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Abstract

The compact sets invariant with respect to an Iterated (finite) Function
System (IFS) have been studied very intensively during last decades by
Mandelbrot, Dekking, Hutchinson, Barnsley and many others.

In this paper, it is considered the case of the countable system of
contraction maps on a compact metric space X and the contraction map
associated to it is defined on the complete metric space of all non-empty
compact subset of X endowed with the Hausdorff metric.

We show that the attractor associated to the sequence of contraction

maps (wp),; is approximated by the attractors of the partial systems

@)1, k>1.

n=1’
1. Preliminary Facts

We shall present some notions and results used in the sequel (more
complete and rigorous treatments may be found in [6], [2]).

Let (X, d) be a complete metric space and K(X) be the class of all

compact non-empty subsets of X.
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If we define a function & : K(X)x K(X) —» R, by

8(A, B) = max{d(4, B), d(B, A)}, 1)

where

d(A, B) = sup[inf d(x, y)j, forall A, B e K(X),
xeA\yeB

we obtain a metric, namely the Hausdorff metric.
The set K(X) is a complete metric space with respect to this metric &
(see [5], [2]).

Theorem 1.1. Let (X, d) be a complete metric space and (4A,),, be

a sequence of compact subsets of X.

(@) If A, C A1, forall ne N, and the set A := UAn is relatively

n=1

compact, then

A= LJlAn = lim 4,
n=

the limit is taken with respect to the Hausdorff metric and the bar means
the closure;

() If A,.1 C A, Vne N7, then

lim 4, = () 4n-
. n=1

Proof. (a) Let € > 0. We will find an N € IN such that
n>N=d4, A,)= sup[ inf d(b, a)j <e.
bez QEAn

Since n> N = Ay c A, = d(4, A,) < d(4, Ay), it suffices to find
N € N such that

Vbe A, Ixe Ay with d(, x) <e.
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Indeed, if

Vne N,3b, € A suchthat Vx e A,, thenwehave d(b,, x)>e (2)

Since A is a compact set, there exists a convergent, hence Cauchy,
subsequence (b, ), of (b,),. So there exists ky € N such that

2 hy = dby, by) < <

and

by, €A =3(a), c A ay &bnko. (3)

ko

Let p € N be such that

d(ako, by ) < % ()

and let [ > ky be such that aﬁo € Ay

Then, using relations (2), (3) and (4), we obtain

k € €
e < d(by, az°) < d(by,, by, )+ d(by, . af,0)<§+E _—

This is a contradiction.

Because A, ¢ A = d(4,,, A) =0, we have §(4,, A) <&, Vn > N.

(b) Since () Ay, € A,, Vn, it follows that d{ () A AHJ =0, Vn.
k=1 k=1

We shall show that, for all € > 0, there exists N € N, such that

n>N= d[An, ﬂAk]< e,

k=1
namely

nx2N,xe A, = 3ye ﬂAk with d(x, y) <e.
k=1
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Indeed, assume that there exists € > 0 such that

Vne N, 3x, € A, sothat Vye ﬂAk = d(x,, y) 2 & 5)
k=1

The sequence (x,), contains a subsequence (xnp ), Wwhich is
convergent to x. Since (4, )n is a decreasing sequence of sets, we deduce

that kﬂlAk = ﬂlAnp. It is simple to prove that x € ﬂlAnp.
= p= p=

Thus, it follows that x € n Ayp.
k=1

Next, taking y = x, we deduce that d(x,, y) <e, for sufficiently
large n. This contradicts (5).

A contraction is a map ® : X — X for which there exist 0 < ¢ <1
such that

d(o(x), o(y)) < cd(x, ¥) (6)
for all x, y e X.

The infimum of all ¢ for which this inequality holds is called the
contraction ratio.

A set of contractions (u)n)fl:l, k =1, is called an iterated function

system (IFS), according to M. Barnsley [2]. Such a system of maps
induces a map S, : K(X) - K(X),

k
Sk(E) = | Jon®) @

n=1

which is a contraction on K(X) with contraction ratio r < max r,, 1,
1<n<k

being the contraction ratio of w,,, n =1, ..., k.
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According to Banach contraction principle, there is a unique set
A, € K(X) which is invariant with respect to Sj, that is,

k
Ay = Sp(4y) = U(Dn(Ak)- ®)

n=1
We say the set A, € K(X) is the attractor of IFS (w,, )ﬁzl.

Furthermore, for all E € K(X), we have
p
SP(E)> Ay, )

where S} = S, Siﬂ = S), o SP for p > 1, the convergence being taken
with respect to the Hausdorff metric.

For i, €{l, .., k}, p 21, denote W g, = O © iy 0.0

veey lp il i2 ip'

In this way one obtains a contraction on X with the contraction ratio

Beip S Tligee iy

Using induction, one can show that, for every E € K(X) and p € N7,

k
spE) = | oy, @) (10)
i =1

Uy oeens ip
We set €..ip the unique fixed point of Oy i Then (according to [6]

3.1(3)) Ay, is the closure of set of these fixed points:

Ak = {eil_”ip . DE N*, 1< l] < k} (11)

2. Countable Iterated Function Systems

In this section, (X, d) is supposed to be a compact metric space.

Definition 2.1. A sequence of contractions (w,),»; Wwhose

contraction ratios are, respectively, r

s I, > 0, such that supr, <1 is

n

called a countable iterated function system, for simplicity CIFS.
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Let (»,) -, be a CIFS.

n>1

We define the set function S : K(X) — K(X) by

SE) = | Jon(B), (12)
n=1

where the bar means the closure of the corresponding set.

Lemma 2.1. If (E,,),, (F,), are two sequences of sets in K(X), then

3 UEn, UF" < supd(E,, F,).
n=1 n=1 n

Proof. Obvious.

Theorem 2.1. The set function S which is defined in (12) is a

contraction map on (K(X), 8) with contraction ratio r < supr,.
n

Proof. Let A, B e K(X).

%

Taking in Lemma 2.1, E,, = 0,(A), F, = 0,(B), ne N, we deduce
HS(A) S(B) < supB(o(4) 0,(B) < supr, |- 304, B)
n n

where, in the last inequality, we take into account the fact that, for

ne N* we have
8(w, (4), ©,(B)) < 1,8(A, B).

Theorem 2.2. There exists a unique set A € K(X) which is invariant

with respect to (o,,) that is,

n>1’

A=8(A)= Own(A).

n=1
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Furthermore, if E € K(X), then

SP(E)S A
in the Hausdorff metric, where S' = S, SP™1 = S0 8P, p > 1.

Proof. The assertions come from Banach contraction principle
applied to the contraction S.

Definition 2.2. The non-empty compact invariant set A is called the

attractor of the countable iterated function system (),

According to the Section 1, we denote by A;, and, respectively, by S;,

k

the attractor and the contraction associated to the partial IFS (v, ). _;,

for k > 1.
The following assertion is obvious, using (11):
Proposition 2.1. For all k 2 1, we have A, © Ap,1-

Lemma 2.2. If (Ei)ies is a family of subsets of a topological space,

then

E = JE:

1

(34}
(34}

~.

€
Proof. E; c E;, Vie 3 = UEi c UE

€3 €3
On the other hand, taking into account that UE c UEi’ we
€3 €3

deduce the inclusion

Theorem 2.3. The set A = UAk € K(X) is the attractor of CIFS
k=1

(@ )51-
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Proof. Using the notations above, we have

s(Ar) = | Jon(ar)
n=1

k oo
= [Jon@U [ oalap)
n=1

n=k+1

=4 U (Jou@p), E=12 ..

n=k+1

By Lemma 2.2, it follows that

= O Own(Ak) = OS(Ak)

k=1 n=1 k=1

k=1 n=k+1

(13)

(14)

(15)

Let er an(Ak). Then 3Ik>1, In=2k+1 such that

k=1 n=k+1
x € w,(A4).
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By applying Proposition 2.1, we deduce that A, c A, and hence

0,(4;) c 0,(4,)c A,. So x € A,,, and hence x € UAk~

k=1
It follows that
O U n(Ay) C UAk = U U W (AL) C OAk' (16)
k=1 n=k+1 k=1 n=k+1 k=1

Using (15) and (16), we obtain

Joe -0 Jontan "
k=1 n=1 k=1

So, we have

S| OAk = Own OAk c Ow”[OAsz 0 Own(Ak)
k=1 n=1 k=1

Hm (UAk] nulw UAk _SUAk,

where, in first inclusion, we used the fact that ®,, is continuous, for each

n=>1.

It follows that

S OAk = 0 O(Dn(Ak). (18)
k=1

By (17) and (18), we deduce S| | J Ay, |= [ J Ay

Corollary 2.1. The attractor of CIFS (w,, )n21 is the closure of the set

of fixed points of the contractions Wi, P € NF, ;€ N,
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Proof. Since

{eil...ip :pe N7, ij € N*} = U{ei1~-ip :pe N, 1< ij < k},
k=1

using (14) and (11), we obtain

{ezli :pe N, ;e N'}= U{ehi :pe N, 1<i; <k}= UAk
k=1

So, by Theorem 2.3, it follows that

A={ei1i :pe N, ;e N}

Corollary 2.2. The attractor of CIFS (w,),s; is

A= UAk = lim 4y,

the limit being taken in (K(X), d).
Hence, the attractor of CIFS (v,),, is approximated by the

F k=1

attractors of partial IFS ((Dn)

Proof. The assertion follows from Theorems 2.3 and 1.1.

Observation. By applying Theorem 1.1 and using the fact that S is

a contraction on K(X), we have
S(lim Ay) = lim (4,

namely

N OAk = thwn(Ak = 0 0 n(Ak)
k=1 n=1 k=1 n=1

o [k o

= D 0 (Ak = U an(Ak)U U (Dn(Ak)
k=1 n=1 =llLn=

= 1 n=k+1
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using Lemma 2.2 and (16).
This is an alternative of the proof for the assertion of Theorem 2.3.

Theorem 2.4. If E is a non-empty compact subset of X, then, for all
pe N,

8% (E) = lim 87 (E). (19)

In particular, if A is the attractor of CIFS (»,,) then

n>1’

A=S8A)= 1i}£n Sp(A) = khm lim SP(E)

—00 p—>oo
and, also,

A = lim lim SP(E),

P k—oo
the limits being taken in the space (K(X), d).

So, we have the following diagram:

SHE) 5 a4,
Lk 3

SPE) 5 A

Proof. Using (10), for all p € N* and k > 1, we have

k
Sp(E) = U Wi, (E) (20)
i -1

1s cees lp

(using the notations from part 1).
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We shall show, using induction with respect to p, that

SP(E) = 0 0y, ().
: -1

Uy eees ip_
Thus, assume that the equality above holds for p > 1.

Then, using Lemma 2.2 and the continuity of w;,

0 w;,...i, (E)
-1

iy o ip=

Oy eees

SPYE) = U o, ®|=Jo
Sip=l i1

So,

oo

U oi.i,®)
-1

s =

sPE) = | o
1=1

oo

= U o, @

iy s iy ipy1 =1

Let p € N*. We apply Theorem 1.1 taking into account the fact that

k
the sequence of compact sets U Oy iy (E)| is, obviously increasing.

i, ey ip=1 A

We have, using (20),

oo o k
sf@= |J o, ®= U on.,®
1, o ip=1 -1

0y ooy lp k=1 ilv ey ip_
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k
= 111?1. U o, (B) = li}?l SP(E),
0y e Lp:

hence the equality (19).
The equality S(A) = lilgn S (A) follows from (19) for p =1, E = A.

Using (9) and Corollary 2.2, we obtain

A =lim Ay, = lim lim SP(E).
k k p

Remark. Let (X, d) be a compact metric space and (w;),.; be a set
of contraction maps with the ratios r, supr, <1, I being at most a

countable set.
Repeating the notation above S : K(X) — K(X),
sB) = JoiB), vBe KX),
iel
we obtain the definitions of the contraction on (K(X), 8) and of the

attractor associated with the system (w;)._; in the case when I is finite

(the case of IFS) and (X, d) is a complete metric space.
Moreover, each IFS (w, )ﬁzl can be considered like a CIFS according

to:

Proposition 2.2. The set Ay, k € N, is the attractor of IFS (o, )ﬁzl
if and only if Ay is the attractor of CIFS (w,,),s,, where w, =e; (the

fixed point of ), forall n > k.

Proof. The result comes from equalities:

A = [Jon@n) = [Jon@n U [ fed = |Jonar)
n=1 n=1 n=1

n=k+1

because, of course, e; € Ay,.
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3. Some Examples of the Attractors Associated to a CIFS

First, we shall present two examples which generalize some well-

known fractals, like the Cantor set and the Sierpinski triangle.

Example 1 (The attractors of Cantor-infinite type). We shall work in

the compact metric space X = [0, 1] with the Euclidean metric.
1
Let ge |0, =1
7| 3
We define, for each n € N*, the sequence of contractions w, : [0, 1]
- [0, 1],
(Dn(x) =q"x + Oy

1-2q

where oy =0, o, = q¢" ! +
1 n q [2_3(]

n-1
) + 0yo1, > 2.

We put Eq = [0, 1], E; = Uu)n([O, 1)) = U [o,, o0, + 9" ]
n=1

n=1
We observe that the distance of two consecutive intervals of E; has
the form

n

B" = otpyy — (0, +9") 20,80 0, =¢q 14 Bn_l +0,_1, for n > 2,

B being obtained such that the sum of lengths of the intervals of E; and

the sum of distances of these intervals is worth 1 (the condition that the

intervals of E; should have disjoint interiors is not necessary).
Thus
- 1-2q
s "=lep=—"""4==0.
S e S w1 -l
n=1 n=1

In this way we justify the form of the contractions ®,, » =1, and that

the fact that such maps are well defined.
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We denote, for p > 1,

Ep = an(Ep—l) = S(Ep—l)-

n=1
Hence E, = SP(Ey), p=1,2, ...

One can check, by using induction, that the sequence of compact sets
(E,), is decreasing.

Now, we shall show that the attractor of CIFS (w,,),s; is

A= ﬂEp. (21)
p=0
Indeed, using Theorems 1.1 and 2.2, we have
A = lim SP(E))= lim E, = E,.
p—eo 07 poea P 1[]1 P

We denote, for each k€ N”,

Ef = By, Ej =| Jou(By) vpe N°.

n=1

It follows, obviously, that E]; [ Eﬁﬂ, and E];+1 - Ek, for all &, p,

and, also,
k
SP(Ey) = U mil...ip(Eo)=E§-
iy e =1

By applying Theorem 2.4, we deduce

oo

A = limlim SP(Ey) = imlim E¥ = lim| |E} = EF (22
1;n1};nk(0) 111)111]?11, 1Ir)nUp ﬂUp (22)

k=1 p=1 k=1
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and, also,

A= hmhmEk = O ﬁEﬁ = OAk, (23)
k=1 p=1 k=1

where A = ﬂEﬁ is the attractor of partial IFS (wn)n k21

Moreover, A, is a set of Cantor-type.

The formulas (21), (22), (23) give some characterizations of the
attractor of CIFS (0,)

n>1"

. . 1 .
One can consider the particular case g = 3 We obtain

n-1 n-1 n-1
0c1=0,ocn=(%j +(%J +ocn_1=---=1—(%) ,nz=1

and they provide the contractions

wn(x)=ix+1—%, n>1.
3" 3"

Example 2 (The attractors of Sierpinski-infinite type). We denote
X={x,yeR?:0<x<1,0<y<1-x}

the plane surface of the closed triangle having its vertices in the points
(0, 0), (0, 1), (1, 0).

Let p € N, p 2 2, and consider the contractions o; : X — X

1 . 11 i1 )1
we, y)=| —x+(-1)=, —y+ P> —
D Pt p

p-1 p

p' -1

forall1=1,2,..,j=1,2, .., .
p-1

The attractors associated to the partial IFS for p = 2 {mij 1 =1,

Lk j=1,2, .., 2! —1} in first cases k = 3 (11 contractions), k = 5
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(57 contractions), k = 7 (247 contractions) are, respectively, represented
in the figures (Fig. 1, Fig. 2, Fig. 3).

BrETBIY 4

V'g’;}' ’;V

5B
4 ,r’

oy

%’;{:’

XV
“ﬂ

Fig. 1 Fig. 2 Fig. 3

We may consider, here, a more general case:

Let g € [O, %} and the contractions

wj = (@'x+ (G -1)d", a'y + (b - j)a*)

1-4°

for all i=1,2,..,j=1,2,.., k, where k = l: i-1
¢ (1-q)

} , and the

brackets symbolize the integer part.

Example 3 (The attractors of von-Koch-infinite type). Let
X =1[0,1]x[0, 1] € R%. We consider the contractions which are defined

as follows: for every ne N*, there exist uniquely pe {0,1,..},

ke {l, 2, 3, 4} such that n = 4p + k. Then

L (Loiomni_g L)) if k=1
2p+1 3 3
pl+1 %x—%ynLZpﬂ—g,%an%y} if k=2
2
o, (x, y) =
”(y)11@p+13J§1J§.
— | =x+—y+2 -, ——x+—y+—|, if k=3;
9P+l | 6 6 27 6 6 6
L (L pgpn 4 100 if k= 4.
op+1| 3 373

(see Fig. 4)



166 NICOLAE-ADRIAN SECELEAN

Fig. 4

Example 4 (The attractors circles-infinite). Let X = B[O, g} =

{x e R? x < %} the closed ball centered at 0 of radius % (-1

represent the Euclidean norm on Rz).

Let C > 0 be a constant and we consider the points

n=0,1,..

nm . 2nm
P, =] cos , sin ,
n+C n+C

on the unitary circle, Py = (1, 0).

. 1
Also, one can consider a sequence (1), C (O, g} and the maps

®, : X — X, defined by

w, (x, y) = r,x + cos 2nn r,y + sin "l n=01
n ’ n n+Can C, s Ly eene

It is not difficult to observe that the definition is correct and (w, ),

is a sequence of contractions on the compact metric space X.

In Figure 5, we have presented an example for n=0,1, 2, ...,

1

V2n +9

600, C = 30, 1, = ,n>0.
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Fig. 5
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