,
or acquired it by themselves by having worked in that field. Furthermore,
each instructor is typically capable of instructing more than one course.

In order to enable students to satisfy their degree-requirements, a
schedule must be defined. A schedule is a set of courses, each with an
instructor to teach it, whose responsibility it is to disseminate the course-
information to the students.

In order to generate a schedule of classes the CourseScheduler
application (one of the tools in this project) requires the following
information:

(1) A data-set of courses needed by the students. Preferably, this data-
set should contain a “tree” of possible ways that a given student could
graduate in the minimum number of semesters.

w
w
w
.p
ph

m
j.c

om

COURSE SCHEDULER: AN AUTOMATED SCHEDULE … 27

(2) A data-set of instructors’ abilities. This data-set should indicate
which courses a given instructor is capable of teaching to students.

Luckily, the first criterion for CourseScheduler is available by
using the SKED program1 [4].

2. SKED

SKED evaluates courses already taken by students (transferred from
other Universities or previously taken at the University of Bridgeport),
and determines the ‘best’ courses that the student can take, given:

• courses already taken (or transferred) by the student.

• the pre-requisite courses for a given course (a pre-requisite being a
course that must be taken before another course, since the pre-
requisite gives the student ‘foundation’ information required to
understand the concepts presented in the ‘next’ course).

• the co-requisite courses (courses that may be taken at the same
time as the given-course, since the information obtained in the
co-requisite is not dependent upon then given-course, but will be
helpful to the student, if learned at the same time).

• the maximum number of courses allowed by the university. This
‘restriction’ exists to make sure that students are not over-
burdened by taking too many classes. This is supposed to
guarantee that students have sufficient time to concentrate on
their homework, lab-work, exams, etc.

• and last, but not least, the courses required to satisfy the major
for which the student desires a degree (a major being an area of
concentration in which the student is interested. Universities
require a student to take a sufficient number of courses [credit-
hours] in a given discipline so that the student is conversant with
many aspects of the desired major).

There also exist certain courses that may not be taken by students
until they have reached a certain ‘year’ (i.e., freshman, sophomore, junior,

1 Also developed at the University of Bridgeport.

w
w
w
.p
ph

m
j.c

om

TAREK SOBH, RIK COUSENS and SAROSH PATEL28

or senior: these terms indicate the number of credit-hours successfully
completed by the student). This ‘restriction’ exists to ‘protect students
from taking courses for which they may have insufficient ‘background’
information to complete successfully2.

In order to produce this data-set, SKED requires the following
information:

• courses previously satisfied.

• courses being offered next semester.

• courses being offered the semester after next.

• prerequisite courses to a given course.

• co-requisite courses to a given course (if any).

• the maximum number of courses that each student is allowed to
take.

The SKED algorithm calculates a requirement-cost (the maximum
number of pre-requisite courses that must be taken before a given-course)
for each course, as well as an availability-cost (which is the number of
pre-requisites, co-requisites and course-offerings in the next 2 semesters)3

and generates a data-file4 containing a ‘tree’. This ‘tree’ contains all
possible schedules (list of courses in a semester-by-semester format),
describing which courses, taken in which semester, would allow the
student to satisfy the degree-requirements in the minimum number of
semesters. SKED is written in Microsoft Visual Basic, and uses Microsoft
Access as its data-source.

The CourseScheduler application manipulates the output-files from
SKED and provides a simple infrastructure to solve an arduous problem:
determining which courses to offer in a given semester that will allow all
students to have at least one of their ‘required’ schedules (as determined
by SKED) satisfied, given student requirements and instructor
availability.

2 The above-mentioned terms are more clearly defined in the SKED [4] paper, Introduction
section.

3 See the SKED paper, Algorithm section.
4 for a single student

w
w
w
.p
ph

m
j.c

om

COURSE SCHEDULER: AN AUTOMATED SCHEDULE … 29

2.1. Trials (and ‘Errors’) – A.K.A. algorithm refinement

In the initial phase of this project the goal seemed simple:

• determine which courses to offer given

• available instructors to teach the classes

• classroom size and availability

• time slots of when classrooms were available and instructor

availability

• student’s preferences as to times courses were taught

The development effort began with this goal and these requirements

in place. It soon became apparent that this was an NP-hard problem,

meaning that the process of trying to find a solution with this number of

variables would require an enormous number of resources and processing

time [3].

This first approach attempted to generate a set of schedules based

upon faculty ability and availability. The schedule-generation and the

matching of students needs to those schedules took between two to four

hours, since many of the schedules generated contained ‘unnecessary’

courses according to the student requirements.5 Given the poor

performance of this version it was abandoned without even attempting to

address the classroom or student preferences.

The second attempt was to try to generate schedules which we would:

• maximize the number of students per class

• maximize the number of student who would graduate early

• maximize the number of student preferences satisfied by the

schedule

5 The data-set used for this set of tools contains 20 instructors (Computer Science staff at

University of Bridgeport) and 19 data files containing student requirements as generated

by SKED.

w
w
w
.p
ph

m
j.c

om

TAREK SOBH, RIK COUSENS and SAROSH PATEL30

This scenario would have been ideal had it worked out. In this way,

we could have maximize the classroom utilization as well as the

instructor utilization. The fundamental problem persisted: our algorithms

simply did not address the student’s needs.

Attempting to cater to the instructors preferences of when they

wanted to teach courses, or trying to allow the student’s desires on when

they would prefer to take the class. This scheme did not work well. The

approach that was finally chosen was the following:

• treat the student requirements6 as a ‘set’

• assign instructors to courses that ‘need to be taught’ from the

student requirements

• allow instructors to assign a desired time slot to each of the

courses that they teach

By using these rules, courses that the student requires in order to

graduate early is an integral part of the scheduling process, and not left

to chance. It also allows instructors some lee-way in determining when

they want to teach (i.e., morning/afternoon or weekends).

In the event that an instructor does not have a full class load, the

department chairperson may have that instructor teach an elective

course7.

3. Algorithm

It is important to note the following: when a student first begins their

degree-program, they have some flexibility as to which courses that they

can choose. It is desirable for the student to take courses that are

prerequisite to other’s so as not to delay their graduation. Once the major

prerequisite courses are taken, the student has the most amount of

flexibility in taking both required courses and/or electives. Towards the

end of their program (‘Senior year’), they are likely to have significantly

6 As determined by SKED.

7 Assuming the instructor wishes to teach additional courses.

w
w
w
.p
ph

m
j.c

om

COURSE SCHEDULER: AN AUTOMATED SCHEDULE … 31

less flexibility, since they MUST take certain courses to graduate, and

have likely taken most of their electives.

The reason to note this is that SKED generates ALL possible
permutations of courses that a student needs to take in order to graduate
‘in the least amount of time’. There are several cases where, for students
who are at the end of the program, there exists only a single permutation
of classes that they need in order to graduate [in the least amount of
time].

It is these students who have only a single course-set that must be
offered which seems to make this task of course-scheduling so very
difficult.

3.1. CourseScheduler – a batch process

The primary algorithm for the course-scheduling process is to

(1) gather all permutations of student requirements from Sked-output
files. From the resultant information, courses that exist in all students
schedules are gathered and saved. The usage of this information will be
discussed later.

(2) gather instructor information - verify that all courses that are
‘required’ by the students can be offered. There may be circumstances
that prohibit a course from being offered, such as an instructor being on
sabbatical8.

(3) At this point, the system has the following information:

• the fact that all courses required by the student-body can, in fact,
be scheduled (at least initially) given the fact that there exist
instructors who are capable of teaching all courses.

• a set of courses that are common to all students (may be an
empty-set). At the very least, the system knows what the students
require.

8 This may have dire consequences for students with only a single schedule. If the

‘unavailable’ instructor taught a required-course, and if no other instructor in the

department who could teach the required-course, this process would not succeed.

w
w
w
.p
ph

m
j.c

om

TAREK SOBH, RIK COUSENS and SAROSH PATEL32

 (4) Assuming that the above steps are successful, the batch-process

now creates data-files to be read by the scheduling-applets.

• course-map – A list of all possible courses required by the student-

body. This file contains the mnemonic names of the courses (i.e.,

MATH227, CS102, etc.)

• default-courses – An index-file containing the ordinal number of

the courses actually needed by the student-sample.

• Student.XXX.map – one of these files will be generated for almost

every single student in the input student-sample. A file will NOT

be generated if Student-F has the same exact requirements as

Student-D, for example. Each of these files contains all possible

required-schedules. Each of the required-schedules has been

‘reduced’, or ‘factored’9. Each line of the file contains the ordinal

‘index-values’, into course.map.

The CourseScheduler application does its processing in 3 steps:

(1) CourseScheduler makes a special-case for students with only a

single course-set. For these students, all courses that they require are

considered extremely important, since failing to cater to these specific

needs will fail to attain the goal of minimizing the graduation time for all

students.

For those students (if any) who have only a single course-set, a list of

required-courses is built. These required-courses must be taught.

CourseScheduler then iterates through all other students, removing the

required-courses. This is done so as to reduce the number permutations

that must be generated in Step 3. So, the required-courses are removed

from all other students that have multiple schedules, leaving those

students with only those courses that are required by the individuals

above and beyond the required-set. In many cases, by removing the

required-courses, many duplicate requirements appear for individual

students, and are removed.

9 as described later

w
w
w
.p
ph

m
j.c

om

COURSE SCHEDULER: AN AUTOMATED SCHEDULE … 33

At this point, CourseScheduler iterates through all students with

multiple course-sets, and generates a schedule of courses required by all

students. The number of permutations is significantly reduced by the

factoring-out of the required-courses (from 33,000,000 to 600,000) for the

current data-set. For example, in a 2 student scenario: if Student 1 has 10

permutations, and Student 2 has 3 permutations (after the reduction of

the required-courses), there will be 30 (10*3) possible schedules. Under

certain conditions, the complete course-set may be a duplicate of a course-

set previously calculated. In this case, the newly generated course-set is

not added to the list of possible schedules (since it is a duplicate). All

unique schedules are written to disk for later evaluation. Given our

current data-set, out of 604,800 permutations of all student requirements,

only 24 are unique. Each of these 24 schedules must be evaluated against

the courses that our instructors are capable of teaching.

(2) CourseScheduler examines the required-course set and the new

minimal set of courses required by all students and verifies there are, in

fact, instructors capable of teaching those courses, and displays errors

messages if any courses are missing. Also, if there is an instructor who

teaches courses that are not required this semester, it displays this fact,

and removes the instructor from the instructor list.10

(3) CourseScheduler now knows which courses must be taught and

which instructors teach them. It then permutes the instructors and the

courses that they can teach11. Instructors are limited to a certain number

of courses that they can teach each semester.12

10 describe ELECTIVES here.

11 This permutation is done due to the fact that there is typically overlap in course-teaching

ability among the faculty. For example, there is usually more than one instructor within

the Math department that is capable of instructing CS 212 (Discrete Math), which is a

prerequisite course at U.B. for several courses. Depending upon the availability of the

instructor, and student-requirements the course may need to be split into multiple

sections.

12 This restriction exists so that instructors will have sufficient time to: prepare for teaching

their classes, correct exams, meet with students, participate in faculty meetings, etc.

w
w
w
.p
ph

m
j.c

om

TAREK SOBH, RIK COUSENS and SAROSH PATEL34

U.B. allows instructors to teach 3 courses per semester. If a given
instructor is capable of teaching only 3 courses that are needed (as
determined by CourseScheduler), no permutation is required. Otherwise,
the number of permutations possible for a given instructor is defined by
the combination formula

,
)!(!

!),(
rnr

nrnC
−

=

where n is the number of courses for which the instructor is capable of
teaching and is required by the students, and r is the number of courses
per semester that an instructor can teach. So, for example, if an
instructor teaches 5 ‘needed’ courses, but allowed to teach only 3 at a
time, we have

nscombinatiodistinctC 10
12

120
26

120
!2!3

!5
)!35(!3

!5)3,5(==
•

=
•

=
−

=

Once the instructor permutations are complete, a data-file is written
containing all instructors, and the courses that are needed by the
student-body. At this point, the individual instructors or a department
chairperson must now associate time-slots for each of the courses that
each instructor needs to teach.

3.2. IApplet – “Instructor applet”

It allows instructors or an administrator to set/modify when
instructors teach classes that are required. There is no real algorithm
behind this particular applet, per se. It simply allows an instructor
administrator to maintain time-slot information.13

Each instructor is responsible for maintaining his/her preferences as
to when they wish to teach their courses. Unallocated (unspecified) time-
slots courses will prohibit valid schedule-generation.

Once all instructors have indicated their preferences, the validation-
applet may be run by the administrator.

13 The “time-slot” are simply textual representations of when courses may be taught. In the

current implementation, they are simply 2-hour slots. In a “real” implementation, day-of-

week logic should be used. The file sched.tools.MyComboModel contains hard-coded

time-slots, which can easily be changed.

w
w
w
.p
ph

m
j.c

om

COURSE SCHEDULER: AN AUTOMATED SCHEDULE … 35

3.3. AdmValidatorApplet – “Administrator’s schedule validation

applet”

This applet takes the course permutations14 and attempts to generate
a list of schedules in which all students will be able to take at least one
permutation of the schedule.

The applet permutes the instructor-sets15 and iterates through all
student-requirements (again).16 A viable schedule is one for which at least
one student requirement permutations for EVERY SINGLE STUDENT
exists for the given instructor course time-slot combination [1, 6].

The importance of a viable solution can be illustrated as follows:

If student is taking classes during their senior year, he or she has
presumably taken almost all required courses with the exception of their
senior-project, and will probably have only electives to take. The number
of courses that they can take is limited by the fact that they have taken
everything that they actually need.

Conversely, a freshman has taken no courses, and has a great deal of
flexibility in what courses they can take. Of course, it is in the best
interests of the freshman student to take courses that are prerequisite
courses, so as to give them greater flexibility towards which courses they
can take in the middle of their degree-program.

Since it is so difficult to determine which courses to offer, a decision
was made during the development of this project to use the concept of
viability.

So, for the purposes of this project, we are interested in only viable
solutions. AdmValidatorApplet gives visual feedback as to whether or
not all student-requirements are satisfied by each and every instructor

14 This step assumes that all instructors have filled in the desired time-slots as to when they

wish to instruct their classes.

15 This applet uses the same permutation algorithm as CourseScheduler, the only

exception is that the applet does it in Java, of course.

16 Instead of opening and re-reading the original output-files from SKED, it uses cached

files, generated during Step 2 of the execution of CourseScheduler.

w
w
w
.p
ph

m
j.c

om

TAREK SOBH, RIK COUSENS and SAROSH PATEL36

time-slot permutation. The larger the percentage of success, the better
the fit of instructor time-slot mappings to the students needs.

Circumstances may exist where none of the schedules can satisfy the

student’s needs. This17 situation typically arises when there is a time-slot

conflict between the required-courses that must be given in order to

satisfy the students who single-schedule needs18. These students “by

design” must have their needs satisfied, if the goal of graduating these

students [in the minimum number of semesters] is to be achieved.

Conflict resolution can be done by having both applets visible19 and

modifying the instructor time-slots in one window, and using the Reload

feature of the AdmValidatorApplet. The administrator would usually

be the one responsible for this task. He or she would use the Validate-

button. For those schedules that indicate lack of viability, he/she would

click the Show Conflicts button, and click “Validate” again. This would

enable verbose display of the AdmValidatorApplet indicating for each

student (within each instructor time-slot permutation) why the conflict

occurs. The output within the applet indicates (for a given student) which

course cannot be scheduled, given the list of courses that have already

been scheduled for the student20. At this point, the administrator can

(using the IApplet page) move a conflicting course from its current time-

slot. “Save” the instructor/time-slot information, switch to

AdmValidatorApplet, use the “Reload” and “Validate” functions.

This step may need to be done several times, in order to afford all

students to have a viable schedule.

17 The “required-course” list is generated by CourseScheduler

18 Again, this is typically the “seniors” who have a much smaller selection of possible

courses, since they have taken most or all of their required courses.

19 This can be accomplished by having a single Web browser open and using the “New

Browser” feature.

20 The order of courses being scheduled for the student depends upon the instructor

preferences in the case where the instructor is “required” to teach this course, and this

course occurs in more than one permutation of courses that he/she must teach.

w
w
w
.p
ph

m
j.c

om

COURSE SCHEDULER: AN AUTOMATED SCHEDULE … 37

Once a viable schedule is found, it can be displayed by selecting the

“Show Schedules” checkbox, and once again, clicking the “Validate”

button. The resultant output indicates (in alphabetic course-order) which

classes are taught by which instructors and in which time-slot to be able

to satisfy the student requirements.

4. Software Package

This software package is broken up into three pieces:

CourseScheduler – A process which generates all possible schedules

for all instructors, based upon the courses needed by all students. This

particular application is written by using C++ [2]. It has been tested and

debugged using both GCC (under Linux and Solaris) as well as Microsoft

Visual C++ v5 (under Windows NT).

IApplet – An applet which allows instructors to indicate when they

would prefer to teach the courses that are needed by the student-body.

This piece of software uses the Java Runtime Environment (JRE 1.3)

available from Sun Microsystems, and has been tested and debugged on

Linux, Solaris, and Windows NT.

AdmValidatorApplet – An applet which allows a department

chairperson to view and validate instructors’ selections as to when they

teach their courses. This tool gives the chairperson an indication as to

how successful, a given schedule is, according to the chosen time-slots of

chosen by the instructors, and how well they meet the student’s needs.

This piece of software uses the Java Runtime Environment (JRE 1.3)

available from Sun Microsystems, and has been tested and debugged on

Linux, Solaris, and Windows NT.

The overall approach to finding a solution (“the best” schedules to

offer in a given semester, so that the student-body is able to graduate in

the least amount of time) occurs in the following steps:

5. Software Execution

Step 1: Find courses required by all students in the system.

w
w
w
.p
ph

m
j.c

om

TAREK SOBH, RIK COUSENS and SAROSH PATEL38

duplicate requirements: 's20'.

Student 's22' has 1 combinations : <CPE210 CPE387 MATH109 MATH323 PHYS112>

Student 's26' has 1 combinations : <AD101 CPE387 CS102 ENGR300 HUMC201 MATH323>

Student 's13' has 1 combinations : <CPE387 CPE410 CPE447 CS102 EE235 MATH112>

Student 's8' has 1 combinations : <CS102 ENGR111 MATH112 MATH227 PHYS111>

Student 's1' has 1 combinations : <AD101 CPE315 HUMC201 MATH323 PHYS111>

Student 's25' has 1 combinations : <AD101 CPE387 EE235 HUMC201 MATH323 SSCC202>

Student 's4' has 1 combinations : <AD101 CPE315 CPE387 CPE471 PHYS111>

Student 's21' has 1 combinations : <CHEM103 CPE315 EE235 HUMC201 MATH323 SSCC201>

Student 's17' has 1 combinations : <CPE315 CS102 ENGLC101 MATH323 PHYS112>

--

Student 's3' has 3 combinations

Student 's14' has 3 combinations (reduced to 2)

Student 's2' has 4 combinations (reduced to 2)

Student 's6' has 6 combinations (reduced to 4)

Student 's16' has 6 combinations (reduced to 4)

Student 's23' has 6 combinations (reduced to 2)

Student 's5' has 7 combinations

Student 's7' has 17 combinations (reduced to 15)

Student 's15' has 36 combinations (reduced to 15)

Need 33312384 combinations (reducible to 604800)

Note that Students 22-17 all have only 1 possible course-set. This
implies that in order for these students to graduate in the minimum
number of semesters, the appropriate courses MUST be offered.
CourseScheduler displays the reduction information. In several cases,
no reduction is possible (meaning that the “required-courses” as
generated by the students having only a single possible schedule could
not be “factored-out”) for several students with multiple possible
schedules.

One noteworthy exception is Student s15 whose number of
permutations is decreased by more than ½.

Step 2: Determination of instructor availability and coverage. At the
University of Bridgeport, faculty members are allowed to teach (at
maximum) 3 courses per semester. The number of combinations for an
instructor who is capable of teaching n but only r at a time is given by

)!(!
!),(

rnr
nrnC

−
= . So, if we look at Professor Eigel below (who is capable

of instructing 5 different courses), we have

.10
)!35(!3

!5)3,5(nspermutatioC =
−

=

w
w
w
.p
ph

m
j.c

om

COURSE SCHEDULER: AN AUTOMATED SCHEDULE … 39

No needed courses for 'rigia' who teaches <CS200>

Instructors (for courses needed by students):

eigel Edwin Eigel <MATH109, MATH112, MATH112, MATH227, MATH323>

mahmood Ausif Mahmood <CPE387, ENGR111, ENGR111, ENGR300>

abuz Abdel Abuzneid <CPE471, CPE473, CS102>

ee-guy elect-eng-guy <EE235, EE443, ENGR300>

grodzinsky Stephen Grodzinsky <CPE315, CPE448, CPE489>

guerra Deborah Guerra <MATH109, MATH112, MATH215>

phys-guy physics-guy <CHEM103, PHYS111, PHYS112>

art-guy artie-the-art-guy <AD101, CAPS390>

dlyon Douglas Lyon <CPE210, CPE387>

engl-guy english-guy <ENGL100, ENGLC101>

healey Stephen Healey <SSCC201, SSCC202>

human-guy humanities-guy <HUMC201, HUMC202>

multi-guy multi-discipline-guy <FREELEC1, TELEC1>

romalis Natalia Romalis <CPE447, CPE489>

sobh Tarek Sobh <CPE315, CPE460>

v_der_kroef Justus van der Kroef <SSCC201, SSCC202>

dichter Julius Dichter <CS102>

elleithy Elleithy <CPE210>

liu Gonhsin Liu <CPE410>

In the above list, one should note that certain courses have been
removed, as they are not “needed” by the student-body for this semester
(this is not to say that they should not/cannot be offered as electives21. For

example, according to the instructor input-file, Professor Liu is needed to

instruct CPE410. He is also capable of teaching CPE498 CS536X, but
these courses have been removed since the need of the student-sample
does not require either of these 2 classes.

Once CourseScheduler knows how which courses are needed, it
then find all combinations for every instructor (from the courses that are
needed, and the fact that the instructors are only allowed to teach 3
courses). Once all of the combinations are calculated, permutations are
generated for all instructor-combinations.

eigel : 10 combinations.

mahmood : 4 combinations.

abuz : 1 combinations.

ee-guy : 1 combinations.

grodzinsky : 1 combinations.

21 At the discretion of a department-chairperson if he/she feels it would be in the student's

best interests.

w
w
w
.p
ph

m
j.c

om

TAREK SOBH, RIK COUSENS and SAROSH PATEL40

guerra : 1 combinations.

phys-guy : 1 combinations.

art-guy : 1 combinations.

dlyon : 1 combinations.

engl-guy : 1 combinations.

healey : 1 combinations.

human-guy : 1 combinations.

multi-guy : 1 combinations.

romalis : 1 combinations.

sobh : 1 combinations.

v_der_kroef : 1 combinations.

dichter : 1 combinations.

elleithy : 1 combinations.

liu : 1 combinations.

total of 40 instructor-combinations.

permute 19 out of 20 instructors.

One may notice that Professor Rigia has been removed from the list,

as she teaches courses that are not required by the students' needs. This

does not mean, of course, that she will not be teaching: a department-

chairperson may decide to offer courses she teaches as an elective.

Once the minimal-set of courses-required is generated CS,\by

instructors or an administrator should begin to fill in the “time-slots” as

to when instructors should teach the courses to the students. This is

accomplished by using IApplet.

Presumably, the learning-institution would have a web-site

exclusively devoted to faculty activities. This would be the ideal place for

the IApplet to be placed.

For each faculty-member, they would click on a URL in some kind of

“maintenance” page, which would prompt them with a login panel

(Figure 1):

Figure 1. Login-panel during instructor login.

w
w
w
.p
ph

m
j.c

om

COURSE SCHEDULER: AN AUTOMATED SCHEDULE … 41

They would fill in their user-name and password, which would then
show the classes they would need to teach in the next semester. They
would need to select from a list of time-slots as to when they would like to
instruct the courses, and click the “Save” button. As an example,
Professor Eigel logs on, and maintains his preferences. In Figure 2, one
can see that Professor Eigel is needed to teach at least MATH223 and
MATH323. We notice that these two courses are common to both
combinations of student-required courses. For the courses MATH109 and
MATH112. In Figure 2, Professor Eigel has just begun his scheduling. He
has selected his first combination, and has elected to instruct MATH227
in TimeSlot 8, which translates to Tuesday morning from 10AM until
12PM22.

Figure 2. Professor Eigel's preferences.

In order to complete the process, Professor Eigel must continue to
select time-slots for the 5 other courses23. If he so desires, he can indicate
his preference as to which of the two courses he wants to teach (meaning
he may prefer to teach MATH112 instead of MATH109 in the next
semester). In the case where an instructor has multiple course-sets
instructor would select the course-set that they wished to move, and the
white arrows would highlight, indicating in which direction the course-
set could be moved. In Figure 2, the current row may only be moved
downwards. This preference mechanism is used in AdmValidatorApplet
when determining schedule-viability.

22 Again, this concept of time-slots is completely arbitrary. Two-hour time-slots have been

chosen for this project to simplify processing. In the “real-world” implementation, date-
time logic would need to be used to make sure that classes did not overlap.

23 He has completed the selection for MATH227 in the current combination, the other two
are not yet scheduled, and he has not filled in the other three courses for combination
\#2.

w
w
w
.p
ph

m
j.c

om

TAREK SOBH, RIK COUSENS and SAROSH PATEL42

If IApplet is being run by an administrator (typically reached via a

protected URL), no login-panel is required, as this version of the applet is

not “public”.

Figure 3. Examining viability of generated schedules.

In Figure 3, we see the administrator viewing Professor Abuzneid’s

scheduling-preference. One may notice that in the top-left corner, we see

the InstructorID. This is visible only in “Adminitrator-mode”. The two

arrows to the right of the InstructorID allow the administrator to step-

through all instructors. Notice that Professor Abuzneid has only a single

course-set. In Figure 4, Professor Mahmood has three possible

combinations. Again, the reason for an instructor having multiple course-

sets is that the courses required by the student body and the number of

courses that a particular instructor is capable of teaching.

Figure 4. Administrator examining instructor with multiple preferences.

Once all instructors have specified their preferences as to when they
desire to teach their courses, and which particular course-set is more

w
w
w
.p
ph

m
j.c

om

COURSE SCHEDULER: AN AUTOMATED SCHEDULE … 43

interesting to them (if applicable)24, the administrator runs
AdmValidatorApplet.

Using AdmValidatorApplet, the adminstrator examines the results

of the scheduling process. He/she can view reasons for poor viability, and

fine-tune the results by having IApplet and AdmValidatorApplet both

visible.

Figure 5. Examining viability of generated schedules.

In Figure 5, we see that Instructor combination 0 has 100% viability,

while combination 1 has only 82% viability. The administrator may want

to know exactly why only 82% of student-requirements are satisfied. In

order to view this information, the administrator would simply check the

Show Conflicts button, and re-click the Validate button.

Figure 6. Examining reasons for poor viability.

Figure 6 shows, verbosely, exactly why we do not have a perfectly

viable schedule. We see that student “s5” has 6 valid schedules, but that

one of them has a conflict. We see that we cannot schedule MATH109 in

TimeSlot #6, since “s5” is already taking CPE471 in this time-slot. Since

the student cannot participate in 2 classes at the same time, this

schedule is not 100% viable for this student.

24 this applies only to instructors who have multiple course-sets to manage.

w
w
w
.p
ph

m
j.c

om

TAREK SOBH, RIK COUSENS and SAROSH PATEL44

Should the administrator wish to fix this conflict, he/she can move

either of the conflicting courses to a different time-slot. N.B. one must be

careful when doing this, since the success/viability of other students’

schedules may depend upon the current time-slot allocations.

6. Limitations and Future Enhancements

6.1. Limitations

Clearly, this system is limited in a couple of ways:

(1) time-slot values are currently fixed-value. A much more dynamic

solution would be desirable. Specifically, one that handles date/time

issues.

(2) a guaranteed solution does not always exist. Success of this

process is primarily determined by instructor-selection of desired

teaching times. A better approach would be to generate the time-slot

information based upon the needs of the students (i.e., which classes exist

that cannot be scheduled at the same time).

6.2. Future enhancements

Future enhancements are subject to the approval and interest in the

results of this project. Some ideas:

CourseScheduler engine – This would contain a set of

functions/objects which could be utilized through other programming

languages to allow increased flexibility. This would obviate the need for

much of the Java processing, which is inherently slower than C or C++

[4]. Extensions for COM/DCOM (Microsoft) or RPC (remote-procedure-

call - available under most flavors of Unix) are possible, and probably

desirable. This would also remove redundant program-code, and provide

a single, cohesive toolset for programmers to access in several ways.

time-slots – This is really necessary for this product to function in

the real-world. At the very least, the time-slots should be maintainable

by the administrator.

w
w
w
.p
ph

m
j.c

om

COURSE SCHEDULER: AN AUTOMATED SCHEDULE … 45

time-slot generation – Should really be generated from the

student-data. This seems to be the “best” solution, given that individual

instructors have insufficient information as to when other “core” courses

are being offered, and they may attempt to schedule their own “core”

courses at the same time.

7. Conclusions

Using CourseScheduler, IApplet and AdmValidatorApplet

functions together as a suite of tools which will help department

chairpersons in the course-scheduling process. One of this suite’s strong

points is that it removes a lot of guess-work from the scheduling process

by providing:

(1) immediate feedback and visual cues allowing for quick conflict-

resolution.

(2) sampling of the student-requirements, which minimizes the

problem of the instructor having to guess as to which courses to offer.

(3) simple and easy-to-understand controls user-interfaces.

While this suite does not address classroom-allocation or class-size

issues, we believe that it can be an enormously beneficial set of tools to

members of the engineering education community.

References

[1] Thomas A. Cormen et al., Introduction to Algorithms, The MIT Press, Cambridge,

Massachusetts, eighth printing, 1992. ISBN: 0-262-03141 (MIT Press), 0-07-

013143-0 (McGraw-Hill).

[2] Margaret A. Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual,

Addison-Wesley Publishing Co., New York, 1990.

[3] Donald E. Knuth, The Art of Computer Programming, Volume 3, Sorting and

Searching, Second edition, Addison-Wesley Longman, Reading, Massachusetts,

1998.

[4] R. Mihali, T. Sobh and D. Vamoser, SKED: a course scheduling and advising

software, J. Comput. Appl. Engg. Edu. 12(1) (2004), 1-19.

w
w
w
.p
ph

m
j.c

om

TAREK SOBH, RIK COUSENS and SAROSH PATEL46

[5] Gregory Satir and Doug Brown, C++: The Core Language, O’Reilly and Associates

Inc., Cambridge, 1995.

[6] H. Press William et al., Numerical Recipes in C, Cambridge University Press, New

York, 1992.

g

