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Abstract

This paper extends the discrete-time Chandrasekhar recursions due to

Morf et al. [22] to the case of periodic time-varying state-space models.

Exploiting the S-periodicity of the model parameters, we show that the

S-lagged increments of the Riccati variable satisfy certain recursions,

from which we derive some algorithms for linear least squares

estimation. The proposed methods may have potential computational

advantages over the Kalman filter and, in particular, the periodic

Riccati difference equation. Application of the proposed periodic

Chandrasekhar recursions to the likelihood evaluation of periodic

ARMA models is given.

1. Introduction

A considerable attention has been paid in the three recent decades to

the Chandrasekhar type recursions since they represent attractive

alternatives to the Kalman filter for time-invariant state-space

models [8], [11], [13], [21], [22], [24] and [25]. At present, there exist

several useful applications of the Chandrasekhar filter in improving
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computational aspects related to the building of linear time-invariant

models. We mention non exhaustively the likelihood evaluation (see [16],

[19], [23], for ARMA models and [26] for vector ARMA models), the

calculation of the exact Fisher information matrix (see [20] for the ARMA

case and [15] for general dynamic time-invariant models), and the

development of fast variants of the recursive least squares algorithm [10],

[24]. As is well known, the Chandrasekhar equations are restricted to the

case of time-invariant state-space models because of their particular time

invariance structure and it seems that there is no result tied to the class

of all nonstationarity, except in very special cases [24]. A particular class

of nonstationarity whose importance has no need to be proven is the one

of periodic linear models. Important progress has been made recently

in the building and analysis of periodic ARMA (PARMA) and periodic

state-space characterizations. The objective was to develop extensions

of similar methods for standard time-invariant models to their

periodic counterparts, without transforming periodic systems to their

corresponding multivariate time-invariant representations in order to

simplify the computational burden. Despite the current abundance of

computational methods for periodic state-space models (see [1], [17], [28]

and the references therein) it seems that there is no result concerning

extensions of the Chandrasekhar recursions to the periodic case. This

paper proposes some algorithms for linear least squares estimation of

periodic state-space models. Our methods extend the Chandrasekhar

algorithms proposed by Morf et al. [22] to the periodic time-varying

case and retain their desirable features. As a result, the periodic

Chandrasekhar recursions are used through the innovation approach to

efficiently evaluate the likelihood of periodic ARMA models.

The rest of this paper is organized as follows. Section 2 briefly

recalls some preliminary definitions and facts about periodic state-space

models and their corresponding Kalman filter. In Section 3 we develop

some Chandrasekhar-type algorithms that substitute the Kalman filter

for periodic state-space models. Application of the proposed periodic

Chandrasekhar recursions to the PARMA likelihood evaluation is given

in Section 4.



w
w

w
.p

ph
m

j.c
om

CHANDRASEKHAR-TYPE RECURSIONS FOR PERIODIC … 67

2. Preliminary Definitions and Notations

The basic model dealt with by this paper is the following periodic

state-space form
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(δ stands for the Kronecker function). The nonrandom matrix coefficients

,, tt GF  and tH ′  and the covariance matrices ,, tt RQ  and tW  are periodic

in time with period S. To simplify the exposition we suppose without loss

of generality that

( ) .,0 Z∈∀=ε′ ltE lte

Let tx̂  and tŷ  be the linear least squares forecasts of tx  and ,ty

respectively, based on ....,,, 121 −txxx  Then as is well known, tx̂  and tŷ

may be uniquely obtained from the Kalman filter [14] which is given by

the following recursions:

,ttttt RHH +∑′=Ω (2.2a)

,tttt HFK ∑= (2.2b)

,ˆˆ ttt H xy ′= (2.2c)
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,ˆˆˆ 1
1 tttttt KF exx −
+ Ω+= (2.2d)

,1
1 tttttttttt GQGKKFF ′+′Ω−′∑=∑ −
+ (2.2e)

with starting values

( ) ,0ˆ 11 == xx E (2.2f)

( ) ,1111 WE =′=∑ xx (2.2g)

where ttt yye ˆˆ −=  is the ty -residuals with covariance matrix =∑Ω tt ,

[( ) ( ) ]′−− ttttE xxxx ˆˆ  is interpreted as the covariance matrix of the one-

step state prediction errors, and ( )ttt EK ex ′= + ˆ1  is known as the Kalman

gain. The notation 0≥A  means that the matrix A is nonnegative definite.

Recursion (2.2e) based on the starting equation (2.2f) is usually called

the periodic Riccati difference equation (PRDE). If Skt+∑  converges as

∞→k  for all { },...,,1 St ∈  then the S-periodic limiting solution

SktktP +∞→
∑= lim  will satisfy the following discrete-time matrix periodic

Riccati equation (DPRE)

( ) tttttttttttttt FPHRHPHHPFFPFP ′′+′−′= −
+

1
1

{ },...,,1, StGQG ttt ∈′+ (2.3)

which has been extensively studied (see for example [3] for some

theoretical aspects and [9] for a numerical resolution). As is well-known,

the resolution of (2.2e) requires ( )3rO  operations per iteration. This can

be significantly reduced taking into account the periodic invariance

property of the model parameters. Furthermore, the solution t∑  must

be nonnegative definite, a property that is not easy to preserve in a

numerical resolution of (2.2e). The following section proposes some

recursions that avoid these drawbacks and have further advantages over

the Kalman filter (2.2).
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3. Periodic Chandrasekhar-type Equations

For the time-invariant coefficient case, Morf et al. [22] proposed

recursions that substitute the Kalman filter (2.2) with a simpler

computational complexity. The new algorithms have been called

Chandrasekhar-type recursions because they are analog of certain

differential equations encountered in continuous-time models [13]. The

recursions proposed in this section and which are aimed to generalize

Morf et al.’s algorithms [22] to the periodic case will be called analogously

periodic Chandrasekhar-type equations. This, of course, will not mean

that there is an analog of our recursions in the periodic continuous-time

case.

A. Periodic Chandrasekhar factorization

The derivation of our recursions is similar to its classical counterpart

and is based on the factorization result given below (see Proposition 3.1).

Let tStt
S ∑−∑=∑∆ +  denote the S-lagged increment of the Riccati

variable, for given .0...,,, 21 ≥∑∑∑ S  Then, one can prove the following

result.

Proposition 3.1. The S-lagged increment t
S ∑∆  satisfies the following

difference equations

( ) [ ]t
S

tttt
S

t
S

tStSttt
S HHHKF ∑∆′Ω∑∆+∑∆′Ω−=∑∆ −−

+++
11

1

( )′′Ω− −
++ tStStt HKF 1 (3.1)

( ) [ ]t
S

tSttt
S

t
S

tttt HHHKF ∑∆′Ω∑∆+∑∆′Ω−= −
+

− 11

( ) .1 ′′Ω− −
tttt HKF (3.2)

Proof. (i) From (2.2e) we have

 ,
~~~~

1 tttStStSttt
S

tt
S KKKKFF ′Ω+′Ω−′∑∆=∑∆ ++++ (3.3)
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where 1~ −Ω= ttt KK  and from (2.2a) the covariance matrix tΩ  satisfies the

following recursion:

tt
S

ttSt HH ∑∆′+Ω=Ω +

.t
S

t
def

Ω∆+Ω=  (3.4)

On the other hand, tK
~

 may be written in the following backward recursive

form:

( ) 1~ −
+ Ω∑∆−∑= ttt

S
ttSttt HFHFK

( ) 1~ −
++ Ω∑∆−Ω= ttt

S
tStSt HFK

[ ( ) ] 1~ −
+ Ω∑∆−+∑′+∑∆′= ttt

S
ttttttt

S
tSt HFRHHHHK

( ) 1~~ −
++ Ω∑∆′−−= ttt

S
tSttSt HHKFK

.
~~

t
S

St
def

KK ∆−= + (3.5)

Using (3.4) and (3.5) into (3.3) we obtain

( ) Stt
S

tSttt
S

tt
S KKFF +++ ′Ω∆+Ω−′∑∆=∑∆ ~~

1

( ) ( ) .
~~~~ ′∆−Ω∆−+ ++ t

S
Sttt

S
St KKKK (3.6)

Expansion of terms in the right hand-side of (3.6) with some

straightforward manipulations gives (3.1).

(ii) A similar argument can be used to derive (3.2). It suffices to show

that

( ) 1~~ −
++ Ω∑∆′−+= Sttt

S
ttttSt HHKFKK

,
~~

t
S

t KK ∆+=

and replacing this latter relation with (3.4) into (3.3) we obtain (3.2).
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Proposition 3.1 shows that t
S ∑∆  may be factorized as follows:

,tttt
S YMY ′=∑∆ (3.7)

where tM  is a square symmetric matrix, non necessarily nonnegative

definite, of dimension rank ( ),1∑∆S  which is at least equal to rank ( ).t
S ∑∆

Indeed, from (3.1) we have

( ) ( ) ( ) .rankrankrank 11 rS
t

S
t

S ≤∑∆≤≤∑∆≤∑∆ +

This can be exploited to derive some recursions with the best

computational complexity than the filter (2.2).

B. Algorithms

Thanks to the factorization result given by Proposition 3.1, the

matrices tY  and tM  can be obtained recursively. The following algorithm

shows that the periodic Riccati difference equation (2.2e) may be replaced

by a set of recursions on ttt YK ,,Ω  and tM  with a reduction in

computational efforts, especially when the state dimension r is much

larger than m, the dimension of .ty

Algorithm 3.1. The Kalman filter (2.2) can be replaced by (2.2c),

(2.2d) and the following recursions:

,ttttttSt HYMYH ′′+Ω=Ω + (3.8a)

( ),ttttttSt HYMYFKK ′+=+ (3.8b)

( ) ,1
1 ttStSttt YHKFY ′Ω−= −

+++  (3.8c)

,1
1 ttttttttt MYHHYMMM ′Ω′+= −
+ (3.8d)

with initialization given by

,...,,1, SsHH ssss =∑′=Ω (3.8e)

,...,,1, SsHFK ssss =∑=  (3.8f)
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where Sss ...,,1, =∑  are found from (2.2e) and (2.2g), while 1Y  and 1M

are obtained by factorizing nonuniquely

 111 ∑−∑=∑∆ +S
S

,1
1 ∑−′+′Ω−′∑= −

SSSSSSSSS GQGKKFF (3.8g)

as

.111 YMY ′

Derivation (3.8a) is just (3.4) when using (3.7), while (3.8b) follows from

(3.7) and the relation

( ).tt
S

ttttSt HFHFK ∑∆+∑=+

On the other hand, (3.8c) and (3.8d) follow from (3.1) which we rewrite

using (3.7) as

( ) ( )ttttttttttStSttt
S MYHHYMMYHKF ′Ω′+′Ω−=∑∆ −−

+++
11

1

( )′′Ω−′ −
++ tStSttt HKFY 1

.111 +++ ′= ttt YMY

Note that the PRDE (2.2e) must be executed for Ss ...,,1=  to start the

recursions (3.8). However, for St >  the recursive calculation of t∑  is not

dealt with by the above algorithm but can be deduced from it through the

following equation:

....,,1,
1

0

SsYMY
k

j
sjSsjSsjSsskS =′+∑=∑ ∑

−

=
++++

Similarly to the time-invariant case [22], other forms of Algorithm 3.1

can be derived from Proposition 3.1. The following variant is particularly

well adapted when ,01 <M  in which case we have 0≤tM  for any t.

This case is encountered whenever the periodic state-space model (2.1) is

periodically stationary as we can see in the following subsection.
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Algorithm 3.2. The following set of recursions in which (3.8a), (3.8b)

and (3.8e)-(3.8g) are unchanged while (3.8c) and (3.8d) are replaced by

( ) ,1
1 tttttt YHKFY ′Ω−= −
+ (3.9a)

,1
1 tttStttttt MYHHYMMM ′Ω′−= −

++ (3.9b)

provides the same results as Algorithm 3.1.

Derivation. The derivation is similar to that of Algorithm 3.1, but is

based on the factorization (3.2) rather than (3.1).

It is still possible to derive other forms similarly to the standard

time-invariant case. The homogenous periodic Riccati difference equation

(3.8d) can be linearized using the matrix inversion lemma [22] through

which, we obtain a recursion on 1−
tM  rather than on tM  as follows:

.111
1 ttSttttt YHHYMM ′Ω′−= −

+
−−

+ (3.10)

The periodic Chandrasekhar recursions given above will be preferred to

the Kalman filter (2.2) whenever the dimension of tY  and/or tM  are

significantly less than that of .t∑  These dimensions are conditioned on

the good choice of the factorization 1111 YMYS ′=∑∆  in the initialization

step which will be studied in the following subsection.

C. The initialization problem

As is well known, the most important step in the development of a

Chandrasekhar algorithm is the initialization step because it modulates

the computational complexity and hence the lack of numerical advantage

over the Kalman filter. In our periodic case, this step depends on the

relation between the period S, the output dimension m, and the state

dimension r. First of all, suppose the process { }tx  given by (2.1) is

periodically stationary, that is, the monodromy matrix ∏
=

−

S

i
iSF

0
 has its

eingenvalues less than unity in modulus. Let us consider two cases.

(i) Case where rSm <
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As pointed out in (3.8g) the start up values 1Y  and 1M  are determined

by factorizing 1∑∆S as .111 YMY ′  Iterating (3.8g) S times and invoking the

fact that under the periodic stationarity assumption, 1∑  satisfies the

following discrete-time periodic Lyapunov equation (DPLE) (e.g., [27])

′
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we obtain

∑ ∏∏
−

=

−

=
−−

−
−−

−

=
−

′














′Ω













−=∑∆

1

0

1

0

1
1

0
1

S

k

k

j
jSkSkSkS

k

j
jS

S FKKF (3.11a)

,
0

0

1
1

1

LL
S

′
















Ω

Ω
−=

−

−

(3.11b)

where L is given by

....,,,,
1

0
1211











= ∏

−

=
−−−−

S

j
jSSSSSSS KFKFFKFKL (3.12)

Clearly, when S is fairly less than r, the nonhomogeneous PRDE (2.2e)

may be replaced by the homogenous PRDE (3.9b) which is of lower

dimension. For example, for ,1=m  the complexity of solving (3.8d) or

(3.9b) when using (3.11) as an initialization step is of order ( )3SO  which

is computationally simple to solve compared to the PRDE (2.2e). It is

still possible to improve the computation of (3.11) by alleviating the

formation of the sums of products in (3.12) by using the periodic Schur

decomposition [4], [9].
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(ii) Case where rSm ≥

From the fact that

,01 SSSSS GQGFWF ′+′=∑

we have

SSSSSSSS
S FWFKKFF ′−′Ω−′∑=∑∆ −

0
1

1

[ ] .1
0 SSSSSSSS FHHWF ′∑′′Ω∑−−∑= −

This identifies 1Y  and 1M  as

,1 SFY =

.1
01 SSSSSS HHWM ∑′′Ω∑−−∑= − (3.13)

With such an initialization, the PRDE (3.9b) has the same dimension

as that of the PRDE (2.2e), and it seems that there is no reduction in

the computational cost compared to the Kalman filter. However, the

difference from (2.2e) is that, unlike the ,t∑  the tM  are not required to

be nonnegative-definite (see [22] for the particular time-invariant case).

This helps alleviate the computational complexity of (3.9b).

4. Application to the PARMA Likelihood Evaluation

This section develops an algorithm for the exact likelihood evaluation

for Gaussian PARMA models by means of the innovation approach (e.g.

[18]) which generally gives the likelihood with a number of operations

proportional to the sample size. The innovation approach has been

previously used in the literature for the PARMA likelihood, where the

sample innovations are evaluated either by the Kalman filter [12], [6], or

the innovation algorithm [18]. Here, the sample innovations will be

efficiently obtained through the Chandrasekhar recursion given in

Section 3, whenever the underlying PARMA model is written in a state-

space form.
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Consider the time-invariant orders PARMA model of orders ( )qp,

and period S

,1,,
1 1

,,∑ ∑
= =

−+−++ ≤≤∈εθ−ε=φ−
p

j

q

j
jnSsjstjnSsjsnSs Ssnyy Z (4.1)

where { }Z∈ε tt ,  is a periodic white noise with variance .2
tσ  Let ( ,2

1σ=σ

)′σσ 22
2 ...,, S  be the vector of variance parameter and ( ,,,, 2211 θ′φ′θ′φ′=β′

)SS θ′φ′ ,...,  denote the ( ) 1×+ Sqp  vector of autoregressive and moving

average parameters where ( )′φφφ=φ pssss ,2,1, ...,,,  and ( ,, 2,1, sss θθ=θ

) .1,..., , Ssqs ≤≤′θ  Suppose the model (4.1) is causal and invertible and

the innovation process { }Z∈ε tt ,  is Gaussian. Let tŷ  be the best linear

predictor of ty  based on 121 ...,,, −tyyy  and ttt yy ˆˆ −=ε  be the sample

innovation at time t, with mean square error ( ) .ˆ 2
ttt yyE −=Ω  For a

given realization ( )′= NSyyyy ...,,, 21  of the PARMA process given by

(4.1), the likelihood of β and σ can be expressed in the innovation form

( ) ( ) ( )∏∏ ∑∑
=

−

= =

−

=
+

−
+

−
+

−













εΩ−Ωπ=σβ
S

s

N

n

S

s

N

n
nSsnSsnSs

NS
yL

1

1

0 1

1

0

2121
2 ,ˆ

2
1exp2;, (4.2)

in which we need to evaluate nSsnSs y ++Ω ˆ,  and hence nSs+ε̂  for

Ss ≤≤1  and .10 −≤≤ Nn  This can be recursively achieved using the

Chandrasekhar filter (3.9) instead of the Kalman one [12], [6] or the
innovation algorithm [5], [18], provided that model (4.1) is expressed
in a state-space form. Among several state-space forms that can be used
to represent a PARMA model [12], [2], we choose the well-known

max ( )1, +qp  representation [7], which involves fewer operations. Let

( )1,max += qpr  and define the r-variate process { }Z∈tt ,x  as follows:

( ) ∑
=

−−++−+++ φ=
r

ij
jinSsjinSsnSs yi 1,1x

....,,1,1,1 rijinSsjinSs =εθ− −++−−++ (4.3)



w
w

w
.p

ph
m

j.c
om

CHANDRASEKHAR-TYPE RECURSIONS FOR PERIODIC … 77

Then model (4.1) can be represented in the following state-space form
[12], [2]

,1





′=
ε+=

++

+−++

nSsnSs

nSssnSssnSs

Hy

GF

x

xx
 (4.4)

where

.

0

0
1

,

1

,

00
1

0
01

1,1

1,1

,1

2,1

1,



















=



















θ−

θ−
=



















φ

φ
φ

=

−−+

+

−+

+ HGF

rrs

s
s

rrs

s

s

s

From (4.4), the orthogonal projection nSsy +ˆ  can be expressed as follows:

,ˆˆ nSsnSs Hy ++ ′= x (4.5)

where nSs+x̂  is the best linear predictor of nSs+x  based on ,...,, 11 −+nSsyy

with mean square error covariance matrix

( ) ( ) .ˆˆ ′−−=∑ +++++ nSsnSsnSsnSsnSs E xxxx

The projection nSs+x̂  can be obtained recursively from (2.2d), where

ttt YK ,,Ω  and tM  are found from Algorithm 3.2 which we rewrite for

convenience

,ttttttSt HYMYH ′′+Ω=Ω +

( ),ttttttSt HYMYFKK ′+=+

( ) ,1
1 tttttt YHKFY ′Ω−= −
+

,1
1 tttStttttt MYHHYMMM ′Ω′−= −

++ (4.6)

with start-up values ,...,,1,, SsHFKHH ssssssss =∑=∑′=Ω  where

Sss ...,,2, =∑  are found from (2.2e) and (2.2g), while 1Y  and 1M  are

obtained either from (3.11) or (3.12) according to whether rS <  or not.

On the other hand 1∑  is given from the DPLE

,11
2
110111 GGFWFW ′σ+′==∑ (4.7)

which may be solved for 0W  (e.g., [27]).
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Thus, adopting (4.2)-(4.6), the PARMA likelihood is evaluated with

a computational complexity proportional to the sample size, with

( ( ) )3,min rSO  per iteration.

5. Conclusion

In this paper the discrete-time Chandrasekhar recursions have been

generalized to the periodic time-varying state-space case through several

forms. These recursions allow in a large range of cases to solve the

periodic Riccati difference equation with a considerable reduction in the

computational complexity. Along similar lines to the standard case [21], a

square root version of these recursions can be easily derived in order to

improve the numerical stability of the proposed algorithms. On the other

hand, we have shown how the Chandrasekhar filter can be applied to

efficiently evaluate the PARMA likelihood as an attractive alternative to

the existing methods. Other useful applications for time series analysis

as well as for the periodic system theory can be given, in particular, we

mention the calculation of exact Fisher information matrix for PARMA

models and the development of fast RLS algorithms for periodic systems.
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