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Abstract

When autocorrelation exists between observations, the performance of

control charts may cause dramatic influence. Specifically, a high

number of false alarms signals are generated. This work extends the

exponentially weighted moving average (EWMA) control chart, called

the generally weighted moving average (GWMA) control chart, to

monitor the mean of autocorrelated processes based on the residuals

from the forecast values of a first-order autoregressive (AR(1)) process

with a random error. The GWMA control chart of residuals with time-

varying control limits is more sensitive to shifts in the mean upon start-

up. A simulation is conducted to evaluate the average run length (ARL)

of the EWMA and GWMA control charts of residuals. The results of

these simulations reveal that the GWMA control scheme is more

sensitive than the EWMA control scheme to small shifts in an

autocorrelated process mean. The composite Shewhart-GWMA control

chart of residuals is presented to enhance the detection capacity of the

GWMA control chart in detecting small shifts of an autocorrelated

process mean.

1. Introduction

Numerous control charts are employed to monitor processes for the
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purpose of detecting special causes and then improve the processes.
The design and evaluation of control charts typically assume that the
quality characteristics of processes are independent. However, in many
applications the dynamics of the process produce autocorrelation in
observations which are closely spaced in time. The presence of  significant
autocorrelation can have a serious impact on the properties of traditional
control charts (see, for example, Padgett et al. [7] and VanBrackle and
Reynolds [16]). Specifically, a high false alarm rate is generated. Hence,
considering the problem of monitoring an autocorrelated process is
important.

The technique for detecting a process must be determined when an
autocorrelation is present. Many authors have studied the characteristics
of autocorrelated processes. Two general approaches to developing control
charts can be adopted in cases of autocorrelation. First, standard control
charts are used: parameters estimated according to models and the
control limits adjusted for the autocorrelated observations (see, for
example, Vasilopoulos and Stamboulis [18] and Yashchin [20]). Second, a
proper time series model is applied to the process data and the residuals
or the forecast errors are treated as control statistics (see, for example,
Alwan and Roberts [1], Harris and Ross [4], Montgomery and
Mastrangelo [6], Schmid [12], Superville and Adams [15], Vander Weil
[17], Wardell et al. [19]). A fundamental conclusion is that autocorrelation
markedly influences the properties of control charts. Lu and Reynolds [5]
compared the performance of an EWMA control chart based on the
original observations with that of an EWMA control chart based on
residuals from the forecast values of a first-order autoregressive (AR(1))
process with a random error. They indicated that when the level of
autocorrelation is strong, the EWMA control chart based on residuals
form the AR(1) model requires less time to detect various shifts; but for
low or moderate level of autocorrelation, the two EWMA charts require
the same amount of time to detect various shifts.

Sheu and Griffith [13] and Sheu and Lin [14] developed and applied
an expanded EWMA control chart, called the generally weighted moving
average (GWMA), to enhance the detection ability of control charts. They
demonstrated that the GWMA control chart performs substantially better
than either the Shewhart or the EWMA control chart for monitoring
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small shifts in the process mean. However, they evaluated the properties
of GWMA control charts based on independent observations instead of
autocorrelation between observations. Hence, the aim of this work is to
examine GWMA control charts of residuals to monitor the process mean
of autocorrelated processes. The GWMA control chart performance is
compared with that of the EWMA and Shewhart-GWMA control charts of
residuals. A numerical  simulation is performed to assess the average run
length (ARL) properties of various mean shifts and adjusted parameters
with different levels of autocorrelation.

2. General Model

Sheu and Lin [14] first proposed the GWMA control chart to enhance
the detection ability of EWMA control charts. The various weights in the
GWMA model were designed to drop from the present sample to past
samples, such that the GWMA reflects crucial information on recent
processes.

Suppose that events A and B are complementary and mutually
exclusive. Let M count the number of samples until the first occurrence of

event A since its previous occurrence. Let ( ).jMPPj >=  Hence, jP

satisfies .01 10 ≥≥≥= PP  Let ( ) .1
1

11 
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( ) ( ) ( )jMPMPMP === ...,,2,1  can be regarded as the weights of the

GWMA and be the weights of the current sample, the second updated
sample , …, the remote sample, respectively.
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Let jX  represent the measurement at the j-th time period and

assume that  ,jX  ...,,3,2,1=j  are independent random variables with

mean 0µ  and constant variance .2σ  Let jY  denote the generally weighted

moving average in the plotted statistics at time j. Usually, the initial

value 0Y  is set equal to 0µ  for convenience. Then, jY  can be configured

as

 ( ) ( )∑
=

+− µ>+==
j

k
kjj jMPXkMPY

1
01

( )∑
−

+−− µ+−=
j

k
jkjkk PXPP

1
011 .                                 (1)

The expected value of Eq. (1) is

( ) ( ) 












µ+−= ∑

−
+−−

j

k
jkjkkj PXPPEYE

1
011

.0µ=                                                                         (2)

The variance of Eq. (1) is

( ) ,Var 2σ⋅= jj QY (3)

where

( )∑
=

− −=
j

k
kkj PPQ

1

2
1 .

Thus, the GWMA control chart can be written as

σ+µ= jQLUCL 0

0µ=CL                                                             (4)

,0 σ−µ= jQLLCL

where L denotes the width of the control limits and is determined by the
practitioner to achieve the desired in-control ARL for a GWMA control

chart. When statistics jY  falls outside the range of control limits, it
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indicates that the process is out of control and some actions should be
taken adequately.

3. Modeling GWMA Control Chart of Residuals

A fundamental assumption that underlies conventional control charts

is that process data are mutually independent. Unfortunately, data taken

from several manufacturing processes, such as those in the chemical

or pharmaceutical industries frequently violate the independence

assumption. Despite the fact that quality characteristics associated with

the discrete parts of the manufacturing processes will be autocorrelated

when the sampling time is short. Accordingly, this work considers

autocorrelated observations based on an AR(1) process with a random

error, and utilizes GWMA control charts to monitor the mean of the

autocorrelated process.

The AR(1) process with a random error is applied, as described by Lu

and Reynolds [5]. tX  is assumed to be given by

...,,3,2,1, =ε+µ= tX ttt (5)

where the values of tε  are independent and have a common normal

distribution with a mean of 0 and a variance of 2
εσ  where tµ  can be

specialized as an AR(1) process with a process mean of ,0ξ  thus that,

     ( ) ...,,3,2,1,1 10 =+φµ+ξφ−=µ − tattt (6)

where the values of ta  are independent normal random variables with a

mean of 0 and a variance of ,2
aσ  and are independent of the tε  values,

and φ is the AR(1) parameter, which satisfies .1<φ  The initial value

0µ  is assumed to be normally distributed with mean 0ξ  and variance

( ),1 22 φ−σa  implying that tX  will be a normal distribution with a mean

of 0ξ  and a variance of

,
1

2
2

2
222

εεµ σ+
φ−

σ
=σ+σ=σ a

X    for all .1≥t
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Conveniently define

22

2

2

2

εµ

µµ

σ+σ

σ
=

σ

σ
=ψ

X

to be the proportion of the total process variance that is due to the

AR(1) process. The covariance between tX  and 1+tX  is ,2
µφσ  and the

autocorrelation coefficient between tX and 1+tX  is .φψ=p

The AR(1) process with a random error is equivalent to an

autoregressive moving average process of order 1 and 1 ( )( )1,1ARMA

process (see, Box et al. [2]). The ARMA ( )1,1  process can be represented

as

( ) ,1 110 −− θ−+φ+ξφ−= tttt bbXX (7)

where tb  is the random white noise of the ARMA ( )1,1  process at time t

and follows independent normal random variable with a mean of 0 and

a variance of ,2
bσ  where θ is the moving average parameter, and φ is

the same autoregressive parameter as in Eq. (6). Equations for the

parameters φ, θ and 2
bσ  in the ARMA(1, 1) model are available in terms of

the parameters θ, 2
aσ  and 2

εσ  in the AR(1) with a random error model

and vice versa (see, Lu and Reynolds [5] and Reynolds et al. [8]). Most

applications, for which parameters satisfy 10 <φ≤θ≤  and ,02 >σb  the

ARMA ( )1,1  model can be used to yield process observations.

In recent years, many scholars have sought to find effective
monitoring techniques with significantly autocorrelated processes. A
proper time series model can typically be fitted to the process data and
the residuals or forecast errors regarded as nearly independent control
statistics to monitor the mean of autocorrelated process.

Evaluating the performance of control charts based on the residuals
depends on determining the distribution of the residuals. When the
process is controlled, the minimum mean square error forecast is,

( ) ,1ˆ
110 −− θ−+φ+ξφ−= tttt ebXX (8)
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where

ttt XXe ˆ−=

is the residual at time t and te  is a sequence of independently and

identically distributed random variables with mean 0 and variance 2
bσ

(see, Box et al. [2]). When the process is out of control, the shift in the
process mean is supposed to be .1ξ  Then, the expected residual is,

( ) ( ) ( ) .0,
1

1
01 ≥ξ−ξ

θ−
+φ−θ−φθ= teE

t

t (9)

The control statistic jY  of a GWMA control chart based on the

residuals can be expressed as:

( ) ( )∑
−

+−− ξ+−=
j

k
jkjkkj PePPY

1
011 . (10)

The expected value of Eq. (10) will be

( ) ( ) ( ) 
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k
jkjkkj PePPEYE
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.0ξ= (11)

The variance of Eq. (10) will be

( ) ( ) ( ) 
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−
+−−

j

k
jkjkkj PePPY

1
011VarVar

,2
bjQ σ⋅=                                                                (12)

where ( )∑
=

− −=
j

k
kkj PPQ

1

2
1 .  The time-varying control limits of the

GWMA control chart of residuals will be

bjQLUCL σ+ξ= 0

0ξ=CL

.0 bjQLLCL σ−ξ= (13)
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For computing convenience, we choose

...,,3,2,1,0,0,10, =>α<≤=
α

jqqP j
j

where the design parameter q is constant, and the adjustment parameter
α is determined by the practitioner. According to Eq. (10), we obtain

( ( ) ) ( )∑
−

+−
− ξ+−=

ααα
j

k

j
kj

kk
j qeqqY

1
01

1 ,

....,3,2,1,0,10 =>α<≤ jq (14)

If 1=α  and q−=λ 1  is set, then Eq. (14) can be transformed into

( ) ( ) ( )∑
−

+−
− =≤λ<ξλ−+λ−λ=

j

k

j
kj

j
j jeY

1
01

1 ....,3,2,1,10,11

That is the EWMA control chart. When ,1=λ  the EWMA control chart

becomes the Shewhart control chart. Consequently, the EWMA and
Shewhart control charts are special cases of the GWMA control chart of
residuals.

4. Measuring the Performance of Control Charts

The control chart performance is generally assessed in terms of its
ARL. The ARL is expected to be as large as possible when it is under
control and as small as possible when a process is out of control.
Accordingly, in measuring the statistical performance, ARLs of various
shifts in process means for a single in-control ARL are compared. Greater
detection ability corresponds to a shorter out-of-control ARL. Some work
has already been done on computing the ARL of an EWMA control
scheme (see, for example, Crowder [3], Roberts [9], Robinson and Ho [10],
Saccucci and Lucas [11]). Many methods have been proposed, including
integral equations, Markov chain, asymptotic approximation and
simulation. Since the GWMA statistic is more complicated than that of
EWMA, determining the exact ARL for given control limits is complex.
This work determines appropriate parameters of GWMA control charts
of residuals to estimate ARLs. The following five steps should be
implemented in simulations:
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Step 1. Specify parameters φ and Ψ, shift size 1ξ  and the charting

parameter ( ).,, Lq α

Step 2. Generate a set of simulation data in an AR(1) process with
random error and calculate the residuals by fitting the ARMA ( )11,

model.

Step 3. Calculate the GWMA control statistic jY  according to Eq. (10)

at the target value 00 =ξ  and the corresponding time-varying upper

control limit (UCL) and lower control limit (LCL) according to Eq. (13).
Record the run length (RL) when jY  exceeds the control limits and the

trial halts; return to Step 2.

Step 4. Run n iterations; the average of n run lengths with the
specific parameters is obtained. Modify the control limit constant (L)
using a bisectional approach to achieve the desirable in-control ARL.

Step 5. Set the in-control parameters to monitor the process and
calculate the out-of-control ARLs when the process shifts.

The simulation is performed using R Programming for Statistics.
Each simulation runs 10,000 iterations. The approximate standard error

of an ARL can be computed as ,
n

SDRL  where SDRL be the standard

deviation of run length and n denotes the number of simulation iterations
per run. The value of SDRL is approximately equal to that of ARL.
For instance, when 000,10=n  and the ARL is roughly 370.4, the

approximate standard error will be 3.70, an acceptable error level.

Table 1 presents the ARL results for the GWMA control charts of
residuals with the time-varying control limits of interest for 1.0=ψ  and

Table 2 shows the results for ,9.0=ψ  with various design parameters

( )9.0,7.0,5.0 === qqqq  and adjustment parameters ( ,5.0=αα  ,7.0=α

).0.1,9.0,8.0 =α=α=α  The values of φ, which quantifies the correlation

between 1−µ j  and ,jµ  are set to 0.4 and 0.8. Usually, a positive

correlation would be more likely in applications; consequently, the
negative values of φ in the numerical results are neglected. Therefore, the
correlation between 1−jX  and jX  ranges from ( ) ( ) 04.04.01.0 ==ψφ=ρ
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to ( ) ( ) ,72.08.09.0 =  where 22
Xσσ=ψ µ  is the proportion of the process

variance due to the AR(1) process. The width of the control limits (L) is
adjusted to maintain the in-control ( )00 =ξ  ARL at around 370.4.

Restated, type I errors are set to 0.0027 for different GWMA control
schemes, whereas out-of-control ARLs are applied for comparison.

Table 1. ARLs of GWMA charts with time-varying control
limits when 1.0=ψ

4.0=φ 8.0=φ

5.0=q 5.0=q

5.0=α 7.0=α 8.0=α 9.0=α 0.1=α 5.0=α 7.0=α 8.0=α 9.0=α 0.1=α

1ξ L = 2.992 L = 2.987 L = 2.986L = 2.982 L = 2.980 L = 3.002 L = 2.996 L = 2.995 L = 2.993 L = 2.989

0.00 370.39 370.03 370.16 370.60 370.31 370.62 370.81 370.43 370.56 370.81

0.25 190.92 196.64 202.45 205.82 209.30 232.78 239.41 243.01 247.26 249.90

0.50 69.55 72.41 75.38 77.91 80.86 100.73 105.21 108.41 111.49 113.82

0.75 31.33 31.78 32.72 33.63 34.55 46.80 47.56 49.26 51.11 52.80

1.00 16.74 16.23 16.48 16.76 17.20 24.89 24.63 25.23 25.97 26.69

1.25 10.26 9.61 9.57 9.60 9.74 14.52 13.89 14.15 14.37 14.74

1.50 6.88 6.38 6.28 6.23 6.27 9.40 8.72 8.70 8.78 8.86

2.00 3.82 3.55 3.49 3.45 3.41 4.74 4.42 4.35 4.32 4.31

3.00 1.76 1.71 1.69 1.68 1.67 2.01 1.93 1.90 1.88 1.87

7.0=q 7.0=q

5.0=α 7.0=α 8.0=α 9.0=α 0.1=α 5.0=α 7.0=α 8.0=α 9.0=α 0.1=α

1ξ L = 2.978 L = 2.956 L = 2.948L = 2.939 L = 2.934 L = 2.992 L = 2.973 L = 2.963 L = 2.957 L = 2.951

0.00 370.72 370.27 370.67 370.33 370.91 370.70 370.01 370.43 370.29 370.17

0.25 131.11 140.10 147.57 154.81 162.45 169.33 182.22 190.01 199.28 207.10

0.50 44.43 44.17 46.42 49.08 52.75 62.19 63.71 66.93 71.48 76.78

0.75 21.38 19.87 20.25 21.00 22.10 29.85 28.63 29.55 31.28 33.37

1.00 12.58 11.25 11.20 11.30 11.57 17.01 15.56 15.61 16.11 16.77

1.25 8.18 7.30 7.13 7.11 7.17 10.89 9.76 9.61 9.72 9.96

1.50 5.85 5.26 5.13 5.04 5.04 7.44 6.66 6.51 6.48 6.54

2.00 3.47 3.18 3.10 3.05 3.01 4.17 3.80 3.69 3.65 3.63

3.00 1.70 1.65 1.63 1.61 1.60 1.92 1.83 1.81 1.79 1.77
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9.0=q 9.0=q

5.0=α 7.0=α 8.0=α 9.0=α 0.1=α 5.0=α 7.0=α 8.0=α 9.0=α 0.1=α

1ξ L = 2.896 L = 2.798 L = 2.762L = 2.739 L = 2.729 L = 2.920 L = 2.829 L = 2.799 L = 2.777 L = 2.766

0.00 370.48 370.55 370.62 370.38 370.41 370.53 370.22 370.10 370.08 370.51

0.25 81.78 78.66 82.27 89.01 97.49 106.50 104.48 110.76 120.46 131.75

0.50 30.43 26.94 26.83 27.67 29.25 40.51 36.19 36.70 38.41 41.29

0.75 16.05 13.82 13.54 13.59 13.85 21.24 18.32 18.11 18.38 18.97

1.00 10.01 8.57 8.31 8.26 8.33 12.98 11.13 10.91 10.91 11.09

1.25 6.84 5.91 5.73 5.66 5.68 8.74 7.55 7.36 7.29 7.33

1.50 5.05 4.38 4.24 4.18 4.17 6.25 5.43 5.28 5.24 5.25

2.00 3.12 2.79 2.70 2.65 2.64 3.70 3.27 3.19 3.14 3.14

3.00 1.62 1.52 1.49 1.48 1.47 1.81 1.69 1.65 1.64 1.63

Table 2. ARLs of GWMA charts with time-varying control
limits when 9.0=ψ

4.0=φ 8.0=φ

5.0=q 5.0=q

5.0=α 7.0=α 8.0=α 9.0=α 0.1=α 5.0=α 7.0=α 8.0=α 9.0=α 0.1=α

1ξ L = 2.994 L = 2.987 L = 2.986L = 2.983 L = 2.981 L = 2.993 L = 2.988 L = 2.986 L = 2.984 L = 2.981

0.00 370.76 370.21 370.98 370.97 370.41 370.06 370.21 370.81 370.89 370.81

0.25 254.16 260.30 263.79 267.43 270.28 333.25 334.62 335.46 339.38 339.11

0.50 121.77 126.89 130.20 134.30 137.61 244.93 250.42 254.59 256.63 261.07

0.75 60.37 62.12 64.52 66.84 69.43 163.29 170.00 173.78 177.02 179.66

1.00 33.66 34.11 35.08 36.15 37.51 105.46 110.95 114.22 116.72 120.50

1.25 20.34 19.77 20.20 20.65 21.37 67.91 70.26 72.95 75.12 77.19

1.50 13.23 12.49 12.56 12.74 13.03 43.13 43.73 45.10 46.37 47.86

2.00 6.43 5.90 5.87 5.80 5.84 16.05 15.86 16.13 16.51 16.88

3.00 2.15 2.01 1.97 1.94 1.92 1.89 1.80 1.77 1.75 1.75

7.0=q 7.0=q

5.0=α 7.0=α 8.0=α 9.0=α 0.1=α 5.0=α 7.0=α 8.0=α 9.0=α 0.1=α

1ξ L = 2.980 L = 2.959 L = 2.949L = 2.941 L = 2.932 L = 2.980 L = 2.960 L = 2.950 L = 2.941 L = 2.932

0.00 370.54 370.74 370.34 370.95 370.88 370.60 370.71 370.55 370.37 370.24

0.25 191.52 206.42 214.52 224.02 230.52 303.70 309.90 315.20 318.28 318.45

0.50 76.22 79.21 83.90 90.60 95.78 180.61 195.16 203.26 212.31 217.66
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0.75 38.38 37.90 39.46 41.95 44.53 106.74 113.54 121.01 127.57 133.89

1.00 33.42 20.84 21.20 22.16 23.37 64.69 66.76 70.46 74.77 79.74

1.25 14.45 13.01 12.96 13.25 13.62 41.14 40.87 42.60 44.89 47.73

1.50 9.94 8.79 8.62 8.63 8.76 25.98 25.04 25.80 26.97 28.60

2.00 5.33 4.73 4.58 4.50 4.47 10.27 9.03 8.97 9.19 9.49

3.00 1.99 1.83 1.79 1.75 1.74 1.59 1.44 1.41 1.39 1.38

9.0=q 9.0=q

5.0=α 7.0=α 8.0=α 9.0=α 0.1=α 5.0=α 7.0=α 8.0=α 9.0=α 0.1=α

1ξ L = 2.898 L = 2.798 L = 2.763L = 2.739 L = 2.726 L = 2.901 L = 2.800 L = 2.766 L = 2.741 L = 2.726

0.00 370.71 370.19 370.35 370.02 370.14 370.25 370.68 370.72 370.03 370.53

0.25 122.69 123.58 130.66 140.87 153.11 230.90 236.18 244.64 256.99 269.08

0.50 49.36 44.63 45.78 48.23 52.41 114.02 113.11 119.44 128.79 139.90

0.75 26.55 23.02 22.80 23.28 24.47 65.18 59.56 61.84 66.55 72.76

1.00 16.45 13.97 13.59 13.67 13.92 40.24 34.88 35.21 36.92 40.07

1.25 11.12 9.30 9.00 8.91 8.99 26.13 21.61 21.37 21.88 23.07

1.50 7.88 6.58 6.34 6.26 6.26 17.04 12.51 13.01 12.93 13.43

2.00 4.47 3.75 3.68 3.47 3.44 6.95 5.21 4.88 4.75 4.74

3.00 1.80 1.61 1.56 1.53 1.51 1.38 1.23 1.19 1.18 1.17

Tables 1 and 2 concern the effectiveness of the GWMA and EWMA

control charts of residuals with time-varying control limits in monitoring

the autocorrelated process mean. When ,0.1=α  the GWMA control

scheme reduces to the EWMA control scheme. For the same level of

autocorrelation, the adjustment parameter α of the GWMA control chart

of residuals is more sensitive to small shifts in the autocorrelated process

mean than to those of the EWMA control chart of residuals with time-

varying control limits. The boldface figures in Tables 1 and 2, especially

when q is small, clarify the results. For instance, when ,1.0=ψ  ,8.0=φ

8.0=α  and 5.0=q  within a shift of 1.50, the out-of-control ARL is

smaller than the ARL of  the EWMA control chart of residuals with time-

varying control limits. However, when q is large, no enhancement in

detection ability is evident. For example, when ,08.0=ρ  8.0=α  and q

is increased to 0.9, the GWMA control chart is superior to the EWMA

control chart of residuals with time-varying control limits within a shift

of 1.0.
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Numerical results also demonstrated that the detection ability of

GWMA control charts of residuals with time-varying control limits

increases with the level of autocorrelation. In particular, at the high level

of autocorrelation 72.0=ρ  and 5.0=q , the GWMA control chart is

more sensitive than the EWMA control chart of residuals with time-

varying control limits at a shift of up to .2σ  Since ,ψφ=ρ  parameters ψ

and φ affect the autocorrelation coefficient. Furthermore, ψ represents the

proportion of the process variance that is due to the AR(1) process and

has little impact on the ability to detect small shifts in an autocorrelated

process mean. However, φ denotes the strength of correlations among

preceding data. Therefore, the influence of φ on detection ability exceeds

that of ψ.

5. Example

Table 3 presents a numerical example of the GWMA control chart of
residuals, using simulated data to illustrate the GWMA control scheme.
50 simulation data are listed in Table 3. The first ten samples are
assumed to be in control at a target value 00 =ξ  and a shift in the mean

of σ5.0  is assumed to occur during the last 40 samples. Original

observations jX  obtained from the AR(1) model in Eqs. (5) and (6)

,4.0=φ  ,0.1=σ  1.02 =σε  and 9.0=ψ  are evaluated, indicating that

90% of the variability in this process is associated with the variation in

tµ  and the correlation between adjacent observations is given by

.36.0=ψφ=ρ  By the equivalence of the relationships, the corresponding

parameters in the ARMA ( )11,  model in Eq. (7) are ,4.0=φ  046.0=θ

and .870.02 =σb  After the ARMA ( )11,  model is fitted, the residuals can

be calculated and then these independent residuals adopted to construct
the corresponding EWMA control statistics ( )jZ  and GWMA control

statistics ( ).jY  Within this table, the threshold for in-control is set to

370~=ARL  and the parameters ,9.0=q  0.1=α  and 726.2=L  for the

EWMA control chart of residuals are compared to ,9.0=q  5.0=α  and

898.2=L  for the GWMA control chart of residuals. The EWMA control

chart of residuals has an out-of-control signal at residual 49. The GWMA
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control chart of residuals obtains an out-of-control signal at residual 41. A
comparison to Table 2 reveals that only an average of 49.36 samples is
required to enable the GWMA control chart of residuals to identify an
out-of-control signal, while 52.41 samples are needed to enable the
EWMA control chart of residuals. That is, the GWMA control scheme
detects small shifts more rapidly than the EWMA control scheme. Figure
1(a) plots the EWMA control statistics and Figure 1(b) plots the GWMA
control statistics, together with the original data from Table 3.

Table 3. Examples of EWMA and GWMA control charts of residuals
using data from AR(1) process initially in control

EWMA GWMA

j jX jZ LCL UCL jY LCL UCL

1 0.365 0.005 –0.254 0.254 0.005 –0.270 0.270

2 0.369 0.171 –0.342 0.342 0.168 –0.289 0.289

3 1.591 0.157 –0.399 0.399 0.068 –0.299 0.299

4 0.743 0.227 –0.440 0.440 0.135 –0.306 0.306

5 1.482 0.288 –0.470 0.470 0.157 –0.310 0.310

6 1.624 0.227 –0.494 0.494 0.058 –0.314 0.314

7 0.582 0.285 –0.512 0.512 0.142 –0.317 0.317

8 1.501 0.062 –0.526 0.526 –0.108 –0.319 0.319

9 –1.115 0.039 –0.537 0.537 –0.018 –0.321 0.321

10 0.008 0.143 –0.546 0.546 0.110 –0.323 0.323

11 1.182 0.165 –0.553 0.553 0.085 –0.324 0.324

12 0.252 0.263 –0.559 0.559 0.169 –0.326 0.326

13 1.123 0.159 –0.564 0.564 0.012 –0.327 0.327

14 –0.604 0.197 –0.567 0.567 0.098 –0.328 0.328

15 0.384 0.097 –0.570 0.570 –0.016 –0.329 0.329

16 –0.955 0.015 –0.573 0.573 –0.047 –0.330 0.330

17 –1.204 0.148 –0.575 0.575 0.134 –0.331 0.331

18 0.600 0.204 –0.576 0.576 0.129 –0.331 0.331

19 0.298 0.194 –0.578 0.578 0.086 –0.332 0.332
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20 –0.174 0.198 –0.579 0.579 0.091 –0.333 0.333

21 –0.105 0.268 –0.579 0.579 0.157 –0.333 0.333

22 0.529 0.285 –0.580 0.580 0.139 –0.334 0.334

23 0.249 0.401 –0.581 0.581 0.241 –0.334 0.334

24 1.268 0.366 –0.581 0.581 0.144 –0.335 0.335

25 0.168 0.513 –0.581 0.581 0.302 –0.335 0.335

26 1.825 0.544 –0.582 0.582 0.257 –0.336 0.336

27 1.195 0.453 –0.582 0.582 0.141 –0.336 0.336

28 0.053 0.358 –0.582 0.582 0.088 –0.336 0.336

29 –0.366 0.344 –0.582 0.582 0.129 –0.337 0.337

30 0.067 0.306 –0.582 0.582 0.106 –0.337 0.337

31 –0.236 0.134 –0.582 0.582 –0.040 –0.337 0.337

32 –1.731 0.141 –0.583 0.583 0.060 –0.338 0.338

33 –0.594 0.208 –0.583 0.583 0.138 –0.338 0.338

34 0.047 0.249 –0.583 0.583 0.151 –0.338 0.338

35 0.058 0.289 –0.583 0.583 0.169 –0.338 0.338

36 0.204 0.341 –0.583 0.583 0.198 –0.339 0.339

37 0.470 0.333 –0.583 0.583 0.162 –0.339 0.339

38 0.071 0.312 –0.583 0.583 0.140 –0.339 0.339

39 –0.105 0.297 –0.583 0.583 0.137 –0.339 0.339

40 –0.121 0.337 –0.583 0.583 0.185 –0.339 0.339

41 0.356 0.532 –0.583 0.583 0.362 –0.340 0.340

42 2.058 0.553 –0.583 0.583 0.282 –0.340 0.340

43 1.062 0.570 –0.583 0.583 0.276 –0.340 0.340

44 1.067 0.415 –0.583 0.583 0.107 –0.340 0.340

45 –0.644 0.582 –0.583 0.583 0.351 –0.340 0.340

46 1.999 0.398 –0.583 0.583 0.091 –0.340 0.340

47 –0.873 0.372 –0.583 0.583 0.154 –0.341 0.341

48 –0.017 0.523 –0.583 0.583 0.329 –0.341 0.341

49 1.660 0.705 –0.583 0.583 0.440 –0.341 0.341

50 2.547 0.738 –0.583 0.583 0.373 –0.341 0.341
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(a) The EWMA control chart of residuals.

(b) The GWMA control chart of residuals.

Figure 1. The EWMA and GWMA control chart of residuals.

6. Composite Shewhart-GWMA Control Charts of Residuals

Previously, the GWMA control chart of residuals has outperformed
the EWMA control scheme in detecting changes in autocorrelated process
means. The Shewhart control chart is known to detect effectively
relatively large process mean shifts. Accordingly, this section presents
the composite Shewhart-GWMA control chart of residuals to monitor the
process mean of autocorrelated processes. A Shewhart chart is combined
with a GWMA chart. Both can be conveniently plotted on a single graph
with control limits for the Shewhart chart of bσ±ξ 30  and those for

GWMA of .0 bjQL σ±ξ  Figure 2 plots the composite Shewhart-GWMA

control chart of residuals derived from the original data in Table 3. A
false alarm occurs when the statistic exceeds either control limit.
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Figure 2. Composite Shewhart-GWMA control chart of residuals.

Simulations are performed herein to estimate the various ARLs,

including GWMA charts, Shewhart charts and composite Shewhart-

GWMA charts of residuals. Tables 4 and 5 are for ,1.0=ψ  and ,9.0=ψ

respectively, with various design parameters ( ).,, Lq α  For a fair

comparison, the design parameters of the composite Shewhart-GWMA

chart are adjusted to match the in-control ARL of the GWMA control

charts of residuals. Regardless of the level of autocorrelation, the

composite Shewhart-GWMA control chart outperforms the Shewhart

chart in detecting an autocorrelated process shift. For small shifts, the

composite Shewhart-GWMA control chart outperforms the GWMA control

chart, but neither is detectably better when the shifts are moderate or

large. For instance, when ,36.0=ρ  ,9.0=q  ,1=α  726.2=L  and shift

,25.0=  the ARL of the composite Shewhart-GWMA control chart, 113.20,

is smaller than that of the GWMA control chart, 153.11. Although the

composite Shewhart-GWMA control chart of residuals is more sensitive to

small mean shifts, its rate of false alarms is higher. However, when the

small shifts in the autocorrelated process mean and the high cost of

quality-failure are considered, the composite Shewhart-GWMA control

chart may be recommended.
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7. Conclusions

When quality characteristics no longer meet a standard independent
assumption, a control chart for autocorrelated observations must be
considered to monitor the process to avoid an increase in the frequency of
false alarms. Many authors have recently noted this characteristic. Lu
and Reynolds [5] demonstrated that when the observations are drawn
from an AR(1) process with a random error, the EWMA control chart of
residuals needs less time to identify a special cause than the Shewhart
control chart of residuals. This study presented a statistical approach for
extending the EWMA scheme to the GWMA scheme by adding an
adjustment parameter. Of course, any chart based on residuals will fit a
model that can be employed to calculate the residuals. This investigation
considers observations taken from the AR(1) process with a random error
and residuals fitted by the ARMA(1, 1) model. Numerical results have
shown that the GWMA control chart of residuals is superior to the EWMA
control chart of residuals in detecting small shifts in the autocorrelated

process mean-specifically those under 1σ. The GWMA control chart of

residuals requires less time to detect small process mean shifts as the
level of autocorrelation declines. However, the GWMA and EWMA control
charts of residuals exhibit similar detection abilities at large shift.

The Shewhart and EWMA control schemes are merely special cases of

the GWMA control chart of residuals in relation to autocorrelated

problems. The composite Shewhart-GWMA control chart has the

advantage of simultaneously detecting small and large process shifts.

Numerical analyses have established that the composite Shewhart-

GWMA control chart can detect small shifts more quickly than the

GWMA control chart. If detecting small shifts in the autocorrelated

process mean is more important than avoiding spending time to identify

false alarms, then the use of the composite Shewhart-GWMA control

chart may be favored. Besides, another concern is the increase in

variation over time, rather than only a mean shift.
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