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Abstract

The volume conjecture and its generalization state that the series of
certain evaluations of the colored Jones polynomials of a knot would
grow exponentially and its growth rate would be related to the volume of
a three-manifold obtained by Dehn surgery along the knot. In this paper,
we show that for the figure-eight knot the series converges in some cases

and the limit equals the inverse of its Alexander polynomial.

1. Introduction

Let K be a knot and Jp(K;t) be its colored Jones polynomial
corresponding to the N-dimensional irreducible representation of sl,(C)

normalized so that J(U; t) =1 for the unknot U. The volume conjecture
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[15] states that

L Lol N (K exp@ny-1/N))| _ vy Vol(S*\K),
N—>ow N 27

where vs is the hyperbolic volume of the ideal regular hyperbolic
tetrahedron, and Vol denotes the simplicial volume. Note that this
conjecture was first proposed by Kashaev [10] in a different way. It is
generalized by Gukov [8] to a relation of the limit

lim log J 5 (K; exp(a/N)) ,
N> N

1.1

with a fixed complex number ¢ to the A-polynomial of K [2], and the
volume and the Chern-Simons invariant of a three-manifold obtained by
Dehn surgery along K. See also [14, 16] about the generalized volume

conjecture for the figure-eight knot.

On the other hand, the author proved also in [14] that the limit (1.1)
vanishes for the figure-eight knot if a is real and | a | < arccosh(3/2) or a
is purely imaginary and |a| < n/3. Garoufalidis and Le proved [5,

Theorem 2] that for any knot K, (1.1) vanishes if a is purely imaginary
and sufficiently small. This shows that the series {Jy(K;

exp(a/N ))}sz’ 3,.. grows polynomially when a is small. One may ask
whether the series diverges or not.
In this paper, we study the genuine limit limy_, ., J(E; exp(a/N))

for the figure-eight knot £ when a is a small complex number, and show
that the limit does exist and equals the inverse of its Alexander

polynomial. More precisely, we will show the following equality.

Theorem 1.1. Let E be the figure-eight knot. If a is a complex number
with |2cosha—2| <1 and |Imal<n/3, then the series {Jy(E;

exp(a/N))n_g, 5 . converges and

. . a) _ 1
J\}lgloo JN(E’ exp N) ~ A(E; expa)’

where A(E; t) = —t + 3 -t is the Alexander polynomial of E.
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Remark 1.2. The range {aeC|2cosha -2| <1, |Ima]| < n/3} looks
like an oval (not a mathematical one) around the origin whose boundary
goes through the four points ((3 +v5)/2), ny/-1/3, —log((3 + v/5)/2) and
—n\/—_l /3 on the Gaussian plane (see Lemma 3.1). The author does not
know whether this oval is the circle of convergence or not.

Remark 1.3. Note that the inequality |2cosha - 2| <1 is equal to
| A(E; expa)—1| <1. This may suggest another relation between the

colored Jones polynomials and the Alexander polynomial.

Remark 1.4. Soon after submitting the paper to the mathematics
arXiv, Garoufalidis and Le proved that a result similar to Theorem 1.1
holds for any knot [4]. More precisely, they proved that for any knot K,
there exists a neighborhood Ug < C of 0 such that if a € Ug, then the

limit limpy_,., Jn(K; exp(a/N)) exists and equals to 1/A(K; exp a).
2. Proof

We first recall the formula of the figure-eight knot due to Habiro and
Le ([9], see also [11]).

N-1 k
JN(E; t) — ZH(t(N+j)/2 _ t*(N+J.)/2)(t(N*J.)/2 _ t*(N*]')/2)'

k=0 j=1

If we replace ¢ with exp(a/N), then we have

N-1
In(Biex )= Y fvalb)
k=0
with
k
fn,a(k) = HgN,a(j),
i

where

gn.alj) =4 sinh(%) sinh(%]

_ _ 94
= 2cosha - 2 coshN .
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We first show that J N(E; exp %) converges.

Lemma 2.1. For any complex number a with |2cosha - 2| <1 and

| Ima| < n/3, the series {J N(E; exp i)} converges.
NJIN=23,..

Proof. From Lemmas 3.3 and 3.4, we have the following inequalities
for O< M < N :

len o) <8<1 if 0<j<N,

gM’—a(J.) <1 if0<j< M,

gN,a(])

gM’—a(J.)>1—L if 0 < j <eM for some ¢ > 0,
gN,a(.]) M

where we put & := | 2cosha — 2| < 1. So we have

| (EEAR Y QU0
fN a(k j=1 LMJ fN,a(k)

for 0 <k < M < N, where |x| is the greatest integer that does not

exceed x.

Putting M’ :=|eM |, we have
a a
‘ JN(E’; expﬁ) - JM(E'; expﬁ) ‘

M-1
Z fM,a(k)
k=0

IA

M-1 N-1
3wl = faa® + Y v, all)
k=0 k=M

M-1 fMa N-1
> ivatbl[1-| P ] ZVN,a(k»
k=0 =M
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) ]ggk{l‘ H(l‘ )H Tv.a®) ]*,:V:Z;}k

M1k . M-1 M- k
_1-8N ZSkH(l J)_ sk ( ]JH fm,a(k)
-5 & J=1 M) & i M fn.a(k)
From Lemma 3.5, this is equal to
M
1-8Y M e -5t M
1-s 5§ ¢ . e t dt
-4 71
- ) 2.1)
j=1 k=M’ fN,a(k)
Note that since
M'-1 L M-1 k M-1 '
H(1_L)Z SkH fu,a(k) ZSk g 1=87""7 1-sMM
J 1 M k= ] =M’ fN a(k) 1 8 ’

the last term in (2.1) can be arbitrarily small.

Since

M ( t) ,
o g o |logt——=|M
I e & tM-1lgy =I e 87 4 gy,
1 1

we can apply Laplace’s method to study the asymptotic behavior for large
M:

1 M S’Ml
e 8 =—¢ O

t
0 logt——)M’
1)

(See, for example, [17, Chapter 3, Section 7.1]). Therefore,

- JM(E; exp%)

which means that the sequence {J N(E; exp%)} is a Cauchy
N=2,3,...

JN(E; exp%)

can be arbitrarily small if M is sufficiently large,

sequence and so it converges.
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Now that we know the convergence, we use an inhomogeneous
recursion formula of Jx(E;¢) to find the limit. It is known that
Jn(E; t) satisfies the following formula [6, Section 6.2] (see also [7] for a

homogeneous recursion formula).

JIN(E; t)

NN ) (2N — )
tN -1

t72N72(tN71 _1)2(tN71 +1)(t4 +t4N _tN+3 _t2N+1 _t2N+3 _t3N+1)
(tN _1)(t2N—3 _1)

+

tN72 _ 1)(t2N71 _ 1)

(tN B 1) (tZN_3 _ 1) JN—2(E; t)- (2.2)

xJn_q(E; 1)~ (

We want to show that the series {J N—l(E§ exp%j} and

{J N_Z(E; exp %)} also converge and both limits coincide with that of

JN(E; exp%).
For [ =1 or 2, put

(s 1) = A a
v D) .—2cosha(1 Nj 2coshN,

and

k
I 1) = [ Tewts 0,
j=1
so that JN_I(E; exp %) = 2:0171 i (k; ).

Lemma 2.2. The series {J N—Z(Ei expi)} converges and
NJIN=23,..

shares the limit with {JN(E; exp %)} .
N=2,3,...
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Proof. From Lemma 3.3 and Corollary 3.2, we have

lgn(s; )] = cosha(l - —) — cosh ‘

cosha(l - L] -1 ‘

< 2 N

< 2|cosha —1|
= 3.
From Lemma 3.6 there exists a positive number & such that if

j/N < €', then

cosha(l - L] — cosh¥

N N asinha |1
1> >1-| —|=.
aj cosha -1 |N
cosha — cosh=%
N
. _ | asinha
Putting ¢ := “osha =1 > 0, we have
anis ) ¢
1> >1-—=,
en() N
if j/N < ¢’ and so
f (ks D) ( c )’*
1> >11-=1,
fn (k) N
if B/N < ¢'.
Therefore, we have
a a
JN(E; exp Nj - JN_Z(E; exp Nj ‘
l&'N -1 N-1 N-I-1
=1 D Arw(R) = iy (s D} + (k)= D falks D)
k=0 k=|e'N | k=|e'N |

[eN]-1 N-1 N-1

<y |fN(k)|{ (1—_)}+ v+ D | fles D)
k

k=0 =[¢'N] k=[&'N |
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e'N]-1 2 N-1
< Z Sk{l—tl—%j }+2 Z sk
k=0 k=[N |
&N |
, _sleN]f{_ ¢ ,
_ 1 slev] _1 3 (1 Nj +26|_8'NJ1_6N_L€NJ
i) 1-8 ’
N

1-8 1—8(1—

which can be arbitrarily small when N is sufficiently large, since

0 < & < 1. So the series {JN_Z(E; exp %)} (I =1 or 2) converges and its

limit is equal to that of {J N(E’ ; exp %)}

Therefore, putting J, = limp_,. JN(E; exp %) and w = expa,
we have from (2.2)

wl(w+1)(w? -1)
w-1

J, =

+w_z(w—1)2(w+1)(1+w4—w—wz—wz—w

3
)
w-1)w? -1) Ja

C(w-1)w? =
w -1)(w? -1)

So we finally have

Jyg=—mmm,
—w+3-—wt

winch is equal to 1/A(E; exp a).
This completes the proof of Theorem 1.1.

Remark 2.3. We used an inhomogeneous recursion formula for the
colored Jones polynomial of the figure-eight knot. Note that Garoufalidis

and Le proved that there always exists a homogeneous formula for any
knot [6].
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The relation between the A-polynomial and the Alexander polynomial
[2, Section 6.3 Proposition], the Ad-conjecture proposed by Garoufalidis
[3], and Theorem 1.1 suggest that for any knot K if the series
{IN(K; expa/N)}y_y 5 converges for some a, then the limit would be

1/A(K; expa) with A(K; t) the Alexander polynomial of K.
In [13] the author proved that for any torus knot 7, limpy_,, J
(T; expa/N) = 1/A(T; expa) if a is near 2ny/-1 and Rea > 0.

Remark 2.4. Melvin and Morton [12] observed the following formal

power series:

J N (K; exph) = ijk(K)thk, (2.3)
i, k>0

and conjectured the following (Melvin-Morton-Rozansky conjecture):
@) bjk(K) =0 if £ > j, and

1

() 30 b5 ()N = Ty

This conjecture was proved by Rozansky [18] non-rigorously, and proved
by Bar-Natan and Garoufalidis [1].

Replacing A with a/N, we have from (i) and (ii)

JN(K; exp %) = > bu(K)a/N*,
ji>k>0

and

i 1
.. =
z bjj(K)a A(K; expa)’
j=0

So we may regard Theorem 1.1 as an analytic version of the Melvin-

Morton-Rozansky conjecture.
3. Appendix

In this appendix, we give several technical lemmas used in the paper.
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Lemma 3.1. For a complex number a = x + yy/-1 with x, y € R, the
condition |2cosha — 2| <1 is equivalent to the condition coshx — cosy

<1/2.
Proof. Since
| cosha —1 |2 = (cosy coshx —1)? + sin?y sinh®x
= (cosy coshx —1)? + (1 — cos? y) (cosh®x — 1)
= (coshx — cosy)?,
coshx > 1 and cosy <1, we have |cosha —1| = coshx — cosy.
Especially, we have | x | < arccosh 3/2 = log((3 + ¥/5)/2) = 0.9642-- < 1.

Corollary 3.2. If a complex number a satisfies | 2cosha —2| <1 and
|Ima| < n/3, then for any real number u with 0 <u <1, we have

| coshua — 1| < |cosha —1].

Proof. From Lemma 3.1, coshx —cosy <1/2 with a = x + y/-1.
Since coshx 1is increasing (decreasing, respectively) for x > 0 (x < O,
respectively) and cosy 1is decreasing (increasing, respectively) for

0<y<mn/3(0>y>-n/3, respectively), we have
| coshua — 1| = | coshux — cosuy | = coshux — cosuy
< coshx — cosy = | coshx — cosy | = | cosha —1].
Lemma 3.3. For a complex number a with |2cosha —2|<1 and

T .
|Ima| < 3 and real numbers u and v with 0 < u < v <1, we have

| cosha — coshua | > | cosha — coshva |.

Moreover, the equality holds only when a = 0.

Proof. It is clear that both hand sides are equal when a = 0. So we

assume that a # 0 and prove the strict inequality.
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Put a == x + y/-1 with (x, y) # (0, 0) and | y| < 7/3.

We will show that o¢(x, y, u) == | cosha — coshua |2 is decreasing with
respect to u for 0 < u < 1. Since ¢(x, y, u) = o(-x, v, u) = ¢(x, -y, u), we

may assume that x > 0 and n/3 > y > 0. Since

| cosha — coshua |2 = (coshx cosy — coshux cosuy)?

+ (sinhx siny — sinhux sinuy)g,
we have
W = —2x{sinhx coshux siny sinuy
+ coshx sinhux cosy cosuy — sinhux coshux}
— 2y{sinuy cosuy + sinhx sinhux siny cosuy
- coshx coshux cosy sinuy}.
Put

¢1(x, y, u) := sinhx coshux siny sinuy + coshx sinhux cosy cosuy
—sinhux coshux,
and
09(x, ¥, u) := sinuy cosuy + sinhx sinhux siny cosuy
— coshx coshux cosy sinuy.

We will show

(1) ¢1(x, ¥, u) >0 when x >0 and y > 0, and
(2) ¢9(x, ¥, u) >0 when x > 0 and y > 0.

First we will show (1). Note that if x > 0, ¢;(x, 0, ) = sinhux

(coshx — coshux) > 0, and so we will assume that y > 0.
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Since ¢;(0, v, u) = 0, it is sufficient to show that

a(pl(x’ Y LL)

3 = u(coshx coshux cosy cosuy
X

+ sinhx sinhux siny sinuy — sinh?ux — cosh?ux)
+ coshx coshux siny sinwy + sinhx sinhux cosy cosuy

is positive when x > 0, /3 > y > 0 and 1> u > 0. Note that

o1 (x, v, u)

o ly—0= u(cosy cosuy — 1) + siny sinuy

1s positive since its partial derivative with respect to y is (1—u2)

cosy sinuy, which is positive. Moreover, we have

62(P1(x7 Y, u)
ox?

= coshux[sinhx{2u cosy cosuy + (1 + u2)siny sinuy} — 2u? sinhux]
+ sinhux[coshx{2u siny sinuy + (1 + u?)cosy cosuy} — 2u? coshux]
> coshux[sinhx{2u cosy cosuy + (1 + u?)siny sinuy} — 2u? sinhx]
+ sinhux[coshx{2u siny sinuy + (1 + u?) cosy cosuy} — 2u? coshx]
= coshux sinhx{2u cosy cosuy + (1 + u?)siny sinuy — 2u?}
+ sinhux coshx{2u siny sinuy + (1 + w?) cosy cosuy — 2u?}
= sinhx coshux{2u cosy cosuy + (1 — u)2 siny sinuy
+ 2u siny sinuy — 2u2} + sinhux coshx{2u siny sinuy
+(1- u)2 cosy cosuy + 2u cosy cosuy — 2u?}
> (sinhx coshux + sinhux coshx)

(2u siny sinuy + 2u cosy cosuy — 2u?)
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= 2u(sinhx coshux + sinhux coshx)(cos(1 — u)y — )

> 2u(sinhx coshux + sinhux coshx){—% l-wy+1- u}

= 2u(1 — u) (sinhx coshux + sinhux coshx)( - %)

> 0,

since 0<wu<1l and cosz > —2—3;2 +1 for 0 < z < n/3. Therefore,
01 (x, y, u)/ox is also positive.

Next we will show (2). Note that if ©/3 > y > 0, 99(0, y, ) = sinuy
(cosuy — cosy) > 0, and so we will assume that x > 0. Since @q9(x, y, 0)

= 0, it is sufficient to show that

0 . . .
W = coshx sinhux(siny cosuy — u sinuy cosy)

+ sinhx coshux(u siny cosuy — sinuy cosy)

is positive when x > 0, /3 > y >0, and 1> u > 0. The first term is
clearly positive and so we will show that wsinycosuy — sinuy cosy 1is

positive. But this can be easily verified since it is 0 when y = 0 and its

derivative with respect to y is (1 — u2) siny sinuy, which is positive.
Lemma 3.4. There exists a positive number ¢ such that for a complex

number a # 0 with |Ima| < g and |Rea| < n, and a real number u

with 0 < u < g, we have

cosha — coshua
cosha -1

>1-uwu.

Proof. We will show that

| cosha — coshua |2 -(1- u)2| cosha -1 |2 > 0,

if 0 <u<e¢ Putting a = x + y-1 with |x| <= and|y|<§, the left
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hand side equals
(coshx cosy — coshux cosuy)? + (sinhx siny — sinhux sinuy)?
— (1 - u)*{(coshx cosy — 1)? + sinh?x sin? y}
= {(2 — u)sinhx siny — sinhux sinuy}
x (u sinhx siny — sinhux sinuy)
+ {u -1+ (2 - u)coshx cosy — coshux cosuy}
x (1 — u + u coshx cosy — coshux cosuy).

Since it remains the same if we alter the signs of x or y, we may assume
that 1 > x > 0 and /3 > y > 0((x, y) # (0, 0)). Put

a;(x, ¥, u) = (2 — u)sinhx siny — sinhux sinuy,

ag(x, y, u) == usinhx siny — sinhux sinuy,

Bi(x, y, u) = u—1+ (2 —u)coshx cosy — coshux cosuy,
Bo(x, ¥, u) =1 - u + ucoshx cosy — coshux cosuy.

We will show that o, (x, y, u), as(x, v, u), B1(x, y, ©), and By(x, v, u) are
all positive.

Since 0 < u < 1, sinhx 1is increasing for any x, and siny is increasing

when 0 < y < n/3, we have
aq(x, y, u) > (2 — u)sinhux sinuy — sinhux sinuy
= (1 - u)sinhux sinuy > 0.

By the Taylor expansion of ay(x, y, u) around x = 0, we have

! . :
as(x, y, u) = Zmu(smy — 1" sinuy)x 2",
n=0

Since siny is increasing for 0 < y <n/3 and 0 <u <1, we have

siny — u?" sinuy > 0. Therefore, ay(x, y, u) > 0.
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The Taylor expansions of Bi(x, y, u) and Bg(x, v, u) around u = 0

gives

Bi(x, ¥, u) = 2(coshx cosy — 1) — (coshx cosy — 1)u + %(yz — x?)u?

+ 21—4 —xt +6x2y? — yh)ut + 0Wb),

Bo(x, ¥, u) = (coshx cosy — 1)u + %(y2 — x?)u?
+ 21—4(—x4 +6x2y? - y4)u4 + O(u6),
and so

Blx, 3, u) = Pr(x, v, u)Ba(x, v, u)
= 2(coshx cosy — 1)2u — (coshx cosy —1)
(coshx cosy =1+ x2 — y?)u?
+ %(4@4 — 3x2y% + y%)
—(x* = 6x2y% + y*)coshx cosy)u? + O(u®).

Therefore, B(x, y, u) is positive for small u if coshx cosy # 1.

When coshx cosy =1, we have

1
B, v u) = £ (&% = y*)u’ + O®). (3.1)
Since
coshx cosx |,_g=1,
W = (sinhx cosx — coshx sinx)|,_o= 0,
x=0
and

d? coshx cosx

2o = -2sinhxsinx <0 if 0 < x < m,
x
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coshx cosx <1 for 0 < x < n, which means that x # y when coshx cosy
=1. So B(x, y, u) > 0 for small u since the coefficient of u* in 3.1) is
positive.

Thus we have concluded that B(x, v, ) > 0 for small u.
Lemma 3.5. For a positive integer m and a positive real number a, we
have
-Qa

j e~y = € Z —
1 a ~a"(m-k)

Proof. Integration by parts gives

o0
j e Wmdy
1

0 0
[—l e“”t’"} + I e M 1qy

o]
= le_a + ﬂj. e~ Um1 gy
a a Ji

_ o0
= le_“ + %e_a + —m(m2 I)J. e~ Wm2q;
a a a 1
_lya,m a m(m—l)x---x(m—k+1)e_a
a2 ak+1

_ s
N m(m —1)x---x2 o0 4 ij oty
1

+..
a™ a™
= leia +_267a 4o m(m—l)x “];X]-(m —k +1) e*a
a a®*
Jr__.er(m—1)><~--><2€_a m!1 -a,
am am+

and the proof is complete.
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Lemma 3.6. For a complex number a with |2cosha —2| <1, |Ima|
< n/3, and a # 0, there exists a positive number & > 0 such that if

O<x<¢ and 0 <u <¢', then

a sinha
cosha -1

cosha(l — x) — coshua
cosha — coshua

Proof. Using the Taylor expansion with respect to x and u around

x =u =0, we have

cosha(l — x) — coshua _ a sinha a? cosha

— 2
cosha — coshua cosha 1" 2(cosha — 1) x” + Ry(u, x),

where R, (u, x) the terms with total degrees of u and x are greater than

two.

From Lemma 3.7, we have

cosha(l — x) — coshua
<1,
cosha — coshua
if x and u are sufficiently small.
Moreover, we have
cosha(l — x) — coshua a sinha
cosha — coshua cosha -1

[\

cosha(l — x) — coshua  asinha
cosha - coshua cosha -1

2
a” cosha
=1+ —)x2

2(cosha -1 + Bo(u, x).

a? cosha

From Lemma 3.8, we have Re5ro0 w2y

> 0 if |2cosha — 2| <1, and

the other inequality follows.

Lemma 3.7. For a complex number a # 0 with |Ima| < &, we have

a sinha 20
cosha -1 )
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Proof. We put a = x + /-1y with | ¥| < n. Then we have

asinha _ (coshx — cosy)(x sinhx + ysiny)

cosha =1 (cosy coshx —1)2 + sin® y sinh?«x

> 0,

if | y| < = and (x, y) = (0, 0).
Lemma 3.8. For a complex number a # 0 with |2cosha —2|<1,

and | Im a| < /3, we have

a? cosha 50
cosha -1 )

Proof. Putting a := x + /-1y with x, y € R, we have

o a? cosha _ f(x, y)

cosha -1 (cosy coshx —1)? + sin® y sinh®x ’

with
f(x, ¥) = (x% = y%)(cos®y + sinh?x — cosy coshx) + 2xy siny sinhx.
We will show that f(x, y) > 0. We may assume that x >0, y >0
((x, ¥) = (0, 0)) as before. Since
f(x, 0) = x%(1 + sinh®x — coshx) = x2(cosh®x — coshx) > 0,
when x > 0, we will assume that y > 0.

Since f(x, y) is analytic, it is sufficient to prove that every nth

derivative of f at x = 0 is positive, when n is even and zero when n is
odd.

Since
2 .
k9 9 -y if & =0,
T =y g it k=2
k )
Ox x=0 0 otherwise,
—cosy if k=0,
8" (sinh®x — cosy coshzx) k-1 o e
27" —cosy if k 1s even and positive,

k
ox _
=0 0 otherwise,
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and
ak(x sinhx) k if k is even and positive,
ox® - 0 otherwise,
we have
o"f(x, y)
o™ o
- i [nJ A Cat ) y 8" (cos?y + sinh®x — cosy coshx)
B ok A
im0k o’ x=0 Ox x=0
n .
+ 2ysiny 0" (x sinhx)
ox™ x=0
—y%(cos? y —cosy) if n=0,
if n=2,

—y%(2-cosy)+2(cos® y—cosy)+4ysiny
—y2(2" ! —cosy)+n(n—-1)(2"2 —cosy)+2nysiny  if n >3 and even,

0 otherwise.

It is clear that —y?(cos®y — cosy) > 0 since y < n/3. If n is even and
n > 4, then since y < n/3, we have

"f(x, ¥)

n
ox x=0

= 2""n(n -1) - 8y*} + n(n —1)(2"* - cosy) + y” cosy + 2ny siny

S 2n4{12 - 8(%)2} +n(n-1)(1 - cosy) > 0.

To show that

2
sz’y) = —2y% + 2(cos?y — cosy) + 4y siny + y? cosy
ox x=0
is positive, we will consider the function g(y) := -2y + 2(cos®y — cosy)

+4ysiny. Since

—dflgzy) = 2(3siny — 2y) + 4 cosy(y — siny)
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is easily verified to be positive, we have g(y) > 0. So 82f(x, y)/@x2 lx=0

1s also positive.
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