CONTINUOUS DEFORMATIONS FROM C^* -ALGEBRAS TO THEIR DIAGONALS

TAKAHIRO SUDO

Department of Mathematical Sciences Faculty of Science University of the Ryukyus Nishihara, Okinawa 903-0213, Japan e-mail: sudo@math.u-ryukyu.ac.jp

Abstract

In this paper, we study continuous deformations from C^* -algebras to their diagonals by some examples. Furthermore, we obtain existence theorems of certain types of continuous deformation concerning C^* -algebras.

Introduction

It is customary that C^* -algebras (with operator norm topology) are viewed as noncommutative (topological) spaces since commutative ones $C_0(X)$ correspond to locally compact Hausdorff spaces X, where $C_0(X)$ is the C^* -algebra of continuous functions on X vanishing at infinity. Also, continuous fields of C^* -algebras are assumed as a noncommutative analogue to complex vector bundles over spaces. Especially, a continuous deformation from a C^* -algebra $\mathfrak A$ to another $\mathfrak B$ is a continuous field

2000 Mathematics Subject Classification: Primary 46L05.

Keywords and phrases: C^* -algebra, continuous field.

Communicated by Yasuo Matsushita

Received March 12, 2007; Revised May 25, 2007

© 2007 Pushpa Publishing House

 C^* -algebra on the closed interval [0, 1] with fibers \mathfrak{A}_t given by $\mathfrak{A}_t = \mathfrak{A}$ for $0 < t \le 1$ and $\mathfrak{A}_0 = \mathfrak{B}$ at t = 0 (cf. [1]).

In this paper, we study continuous deformations from C^* -algebras to their diagonals (that are commutative C^* -algebras) by some examples. Furthermore, we obtain existence theorems of certain types of continuous deformation concerning C^* -algebras. We also obtain their consequences related with K-theory of C^* -algebras (see [1, 2, 3], for K-theory of continuous deformations of C^* -algebras).

1. Continuous Deformations of C^* -algebras

Let $M_n(\mathbb{C})$ be the C^* -algebra of all $n \times n$ matrices over \mathbb{C} of complex numbers.

Theorem 1.1. There exists a continuous deformation from $M_n(\mathbb{C})$ to \mathbb{C}^n .

Proof. Define an $M_n(\mathbb{C})$ -valued function on [0, 1]:

$$X_{t} = \begin{pmatrix} a_{11} & ta_{12} & \cdots & ta_{1n} \\ ta_{21} & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & ta_{n-1,t} \\ ta_{n,1} & \cdots & ta_{n,n-1} & a_{nn} \end{pmatrix} = D + tN,$$

for any $X \in M_n(\mathbb{C})$ and $t \in [0, 1]$, where D is the diagonal matrix (or part) of X and N = X - D is the off-diagonal matrix (or part) of X. It is clear that $X_1 = X$ and $X_0 = D$. We identify $X_0 = D$ with the element $a_{11} \oplus a_{22} \oplus \cdots \oplus a_{nn} \in \mathbb{C}^n$. The C^* -algebra generated by the functions X_t for $X \in M_n(\mathbb{C})$ gives a continuous deformation from $M_n(\mathbb{C})$ to \mathbb{C}^n . Indeed, note that

$$| \| X_t \| - \| X_s \| | \le \| X_t - X_s \| = | t - s | \| N \|,$$

for $t, s \in [0, 1]$, and

$$||D|| = \max_{1 \le j \le n} |a_{jj}| = ||a_{11} \oplus a_{22} \oplus \cdots \oplus a_{nn}||,$$

where $M_n(\mathbb{C})$ has the operator norm and \mathbb{C}^n has the maximum norm. Also, for $X = D_1 + N_1$ and $Y = D_2 + N_2$ in $M_n(\mathbb{C})$ the same decomposition as above,

$$X_t + Y_t = D_1 + D_2 + t(N_1 + N_2),$$

$$X_t Y_t = (D_1 + tN_1)(D_2 + tN_2) = D_1 D_2 + t(D_1 N_2 + N_1 D_2 + tN_1 N_2),$$

from which addition and multiplication (and involution) are well defined.

Let $\mathbb{K}(H)$ be the C^* -algebra of all compact operators on a separable infinite dimensional Hilbert space H and $C_0(\mathbb{N})$ be the C^* -algebra of all functions on the set \mathbb{N} of all natural numbers vanishing at infinity (where $C_0(\mathbb{N}) = c_0(\mathbb{N})$ by another notation).

Theorem 1.2. There exists a continuous deformation from $\mathbb{K}(H)$ to $C_0(\mathbb{N})$.

Proof. The similar proof as that of Theorem 1.1 is valid in this case. For a compact operator $T \in \mathbb{K}(H)$, we have the decomposition T = D + N into its diagonal operator D and off-diagonal part N with respect to an orthogonal basis of H. Since T is compact, D can be identified with an element of $C_0(\mathbb{N})$ by spectral theory.

Let $\mathbb{B}(H)$ be the C^* -algebra of all bounded operators on a separable infinite dimensional Hilbert space H, and $C^b(\mathbb{N})$ be the C^* -algebra of all bounded functions on the set \mathbb{N} (where $C^b(\mathbb{N}) = l^\infty(\mathbb{N})$ by another notation).

Theorem 1.3. There exists a continuous deformation from $\mathbb{B}(H)$ to $C^b(\mathbb{N})$.

Proof. The similar proof as that of Theorem 1.1 is also valid in this case. For a bounded operator $T \in \mathbb{B}(H)$, we have the decomposition T = D + N into its diagonal operator D and off-diagonal part N with respect to an orthogonal basis of H. Since T is bounded, D can be identified with an element of $C^b(\mathbb{N})$ by spectral theory.

Remark. Note that the centers of $M_n(\mathbb{C})$, $\mathbb{K}(H)$ and $\mathbb{B}(H)$ are all trivial.

In a general situation, we obtain

Theorem 1.4. Let $\mathfrak A$ be a C^* -algebra. Suppose that $\mathfrak A$ has a sequence of mutually orthogonal projections p_j such that either their finite sums form an approximate identity for $\mathfrak A$ nonunital, or their sum is the identity element of $\mathfrak A$ unital. Then there exists a continuous deformation from $\mathfrak A$ either to the direct sum $\bigoplus_{j=1}^{\infty} p_j \mathfrak A p_j$ (vanishing at infinity), or to the direct product $\prod_{j=1}^{\infty} p_j \mathfrak A p_j$, respectively.

Proof. It is standard that such mutually orthogonal projections give the decomposition of $\mathfrak A$ (nonunital or unital) into an (infinite) matrix algebra with its diagonal given by the direct sum or the direct product as in the statement.

In other words,

Corollary 1.5. A partition of unity (or non-unity) for a C^* -algebra gives rise to its continuous deformation.

As for K-theory of C^* -algebras,

Corollary 1.6. Continuous deformations of C^* -algebras do not induce continuity with respect to K_0 -groups of their fibers.

Proof. Indeed, $K_0(M_n(\mathbb{C})) \cong \mathbb{Z} \cong K_0(\mathbb{K})$ but $K_0(\mathbb{C}^n) \cong \mathbb{Z}^n$ and $K_0(C_0(\mathbb{N})) \cong \oplus^{\infty} \mathbb{Z}$ (while K_1 -groups of them are all trivial). Also, $K_0(\mathbb{B}(H)) \cong 0$ but $K_0(C^b(\mathbb{N})) = K_0(l^{\infty}(\mathbb{N})) \cong \Pi^{\mathbb{R}} \mathbb{Z}$ the direct product over \mathbb{R} since the cardinality of \mathbb{R} is $2^{\mathbb{N}}$ (while K_1 -groups of them are trivial since they are Von Neumann algebras).

On the other hand, the data in the proof above also says

Proposition 1.7. A partition of unity (or non-unity) for a C^* -algebra can be represented by (or viewed as) K_0 -groups of fibers coming from its continuous deformation obtained by us.

Acknowledgement

The author would like to thank the referee for some kind suggestions.

References

- [1] B. Blackadar, K-theory for Operator Algebras, 2nd ed., Cambridge Univ. Press, 1998.
- [2] T. Sudo, K-theory of continuous deformations of \mathbb{C}^* -algebras, Acta Math. Sin. (Engl. Ser.) (to appear).
- [3] N. E. Wegge-Olsen, K-theory and C^* -algebras, Oxford Univ. Press, 1993.

WWW.PPhril.com