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Abstract

The volume conjecture and its generalization state that the series of

certain evaluations of the colored Jones polynomials of a knot would

grow exponentially and its growth rate would be related to the volume of

a three-manifold obtained by Dehn surgery along the knot. In this paper,

we show that for the figure-eight knot the series converges in some cases

and the limit equals the inverse of its Alexander polynomial.

1. Introduction

Let K be a knot and ( )tKJN ;  be its colored Jones polynomial

corresponding to the N-dimensional irreducible representation of ( )C2sl

normalized so that ( ) 1; =tUJN  for the unknot U. The volume conjecture
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[15] states that

( ( )) ( ),\Vol
2

12exp;log
lim 33 KS

v
N

NKJN
N π

=
−π

∞→

where 3v  is the hyperbolic volume of the ideal regular hyperbolic

tetrahedron, and Vol denotes the simplicial volume. Note that this

conjecture was first proposed by Kashaev [10] in a different way. It is

generalized by Gukov [8] to a relation of the limit

( ( ))
,

exp;log
lim

N
NaKJN

N ∞→
(1.1)

with a fixed complex number a to the A-polynomial of K [2], and the

volume and the Chern-Simons invariant of a three-manifold obtained by

Dehn surgery along K. See also [14, 16] about the generalized volume

conjecture for the figure-eight knot.

On the other hand, the author proved also in [14] that the limit (1.1)

vanishes for the figure-eight knot if a is real and ( )23arccosh<a  or a

is purely imaginary and .3π<a  Garoufalidis and Le proved [5,

Theorem 2] that for any knot K, (1.1) vanishes if a is purely imaginary

and sufficiently small. This shows that the series { ( ;KJN

( ))} ...,3,2exp =NNa  grows polynomially when a is small. One may ask

whether the series diverges or not.

In this paper, we study the genuine limit ( ( ))NaEJNN exp;lim ∞→

for the figure-eight knot E when a is a small complex number, and show

that the limit does exist and equals the inverse of its Alexander

polynomial. More precisely, we will show the following equality.

Theorem 1.1. Let E be the figure-eight knot. If a is a complex number

with 12cosh2 <−a  and ,3Im π<a  then the series { ( ;EJN

( ))} ...,3,2exp =NNa  converges and

( ) ,
exp;
1exp;lim

aEN
aEJN

N ∆
=







∞→

where ( ) 13; −−+−=∆ tttE  is the Alexander polynomial of E.
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Remark 1.2. The range { }3Im,12cosh2 π<<−∈ aaa C  looks

like an oval (not a mathematical one) around the origin whose boundary

goes through the four points (( ) ) (( ) )253log,31,253 +−−π+  and

31−π−  on the Gaussian plane (see Lemma 3.1). The author does not

know whether this oval is the circle of convergence or not.

Remark 1.3. Note that the inequality 12cosh2 <−a  is equal to

( ) .11exp; <−∆ aE  This may suggest another relation between the

colored Jones polynomials and the Alexander polynomial.

Remark 1.4. Soon after submitting the paper to the mathematics
arXiv, Garoufalidis and Le proved that a result similar to Theorem 1.1
holds for any knot [4]. More precisely, they proved that for any knot K,
there exists a neighborhood C⊂KU  of 0 such that if ,KUa ∈  then the

limit ( ( ))NaKJNN exp;lim ∞→  exists and equals to ( ).exp;1 aK∆

2. Proof

We first recall the formula of the figure-eight knot due to Habiro and
Le ([9], see also [11]).

( ) ( ( ) ( ) ) ( ( ) ( ) )∑∏
−

= =

−−−+−+ −−=
1

0 1

2222 .;
N

k

k

j

jNjNjNjN
N tttttEJ

If we replace t with ( ),exp Na  then we have

( )∑
−

=

=







1

0
,exp;

N

k
aNN kf

N
a

EJ

with

( ) ( )∏
=

=
k

j
aNaN jgkf

1
,, ,:

where

( ) ( ) ( )






 −







 +=

N
jNa

N
jNa

jg aN 2
sinh

2
sinh4:,

.cosh2cosh2
N
aja −=
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We first show that 






N
aEJN exp;  converges.

Lemma 2.1. For any complex number a with 12cosh2 <−a  and

,3Im π<a  the series 
...,3,2

exp;
=






 







N
N N

aEJ  converges.

Proof. From Lemmas 3.3 and 3.4, we have the following inequalities

for :0 NM <<

( ) ,0if1, Njjg aN <<<δ<

( )
( ) ,0if1

,

, Mj
jg
jg

aN

aM <<<

( )
( ) Mj

M
j

jg
jg

aN

aM ε<<−> 0if1
,

,  for some ,0>ε

where we put .12cosh2: <−=δ a  So we have

( )
( )

( )
( )

 

 

∏ ∏
−ε

= ε=





 −>>δ>

1

1 ,

,

,

, 11
M

j

k

Mj aN

aM

aN

aMk
kf

kf

M
j

kf

kf

for ,0 NMk <<<  where  x  is the greatest integer that does not

exceed x.

Putting   ,: MM ε=′  we have







−








M
a

EJ
N
a

EJ MN exp;exp;

( ) ( )∑ ∑
−

=

−

=

−=
1

0

1

0
,,

N

k

M

k
aMaN kfkf

( ) ( ) ( )∑ ∑
−

=

−

=

+−≤
1

0

1

,,,

M

k

N

Mk
aNaMaN kfkfkf

( )
( )
( ) ( )∑ ∑

−

=

−

=

+







−=

1

0

1

,
,

,
, 1

M

k

N

Mk
aN

aN

aM
aN kf

kf

kf
kf
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( )
( )∑ ∑∏ ∏

−

=

−

=

−′

= ′=

δ+


















 −−δ<

1

0

11

1
,

,11
M

k

N

Mk

k
M

j

k

Mj
aN

aMk
kf
kf

M
j

( )
( )∑ ∏ ∑ ∏ ∏

−′

= =

−

′=

−′

= ′=





 −δ−





 −δ−

δ−
δ−=

1

0 1

1 1

1 ,

, .11
1

1
M

k

k

j

M

Mk

M

j

k

Mj aN

aMkk
N

kf

kf

M
j

M
j

From Lemma 3.5, this is equal to

∫
∞

−′δ
′

−
δ
′

δ
′

−
δ−
δ−

1

1
1

1 dtteeM Mt
MMN

( )
( )∏ ∑ ∏

−′

=

−

′= ′=

δ




 −−

1

1

1

,

, .1
M

j

M

Mk

k

Mj aN

aMk
kf

kf

M
j (2.1)

Note that since

( )
( )∏ ∑ ∏ ∑

−′

=

−

′= ′=

−

′=

′−
′

δ−
δ−δ=δ<δ





 −

1

1

1 1

,

, ,
1

11
M

j

M

Mk

k

Mj

M

Mk

MM
Mk

aN

aMk
kf

kf

M
j

the last term in (2.1) can be arbitrarily small.

Since

∫ ∫
∞ ∞

−
′







δ
−

−′δ
′

−
=

1 1

1
log

1 ,dttedtte
M

t
t

Mt
M

we can apply Laplace’s method to study the asymptotic behavior for large
M:

∫
∞

δ
′

−
δ
′

−−
′







δ
−

δ−′
δ=

−
δ

′
∞→

1

1
log

.
1

1

11
11~

MMM
t

t
e

M
e

M
Mdtte

(See, for example, [17, Chapter 3, Section 7.1]). Therefore, 






N
aEJN exp;







−

M
a

EJM exp;  can be arbitrarily small if M is sufficiently large,

which means that the sequence 
...,3,2

exp;
=



 







N
N N

aEJ  is a Cauchy

sequence and so it converges.
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Now that we know the convergence, we use an inhomogeneous

recursion formula of ( )tEJN ;  to find the limit. It is known that

( )tEJN ;  satisfies the following formula [6, Section 6.2] (see also [7] for a

homogeneous recursion formula).

( )tEJN ;

( ) ( )
1

21

−

−+
=

−−

N

NNN

t

ttttt

( ) ( )( )
( )( )11

11
32

13321234412122

−−

−−−−++−+
−

++++−−−−

NN

NNNNNNNN

tt

ttttttttt

( ) ( ) ( )
( ) ( )

( ).;
11

11; 232

122

1 tEJ
tt

tt
tEJ NNN

NN

N −−

−−

−
−−

−−−× (2.2)

We want to show that the series 






 







− N
aEJN exp;1  and

















− N
a

EJN exp;2  also converge and both limits coincide with that of

.exp; 






N
aEJN

For 1=l  or 2, put

( ) ,cosh21cosh2:;
N
aj

N
laljgN −




 −=′

and

( ) ( ),;:;
1
∏
=

′=′
k

j
NN ljglkf

so that ( )∑ −−
=− ′=





 1

0
.;exp;

lN
k NlN lkf

N
aEJ

Lemma 2.2. The series 
...,3,2

exp;
=

− 





 







N
lN N

aEJ  converges and

shares the limit with .exp;
...,3,2=






 







N
N N

aEJ
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Proof. From Lemma 3.3 and Corollary 3.2, we have

( )
N
aj

N
laljgN cosh1cosh2; −




 −=′

11cosh2 −




 −<

N
la

1cosh2 −< a

.δ=

From Lemma 3.6 there exists a positive number ε′  such that if

,ε′<Nj  then

.1
1cosh

sinh1
coshcosh

cosh1cosh
1

Na
aa

N
aja

N
aj

N
la

−
−>

−

−




 −

>

Putting ,0
1cosh

sinh: >
−

=
a

aa
c  we have

( )
( ) ,1
;

1
N
c

jg
ljg

N

N −>
′

>

if ε′<Nj  and so

( )
( ) ,1
;

1
k

N

N
N
c

kf
lkf






 −>

′
>

if .ε′<Nk

Therefore, we have






−







− N
aEJ

N
aEJ lNN exp;exp;

( ) ( ){ } ( ) ( )
  

 

∑ ∑ ∑
−ε′

=

−

ε′=

−−

ε′=

′−+′−=
1

0

1 1

;;
N

k

N

Nk

lN

Nk
NNNN lkfkflkfkf

( ) ( ) ( )
  

 

∑ ∑ ∑
−ε′

=

−

ε′=

−

ε′=

′++


















 −−<

1

0

1 1

;11
N

k

N

Nk

N

Nk
NN

k

N lkfkf
N
c

kf
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∑ ∑
−ε′

=

−

ε′=

δ+


















 −−δ<

1

0

1

211
N

k

N

Nk

k
k

k
N
c

 
 

 

 
 

,
1

12
11

11

1
1

δ−
δ−δ+






 −δ−






 −δ−

−
δ−

δ−=
ε′−

ε′

ε′
ε′

ε′ NN
N

N
N

N

N
c
N
c

which can be arbitrarily small when N is sufficiently large, since

.10 <δ<  So the series ( )2or1exp; =
















− l
N
a

EJ lN  converges and its

limit is equal to that of .exp;




 







N
aEJN

Therefore, putting 




= ∞→ N

aEJJ NNa exp;lim:  and ,exp: aw =

we have from (2.2)

( ) ( )
1

11 21

−
−+

=
−

w
www

Ja

( ) ( ) ( )
( ) ( )

aJ
ww

wwwwwwww

11

111
2

322422

−−

−−−−++−
+

−

( ) ( )
( ) ( )

.
11

11
2

2

aJ
ww

ww

−−

−−
−

So we finally have

,
3

1
1−−+−

=
ww

Ja

winch is equal to ( ).exp;1 aE∆

This completes the proof of Theorem 1.1.

Remark 2.3. We used an inhomogeneous recursion formula for the

colored Jones polynomial of the figure-eight knot. Note that Garoufalidis

and Le proved that there always exists a homogeneous formula for any

knot [6].
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The relation between the A-polynomial and the Alexander polynomial

[2, Section 6.3 Proposition], the AJ-conjecture proposed by Garoufalidis

[3], and Theorem 1.1 suggest that for any knot K if the series

( ){ } ...,3,2exp; =NN NaKJ  converges for some a, then the limit would be

( )aK exp;1 ∆  with ( )tK ;∆  the Alexander polynomial of K.

In [13] the author proved that for any torus knot T, NN J∞→lim

( ) ( )aTNaT exp;1exp; ∆=  if a is near 12 −π  and .0Re >a

Remark 2.4. Melvin and Morton [12] observed the following formal
power series:

( ) ( )∑
≥

=
0,

,exp;
kj

kj
jkN NhKbhKJ (2.3)

and conjectured the following (Melvin-Morton-Rozansky conjecture):

 (i) ( ) 0=Kbjk  if ,jk >  and

(ii) ( ) ( ) ( )∑ ≥ ∆
=

0
.

exp;
1

j
j

jj hNK
hNKb

This conjecture was proved by Rozansky [18] non-rigorously, and proved
by Bar-Natan and Garoufalidis [1].

Replacing h with ,Na  we have from (i) and (ii)

( )∑
≥≥

−=






0

,exp;
kj

jkj
jkN NaKb

N
aKJ

and

( ) ( )∑
≥

∆
=

0

.
exp;
1

j

j
jj aK

aKb

So we may regard Theorem 1.1 as an analytic version of the Melvin-
Morton-Rozansky conjecture.

3. Appendix

In this appendix, we give several technical lemmas used in the paper.
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Lemma 3.1. For a complex number 1−+= yxa  with ,, R∈yx  the

condition 12cosh2 <−a  is equivalent to the condition yx coscosh −

.21<

Proof. Since

( ) xyxya 2222 sinhsin1coshcos1cosh +−=−

( ) ( ) ( )1coshcos11coshcos 222 −−+−= xyxy

( ) ,coscosh 2yx −=

1cosh ≥x  and ,1cos ≤y  we have .coscosh1cosh yxa −=−

Especially, we have (( ) ) .19642.0253log23arccosh <=+=<x

Corollary 3.2. If a complex number a satisfies 12cosh2 <−a  and

,3Im π<a  then for any real number u with ,10 << u  we have

.1cosh1cosh −<− aua

Proof. From Lemma 3.1, 21coscosh <− yx  with .1: −+= yxa

Since xcosh  is increasing (decreasing, respectively) for 0>x  ,0( <x

respectively) and ycos  is decreasing (increasing, respectively) for

,30(30 π−>>π<< yy  respectively), we have

uyuxuyuxua coscoshcoscosh1cosh −=−=−

.1coshcoscoshcoscosh −=−=−< ayxyx

Lemma 3.3. For a complex number a with 12cosh2 <−a  and

,
3

Im π<a  and real numbers u and v with ,10 <<≤ vu  we have

.coshcoshcoshcosh vaauaa −≥−

Moreover, the equality holds only when .0=a

Proof. It is clear that both hand sides are equal when .0=a  So we

assume that 0≠a  and prove the strict inequality.
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Put 1: −+= yxa  with ( ) ( )0,0, ≠yx  and .3π<y

We will show that ( ) 2coshcosh:,, uaauyx −=ϕ  is decreasing with

respect to u for .10 << u  Since ( ) ( ) ( ),,,,,,, uyxuyxuyx −ϕ=−ϕ=ϕ  we

may assume that 0≥x  and .03 ≥>π y  Since

( )22 coscoshcoscoshcoshcosh uyuxyxuaa −=−

 ( ) ,sinsinhsinsinh 2uyuxyx −+

we have

( ) { uyyuxxx
u

uyx sinsincoshsinh2,, −=
∂

ϕ∂

}uxuxuyyuxx coshsinhcoscossinhcosh −+

{ uyyuxxuyuyy cossinsinhsinhcossin2 +−

}.sincoscoshcosh uyyuxx−

Put

( ) uyyuxxuyyuxxuyx coscossinhcoshsinsincoshsinh:,,1 +=ϕ

,coshsinh uxux−

and

( ) uyyuxxuyuyuyx cossinsinhsinhcossin:,,2 +=ϕ

.sincoscoshcosh uyyuxx−

We will show

(1) ( ) 0,,1 >ϕ uyx  when 0>x  and ,0≥y  and

(2) ( ) 0,,2 >ϕ uyx  when 0≥x  and .0>y

First we will show (1). Note that if ( ) uxuxx sinh,0,,0 1 =ϕ>

( ) ,0coshcosh >− uxx  and so we will assume that .0>y
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Since ( ) ,0,,01 =ϕ uy  it is sufficient to show that

( ) ( uyyuxxu
x

uyx
coscoscoshcosh

,,1 =
∂

ϕ∂

)uxuxuyyuxx 22 coshsinhsinsinsinhsinh −−+

uyyuxxuyyuxx coscossinhsinhsinsincoshcosh ++

is positive when 03,0 >>π> yx  and .01 >> u  Note that

( ) ( ) uyyuyyu
x

uyx
x sinsin1coscos

,,
0

1 +−=|
∂

ϕ∂
=

is positive since its partial derivative with respect to y is ( )21 u−

,sincos uyy  which is positive. Moreover, we have

( )
2

1
2 ,,

x

uyx

∂

ϕ∂

[ { ( ) } ]uxuuyyuuyyuxux sinh2sinsin1coscos2sinhcosh 22 −++=

[ { ( ) } ]uxuuyyuuyyuxux cosh2coscos1sinsin2coshsinh 22 −+++

[ { ( ) } ]xuuyyuuyyuxux sinh2sinsin1coscos2sinhcosh 22 −++>

[ { ( ) } ]xuuyyuuyyuxux cosh2coscos1sinsin2coshsinh 22 −+++

{ ( ) }22 2sinsin1coscos2sinhcosh uuyyuuyyuxux −++=

{ ( ) }22 2coscos1sinsin2coshsinh uuyyuuyyuxux −+++

{ ( ) uyyuuyyuuxx sinsin1coscos2coshsinh 2−+=

} { uyyuxuxuuyyu sinsin2coshsinh2sinsin2 2 +−+

( ) }22 2coscos2coscos1 uuyyuuyyu −+−+

( )xuxuxx coshsinhcoshsinh +>

( )22coscos2sinsin2 uuyyuuyyu −+
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( ) ( )( )uyuxuxuxxu −−+= 1coscoshsinhcoshsinh2

( ) ( )




 −+−

π
−+> uyuxuxuxxu 11

2
3coshsinhcoshsinh2

( ) ( ) 






π
−+−=

2
31coshsinhcoshsinh12 yxuxuxxuu

,0>

since 10 << u  and 1
2
3cos +
π

−> zz  for .30 π<< z  Therefore,

( ) xuyx ∂ϕ∂ ,,1  is also positive.

Next we will show (2). Note that if ( ) uyuyy sin,,0,03 2 =ϕ>>π

( ) ,0coscos >− yuy  and so we will assume that .0>x  Since ( )0,,2 yxϕ

,0=  it is sufficient to show that

( ) ( )yuyuuyyuxx
x

uyx
cossincossinsinhcosh

,,2 −=
∂

ϕ∂

( )yuyuyyuuxx cossincossincoshsinh −+

is positive when ,03,0 >>π> yx  and .01 >> u  The first term is

clearly positive and so we will show that yuyuyyu cossincossin −  is

positive. But this can be easily verified since it is 0 when 0=y  and its

derivative with respect to y is ( ) ,sinsin1 2 uyyu−  which is positive.

Lemma 3.4. There exists a positive number ε such that for a complex

number 0≠a  with 
3

Im π<a  and ,Re π<a  and a real number u

with ,0 ε<< u  we have

.1
1cosh

coshcosh
u

a
uaa −>

−
−

Proof. We will show that

( ) ,01cosh1coshcosh 222 >−−−− auuaa

if .0 ε<< u  Putting 1: −+= yxa  with π<x  and ,
3
π<y  the left
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hand side equals

( ) ( )22 sinsinhsinsinhcoscoshcoscosh uyuxyxuyuxyx −+−

( ) {( ) }yxyxu 2222 sinsinh1coscosh1 +−−−

( ){ }uyuxyxu sinsinhsinsinh2 −−=

( )uyuxyxu sinsinhsinsinh −×

( ){ }uyuxyxuu coscoshcoscosh21 −−+−+

( ).coscoshcoscosh1 uyuxyxuu −+−×

Since it remains the same if we alter the signs of x or y, we may assume
that 0≥>π x  and ( ) ( )( ).0,0,03 ≠≥>π yxy  Put

( ) ( ) ,sinsinhsinsinh2:,,1 uyuxyxuuyx −−=α

( ) ,sinsinhsinsinh:,,2 uyuxyxuuyx −=α

( ) ( ) ,coscoshcoscosh21:,,1 uyuxyxuuuyx −−+−=β

( ) .coscoshcoscosh1:,,2 uyuxyxuuuyx −+−=β

We will show that ( ) ( ) ( ),,,,,,,,, 121 uyxuyxuyx βαα  and ( )uyx ,,2β  are

all positive.

Since xu sinh,10 <<  is increasing for any x, and ysin  is increasing

when ,30 π<≤ y  we have

( ) ( ) uyuxuyuxuuyx sinsinhsinsinh2,,1 −−>α

( ) .0sinsinh1 >−= uyuxu

By the Taylor expansion of ( )uyx ,,2α  around ,0=x  we have

( ) ( ) ( )∑
∞

=

+−
+

=α
0

122
2 .sinsin

!12
1,,

n

nn xuyuyu
n

uyx

Since ysin  is increasing for 30 π<< y  and ,10 << u  we have

.0sinsin 2 >− uyuy n  Therefore, ( ) .0,,2 >α uyx
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The Taylor expansions of ( )uyx ,,1β  and ( )uyx ,,2β  around 0=u

gives

( ) ( ) ( ) ( ) 222
1 2

11coscosh1coscosh2,, uxyuyxyxuyx −+−−−=β

( ) ( ),6
24
1 644224 uOuyyxx +−+−+

( ) ( ) ( ) 222
2 2

11coscosh,, uxyuyxuyx −+−=β

( ) ( ),6
24
1 644224 uOuyyxx +−+−+

and so

( ) ( ) ( )uyxuyxuyx ,,,,:,, 21 ββ=β

( ) ( )1coscosh1coscosh2 2 −−−= yxuyx

( ) 2221coscosh uyxyx −+−

( ( )4224 34
12
1 yyxx +−+

( ) ) ( ).coscosh6 644224 uOuyxyyxx ++−−

Therefore, ( )uyx ,,β  is positive for small u if .1coscosh ≠yx

When ,1coscosh =yx  we have

( ) ( ) ( ).
4
1,, 64222 uOuyxuyx +−=β (3.1)

Since

,1coscosh 0=| =xxx

( ) ,0sincoshcossinhcoscosh
0

0
=|−= =

=
x

x
xxxx

dx
xxd

and

0sinsinh2coscosh
2

2
<−= xx

dx

xxd   if ,0 π<< x
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1coscosh <xx  for ,0 π<< x  which means that yx ≠  when yx coscosh

.1=  So ( ) 0,, >β uyx  for small u since the coefficient of 4u  in (3.1) is

positive.

Thus we have concluded that ( ) 0,, >β uyx  for small u.

Lemma 3.5. For a positive integer m and a positive real number a, we

have

( )
.

!

!
1

0
∫ ∑
∞

=

−
−

−
=

m

k
k

a
mat

kma

m
a

edtte

Proof. Integration by parts gives

∫
∞

−

1
dtte mat

∫
∞

−−
∞

− +



−=

1

1

1

1 dtte
a
mte

a
matmat

∫
∞

−−− +=
1

11 dtte
a
me

a
mata

( ) ∫
∞

−−−− −++=
1

2
22

11 dtte
a

mme
a

me
a

mataa

( ) ( ) a
k

aa e
a

kmmme
a

me
a

−
+

−− +−××−+++=
12

111

( ) ∫
∞

−− +××−++
1

!21 dte
a

me
a

mm at
m

a
m

( ) ( ) a
k

aa e
a

kmmme
a

me
a

−
+

−− +−××−+++=
12

111

( ) ,!21
1

a
m

a
m

e
a

me
a

mm −
+

− +××−++

and the proof is complete.
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Lemma 3.6. For a complex number a with aa Im,12cosh2 <−

,3π<  and ,0≠a  there exists a positive number 0>ε′  such that if

ε′<< x0  and ,0 ε′<< u  then

( ) .
1cosh

sinh1
coshcosh

cosh1cosh1 x
a

aa
uaa

uaxa
−

−>
−

−−>

Proof. Using the Taylor expansion with respect to x and u around

,0== ux  we have

( )
( ) ( ),,

1cosh2
cosh

1cosh
sinh1

coshcosh
cosh1cosh 2

2
xuRx

a
aa

x
a

aa
uaa

uaxa
a+

−
+

−
−=

−
−−

where ( )xuRa ,  the terms with total degrees of u and x are greater than

two.

From Lemma 3.7, we have

( ) ,1
coshcosh

cosh1cosh <
−

−−
uaa

uaxa

if x and u are sufficiently small.

Moreover, we have

( )
x

a
aa

uaa
uaxa

1cosh
sinh

coshcosh
cosh1cosh

−
+

−
−−

( )
x

a
aa

uaa
uaxa

1cosh
sinh

coshcosh
cosh1cosh

−
+

−
−−≥

( ) ( ).,
1cosh2

cosh1 2
2

xuRx
a

aa
a+

−
+=

From Lemma 3.8, we have ( ) 0
1cosh2

coshRe
2

>
−a
aa  if ,12cosh2 <−a  and

the other inequality follows.

Lemma 3.7. For a complex number 0≠a  with ,Im π<a  we have

.0
1cosh

sinhRe >
−a
aa
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Proof. We put yxa 1: −+=  with .π<y  Then we have

( ) ( )
( )

,0
sinhsin1coshcos

sinsinhcoscosh
1cosh

sinhRe
222

>
+−

+−=
− xyxy

yyxxyx
a

aa

if π<y  and ( ) ( ).0,0, ≠yx

Lemma 3.8. For a complex number 0≠a  with ,12cosh2 <−a

and ,3Im π<a  we have

.0
1cosh

coshRe
2

>
−a

aa

Proof. Putting yxa 1: −+=  with ,, R∈yx  we have

( )
( )

,
sinhsin1coshcos

,
1cosh

coshRe
222

2

xyxy

yxf
a

aa

+−
=

−

with

( ) ( ) ( ) .sinhsin2coshcossinhcos:, 2222 xyxyxyxyyxyxf +−+−=

We will show that ( ) .0, >yxf  We may assume that 0,0 ≥≥ yx

( ) ( )( )0,0, ≠yx  as before. Since

( ) ( ) ( ) ,0coshcoshcoshsinh10, 2222 >−=−+= xxxxxxxf

when ,0>x  we will assume that .0>y

Since ( )yxf ,  is analytic, it is sufficient to prove that every nth

derivative of f at 0=x  is positive, when n is even and zero when n is

odd.

Since

( )








=
=−

=
∂

−∂

= ,otherwise0
,2if2
,0if2

0

22
k

ky

x

yx

x
k

k

( )








−

=−

=
∂

−∂ −

= ,otherwise0

,positiveandevenisifcos2

,0ifcos
coshcossinh 1

0

2
ky

ky

x

xyx k

x
k

k
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and

( )




=
∂

∂
,otherwise0

,positiveandevenisifsinh kk

x

xx
k

k

we have

( )

0

,

=∂

∂

x
n

n

x

yxf

( ) ( )

0

22

00

22 coshcossinhcos

===
−

−

∂

−+∂×
∂

−∂








= ∑

x
k

k

x

n

k
kn

kn

x

xyxy

x

yx

k

n

( )

0

sinhsin2
=∂

∂+
x

n

n

x

xx
yy

( )

( ) ( )

( ) ( )( )












>+−−+−−

=+−+−−

=−−

=
−−

.otherwise0

,evenand3ifsin2cos21cos2

,2ifsin4coscos2cos2

,0ifcoscos

312

22

22

nynyynnyy

nyyyyyy

nyyy

nn

It is clear that ( ) 0coscos22 >−− yyy  since .3π<y  If n is even and

,4≥n  then since ,3π<y  we have

( )

0

,

=∂

∂

x
n

n

x

yxf

{ ( ) } ( ) ( ) ynyyyynnynn nn sin2coscos21812 2424 ++−−+−−= −−

( ) ( ) .0cos11
3

8122
2

4 >−−+













 π−> − ynnn

To show that

( ) ( ) yyyyyyy
x

yxf

x

cossin4coscos22, 222

0
2

2
++−+−=

∂

∂

=

is positive, we will consider the function ( ) ( )yyyyg coscos22: 22 −+−=

.sin4 yy+  Since

( ) ( ) ( )yyyyy
dy

ydg sincos42sin32 −+−=
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is easily verified to be positive, we have ( ) .0>yg  So ( ) 0
22 , =|∂∂ xxyxf

is also positive.
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