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Abstract

The compact sets invariant with respect to an Iterated (finite) Function
System (IFS) have been studied very intensively during last decades by
Mandelbrot, Dekking, Hutchinson, Barnsley and many others.

In this paper, it is considered the case of the countable system of
contraction maps on a compact metric space X and the contraction map
associated to it is defined on the complete metric space of all non-empty
compact subset of X endowed with the Hausdorff metric.

We show that the attractor associated to the sequence of contraction

maps ( ) 1≥ω nn  is approximated by the attractors of the partial systems

( ) .1,1 ≥ω = kk
nn

1. Preliminary Facts

We shall present some notions and results used in the sequel (more
complete and rigorous treatments may be found in [6], [2]).

Let ( )d,X  be a complete metric space and ( )XK  be the class of all

compact non-empty subsets of X.
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If we define a function ( ) ( ) +→×δ RXX KK:  by

( ) ( ) ( ){ },,d,,dmax, ABBABA =δ (1)

where

( ) ( ) ( ),,allfor ,,dinfsup,d XBAyxBA
ByAx

K∈




=

∈∈

we obtain a metric, namely the Hausdorff metric.

The set ( )XK  is a complete metric space with respect to this metric δ

(see [5], [2]).

Theorem 1.1. Let ( )d,X  be a complete metric space and ( ) 1≥nnA  be

a sequence of compact subsets of X.

(a) If ,1+⊂ nn AA  for all ,∗∈ Nn  and the set ∪
∞

=
=

1

:
n

nAA  is relatively

compact, then

,lim
1

n
n

n
n AAA ==

∞

=
∪

the limit is taken with respect to the Hausdorff metric and the bar means

the closure;

(b) If ,,1
∗

+ ∈∀⊂ NnAA nn  then

∩
∞

=

=
1

.lim
n

nn
n

AA

Proof. (a) Let .0>ε  We will find an N∈N  such that

( ) ( ) .,dinfsup,d ε<




=⇒≥

∈∈
abAANn

nAaAb
n

Since ( ) ( ),,d,d NnnN AAAAAANn ≤⇒⊂⇒≥  it suffices to find

N∈N  such that

NAxAb ∈∃∈∀ ,   with  ( ) .,d ε<xb
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Indeed, if

Abn n ∈∃∈∀ ,N   such that  ,nAx ∈∀   then we have  ( ) .,d ε≥xbn (2)

Since A  is a compact set, there exists a convergent, hence Cauchy,

subsequence ( )knk
b  of ( ) .nnb  So there exists N∈0k  such that

( ) ,
2

,d
00

ε<⇒≥
lk nn bbkl

and 

( ) .,
0

00
0 kk n

pk
pp

k
pn baAaAb →⊂∃⇒∈  (3)

Let N∈p  be such that

( ) ,
2

,d
0

0 ε<
kn

k
p ba  (4)

and let 0kl ≥  be such that .0
ln

k
p Aa ∈

Then, using relations (2), (3) and (4), we obtain

( ) ( ) ( ) .
22

,d,d,d 0
00

0 ε=ε+ε<+≤≤ε k
pnnn

k
pn abbbab

kkll

This is a contradiction.

Because ( ) ,0,d =⇒⊂ AAAA nn  we have ( ) .,, NnAAn ≥∀ε<δ

(b) Since ∩
∞

=
∀⊂

1

,,
k

nk nAA  it follows that .,0,d
1

nAA
k

nk ∀=








 ∞

=
∩

We shall show that, for all ,0>ε  there exists ,N∈N  such that

,,d
1

ε<











⇒≥

∞

=
∩
k

kn AANn

namely

∩
∞

=

∈∃⇒∈≥
1

,
k

kn AyAxNn   with  ( ) .,d ε<yx
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Indeed, assume that there exists 0>ε  such that

nn Axn ∈∃∈∀ ,N  so that ( )∩
∞

=

ε≥⇒∈∀
1

.,d
k

nk yxAy (5)

The sequence ( )nnx  contains a subsequence ( )pnp
x  which is

convergent to x. Since ( )nnA  is a decreasing sequence of sets, we deduce

that ∩ ∩
∞

=

∞

=
=

1 1

.
k p

nk p
AA  It is simple to prove that ∩

∞

=
∈

1

.
p

np
Ax

Thus, it follows that ∩
∞

=
∈

1

.
k

kAx

Next, taking ,xy =  we deduce that ( ) ,,d ε<yxn  for sufficiently

large n. This contradicts (5).

A contraction is a map XX →ω :  for which there exist 10 <≤ c

such that

( ) ( )( ) ( )yxcyx ,d,d ≤ωω (6)

for all ., Xyx ∈

The infimum of all c for which this inequality holds is called the

contraction ratio.

A set of contractions ( ) ,1,1 ≥ω = kk
nn  is called an iterated function

system (IFS), according to M. Barnsley [2]. Such a system of maps

induces a map ( ) ( ),: XXk KKS →

( ) ( )∪
k

n
nk EE

1=

ω=S (7)

which is a contraction on ( )XK  with contraction ratio ,max
1

n
kn

rr
≤≤

≤  nr

being the contraction ratio of ....,,1, knn =ω
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According to Banach contraction principle, there is a unique set

( )XAk K∈  which is invariant with respect to ,kS  that is,

( ) ( )∪
k

n
knkkk AAA

1

.
=

ω== S (8)

We say the set ( )XAk K∈  is the attractor of IFS ( ) .1
k
nn =ω

Furthermore, for all ( ),XE K∈  we have

( ) ,k

p
p
k AE →S (9)

where p
kk

p
kkk SSSSS D== +11 ,  for ,1≥p  the convergence being taken

with respect to the Hausdorff metric.

For { } ,1,...,,1...,,1 ≥∈ pkii p  denote ....:
211... pp iiiii ωωω=ω DDD

In this way one obtains a contraction on X with the contraction ratio

....
211... pp iiiii rrrr ≤

Using induction, one can show that, for every ( )XE K∈  and ,∗∈ Np

( ) ( )∪
k

ii
ii

p
k

p

p
EE

1...,,
...

1

1
.

=

ω=S (10)

We set 
piie ...1

 the unique fixed point of ....1 piiω  Then (according to [6]

3.1(3)) kA  is the closure of set of these fixed points:

{ }.1,:...1
kipeA jiik p

≤≤∈= ∗N (11)

2. Countable Iterated Function Systems

In this section, ( )d,X  is supposed to be a compact metric space.

Definition 2.1. A sequence of contractions ( ) 1≥ω nn  whose

contraction ratios are, respectively, ,0, >nn rr  such that 1sup <n
n

r  is

called a countable iterated function system, for simplicity CIFS.
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Let ( ) 1≥ω nn  be a CIFS.

We define the set function ( ) ( )XX KKS →:  by

( ) ( )∪
∞

=

ω=
1

,
n

n EES (12)

where the bar means the closure of the corresponding set.

Lemma 2.1. If ( ) ( )nnnn FE ,  are two sequences of sets in ( ),XK  then

( ).,sup,
11

nn
nn

n
n

n FEFE δ≤













δ

∞

=

∞

=
∪∪

Proof. Obvious.

Theorem 2.1. The set function S  which is defined in (12) is a

contraction map on ( )( )δ,XK  with contraction ratio .sup n
n

rr ≤

Proof. Let ( )., XBA K∈

Taking in Lemma 2.1, ( ),AE nn ω=  ( ),BF nn ω=  ,∗∈ Nn  we deduce

( ) ( )( ) ( ) ( )( ) ( ),,sup,sup, BArBABA n
n

nn
n

δ⋅




≤ωωδ≤δ SS

where, in the last inequality, we take into account the fact that, for

,∗∈ Nn  we have

( ) ( )( ) ( ).,, BArBA nnn δ≤ωωδ

Theorem 2.2. There exists a unique set ( )XA K∈  which is invariant

with respect to ( ) ,1≥ω nn  that is,

( ) ( ).
1
∪
∞

=

ω==
n

n AAA S
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Furthermore, if ( ),XE K∈  then

( ) AE
pp →S

in the Hausdorff metric, where .1,, 11 ≥== + ppp SSSSS D

Proof. The assertions come from Banach contraction principle
applied to the contraction .S

Definition 2.2. The non-empty compact invariant set A is called the

attractor of the countable iterated function system ( ) .1≥ω nn

According to the Section 1, we denote by kA  and, respectively, by kS

the attractor and the contraction associated to the partial IFS ( ) ,1
k
nn =ω

for .1≥k

The following assertion is obvious, using (11):

Proposition 2.1. For all ,1≥k  we have .1+⊂ kk AA

Lemma 2.2. If ( ) ∈ℑiiE  is a family of subsets of a topological space,

then

.∪∪
∈ℑ∈ℑ

=
i

i
i

i EE

Proof. ., ∪∪
∈ℑ∈ℑ

⊂⇒ℑ∈∀⊂
i

i
i

iii EEiEE

On the other hand, taking into account that ,∪∪
∈ℑ∈ℑ

⊂
i

i
i

i EE  we

deduce the inclusion

.∪∪
∈ℑ∈ℑ

⊂
i

i
i

i EE

Theorem 2.3. The set ( )XAA
k

k K∈=
∞

=
∪

1

 is the attractor of CIFS

( ) .1≥ω nn
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Proof. Using the notations above, we have

( ) ( )∪
∞

=

ω=
1n

knk AAS

( ) ( )∪∪ ∪
∞

+==

ωω=
11 kn

kn

k

n
kn AA

( ) ....,2,1,
1

=ω=
∞

+=

kAA
kn

knk ∪∪ (13)

By Lemma 2.2, it follows that

( ) ( ).
1 11 1
∪ ∪∪ ∪
∞

=

∞

=

∞

=

∞

=

ω=ω
k n

kn
k n

kn AA (14)

Then, using (13) and (14),

( ) ( )∪ ∪∪ ∪
∞

=

∞

=

∞

=

∞

=

ω=ω
1 11 1 k n

kn
n k

kn AA

( ) ( )∪∪ ∪
∞

=

∞

=

∞

=

=ω=
11 1 k

k
k n

kn AA S

( ( ))∪ ∪∪
∞

=

∞

+=

ω=
1 1k kn

knk AA

( ).
1 11
∪ ∪∪ ∪
∞

=

∞

+=

∞

=

ω=
k kn

kn
k

k AA (15)

Let ( ).
1 1
∪ ∪
∞

=

∞

+=
ω∈

k kn
kn Ax  Then ,1≥∃k  1+≥∃ kn  such that

( ).kn Ax ω∈
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By applying Proposition 2.1, we deduce that nk AA ⊂  and hence

( )kn Aω  ( ) .nnn AA ⊂ω⊂  So ,nAx ∈  and hence ∪
∞

=
∈

1

.
k

kAx

It follows that

( ) ( ) .
11 1 11 1
∪∪ ∪ ∪∪ ∪
∞

=

∞

=

∞

=

∞

+=

∞

=

∞

+=

⊂ω⇒⊂ω
k

k
k k kn

knk
k kn

kn AAAA (16)

Using (15) and (16), we obtain

( ).
1 11
∪ ∪∪
∞

=

∞

=

∞

=

ω=
n k

kn
k

k AA (17)

So, we have

( )∪ ∪∪ ∪∪ ∪∪
∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

ω=











ω⊂














ω=















1 11 11 11 n k
kn

n k
kn

n k
kn

k
k AAAAS

                   ,
11 11 1














=














ω⊂












ω=

∞

=

∞

=

∞

=

∞

=

∞

=
∪∪ ∪∪ ∪
k

k
n k

kn
n k

kn AAA S

where, in first inclusion, we used the fact that nω  is continuous, for each

.1≥n

It follows that

( ).
1 11
∪ ∪∪
∞

=

∞

=

∞

=

ω=














n k
kn

k
k AAS (18)

By (17) and (18), we deduce .
11
∪∪
∞

=

∞

=
=













k
k

k
k AAS

Corollary 2.1. The attractor of CIFS ( ) 1≥ω nn  is the closure of the set

of fixed points of the contractions .,,...1
∗∗ ∈∈ω NN jii ip

p
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Proof. Since

{ } { },1,:,:
1

...... 11 ∪
∞

=

∗∗∗ ≤≤∈=∈∈
k

jiijii kipeipe
pp

NNN

using (14) and (11), we obtain

{ } { } .1,:,:
11

...... 11 ∪∪
∞

=

∞

=

∗∗∗ =≤≤∈=∈∈
k

k
k

jiijii Akipeipe
pp

NNN

So, by Theorem 2.3, it follows that

{ }.,:...1
∗∗ ∈∈= NN jii ipeA

p

Corollary 2.2. The attractor of CIFS ( ) 1≥ω nn  is

,lim
1

k
k

k
k AAA ==

∞

=
∪

the limit being taken in ( )( )., δXK

Hence, the attractor of CIFS ( ) 1≥ω nn  is approximated by the

attractors of partial IFS ( ) .1,1 ≥ω = kk
nn

Proof. The assertion follows from Theorems 2.3 and 1.1.

Observation. By applying Theorem 1.1 and using the fact that S  is

a contraction on ( ),XK  we have

( ) ( ),limlim k
k

k
k

AA SS =

namely

( ) ( )∪ ∪∪∪
∞

=

∞

=

∞

=

∞

=

ω=ω=














1 111

lim
k n

kn
n

kn
k

k
k AAAS

( ) ( ) ( )∪ ∪ ∪∪ ∪ ∪
∞

= =

∞

+=

∞

=

∞

=











ωω=ω=

1 1 11 1 k

k

n kn
knkn

k n
kn AAA
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( ) ,
11 11
∪∪ ∪∪ ∪
∞

=

∞

=

∞

+=

∞

=

=ω=
k

k
k kn

kn
k

k AAA

using Lemma 2.2 and (16).

This is an alternative of the proof for the assertion of Theorem 2.3.

Theorem 2.4. If E is a non-empty compact subset of X, then, for all

,∗∈ Np

( ) ( ).lim EE p
kk

p SS = (19)

In particular, if A is the attractor of CIFS ( ) ,1≥ω nn  then

( ) ( ) ( )EAAA p
kpk

k
k

SSS
∞→∞→

=== limlimlim

and, also,

( ),limlim EA p
kkp
S

∞→∞→
=

the limits being taken in the space ( )( )., δXK

So, we have the following diagram:

( )

( ) AE

kk

AE

pp

k
pp

k

→

↓↓

→

S

S

Proof. Using (10), for all ∗∈ Np  and ,1≥k  we have

( ) ( )EE
k

ii
ii

p
k

p

p∪
1...,,

...

1

1
=

ω=S (20)

(using the notations from part 1).
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We shall show, using induction with respect to p, that

( ) ( ).
1...,,

...

1

1
EE

p

p
ii

ii
p ∪

∞

=

ω=S

Thus, assume that the equality above holds for .1≥p

Then, using Lemma 2.2 and the continuity of ,iω

( ) ( ) ( )















ωω=
















ω=

∞

=

∞

=

∞

=

+ EEE

p

p

p

p
ii

ii
i

i
ii

ii
p ∪∪∪

1...,,
...

11...,,
...

1

1

1

1

1
SS

( ) ( )















ωω=
















ωω⊂

∞

=

∞

=

∞

=

∞

=

EE

p

p

p

p
ii

ii
i

i
i ii

iii ∪∪∪ ∪
1...,,

...
11 1...,,

...

1

1

1

1

( ) ( ).1

1...,,
...

1 1

1
EE p

ii
ii

i
i

p

p
+

∞

=

∞

=

=















ωω⊂ S∪∪

So,

( ) ( )















ωω=

∞

=

∞

=

+ EE

p

p
ii

ii
i

i
p ∪∪

1...,,
...

1

1

1

1
S

( ).
1,...,,

...

11

11
E

pp

p
iii

ii∪
∞

=+

+ω=

Let .∗∈ Np  We apply Theorem 1.1 taking into account the fact that

the sequence of compact sets ( )
k

k

ii
ii E

p
p 













ω

=
∪

1...,,
...

1
1

is, obviously increasing.

We have, using (20),

( ) ( ) ( )EEE
k

k

ii
ii

ii
ii

p

p

p

p

p ∪ ∪∪
∞

= =

∞

=

ω=ω=
1 1...,,

...
1...,,

...

1

1

1

1
S
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( ) ( ),limlim
1...,,

...

1

1
EE p

kk

k

ii
ii

k
p

p
S=ω=

=
∪

hence the equality (19).

The equality ( ) ( )AA k
k
SS lim=  follows from (19) for .,1 AEp ==

Using (9) and Corollary 2.2, we obtain

( ).limlimlim EAA p
kpk

k
k

S==

Remark. Let ( )d,X  be a compact metric space and ( ) Iii ∈ω  be a set

of contraction maps with the ratios ,ir  ,1sup <ir  I being at most a

countable set.

Repeating the notation above ( ) ( ),: XX KKS →

( ) ( ) ( ),, XBBB
Ii

i KS ∈∀ω=
∈
∪

we obtain the definitions of the contraction on ( )( )δ,XK  and of the

attractor associated with the system ( ) Iii ∈ω  in the case when I is finite

(the case of IFS) and ( )d,X  is a complete metric space.

Moreover, each IFS ( )knn 1=ω  can be considered like a CIFS according

to:

Proposition 2.2. The set ,, ∗∈ NkAk  is the attractor of IFS ( )knn 1=ω

if and only if kA  is the attractor of CIFS ( ) ,1≥ω nn  where 1en ≡ω  (the

fixed point of ),1ω  for all .kn >

Proof. The result comes from equalities:

( ) ( ) { } ( )k

k

n
n

kn
k

k

n
nk

n
nk AeAAA ∪∪∪∪ ∪

11
1

11 =

∞

+==

∞

=

ω=ω=ω=

because, of course, .1 kAe ∈
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3. Some Examples of the Attractors Associated to a CIFS

First, we shall present two examples which generalize some well-
known fractals, like the Cantor set and the Sierpinski triangle.

Example 1 (The attractors of Cantor-infinite type). We shall work in

the compact metric space [ ]1,0=X  with the Euclidean metric.

Let .
2
1

,0 



∈q

We define, for each ,∗∈ Nn  the sequence of contractions [ ]1,0:nω

[ ],1,0→

( ) ,n
n

n xqx α+=ω

where .2,
32
21

,0 1

1
1

1 ≥α+






−
−+=α=α −

−
− n

q
q

q n

n
n

n

We put [ ] [ ]( ) [ ].,1,0,1,0
11

10 ∪∪
∞

=

∞

=
+αα=ω==

n

n
nn

n
n qEE

We observe that the distance of two consecutive intervals of 1E  has

the form

( ) ,0,1 ≥β+α−α=β +
n

nn
n q  so ,1

11
−

−− α+β+=α n
nn

n q  for ,2≥n

β being obtained such that the sum of lengths of the intervals of 1E  and

the sum of distances of these intervals is worth 1 (the condition that the

intervals of 1E  should have disjoint interiors is not necessary).

Thus

∑ ∑
∞

=

∞

=

≥
−
−=β⇔=β+

1 1

.0
32
21

1
n n

nn

q
q

q

In this way we justify the form of the contractions ,1, ≥ω nn  and that

the fact that such maps are well defined.
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We denote, for ,1≥p

( ) ( ).11
1

−−

∞

=

=ω= pp
n

np EEE S∪

Hence ( ),0EE p
p S= ....,2,1=p

One can check, by using induction, that the sequence of compact sets

( )ppE  is decreasing.

Now, we shall show that the attractor of CIFS ( ) 1≥ω nn  is

.
0
∩
∞

=

=
p

pEA (21)

Indeed, using Theorems 1.1 and 2.2, we have

( ) ∩
∞

=
∞→∞→

===
1

0 .limlim
p

pp
p

p

p
EEEA S

We denote, for each ,∗∈ Nk

( ) .,, 1
1

00
∗

−

∞

=

∈∀ω== NpEEEE p
n

n
k
p

k ∪

It follows, obviously, that ,1+⊂ k
p

k
p EE  and ,1

k
p

k
p EE ⊂+  for all k, p,

and, also,

( ) ( )∪
k

ii

k
pii

p
k

p

p
EEE

1...,,
0...0

1

1
.

=

=ω=S

By applying Theorem 2.4, we deduce

( ) ∩ ∪∪
∞

=

∞

=

∞

=

====
1 11

0 limlimlimlimlim
p k

k
p

k

k
p

p

k
p

kp

p
kkp

EEEEA S (22)
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and, also,

,limlim
111
∪∩∪
∞

=

∞

=

∞

=

===
k

k
p

k
p

k

k
p

pk
AEEA (23)

where ∩
∞

=
=

1p

k
pk EA  is the attractor of partial IFS ( ) .1,1 ≥ω = kk

nn

Moreover, kA  is a set of Cantor-type.

The formulas (21), (22), (23) give some characterizations of the

attractor of CIFS ( ) .1≥ω nn

One can consider the particular case .
3
1=q  We obtain

1,
3
1

1
3
1

3
1

,0
1

1

11

1 ≥




−==α+





+





=α=α

−

−

−−
n

n

n

nn

n "

and they provide the contractions

( ) .1,
3

1
1

3

1
1

≥−+=ω − nxx
nnn

Example 2 (The attractors of Sierpinski-infinite type). We denote

{( ) }xyxyxX −≤≤≤≤∈= 10,10:, 2R

the plane surface of the closed triangle having its vertices in the points

( ) ( ) ( ).0,1,1,0,0,0

Let ,2, ≥∈ pp N  and consider the contractions XXij →ω :

( ) ( ) 











−

−
−+−+=ω

i

i

iiiij
p

j
p
p

y
pp

jx
p

yx
1

1
11

,
1

1
1

,

for all .
1
1

...,,2,1...,,2,1
−
−==

p
p

ji
i

The attractors associated to the partial IFS for 2=p  { ,1: =ω iij

}12...,,2,1,...,,2 −= ijk  in first cases 3=k  (11 contractions), 5=k
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(57 contractions), 7=k  (247 contractions) are, respectively, represented

in the figures (Fig. 1, Fig. 2, Fig. 3).

Fig. 1 Fig. 2 Fig. 3

We may consider, here, a more general case:

Let 



∈

2
1

,0q  and the contractions

( ( ) ( ) )ii
iii

ij qjkyqqjxq −+−+=ω ,1

for all ,...,,2,1...,,2,1 ikji ==  where 
( )

,
1

1
1 












−
−= − qq

q
k

i

i

i  and the

brackets symbolize the integer part.

Example 3 (The attractors of von-Koch-infinite type). Let

[ ] [ ] .1,01,0 2R⊂×=X  We consider the contractions which are defined

as follows: for every ,∗∈ Nn  there exist uniquely { },...,1,0∈p

{ }4,3,2,1∈k  such that .4 kpn +=  Then

( )


















=




 −+

=





++−−++

=





+−+−

=




 −+

=ω

+
+

+
+

+
+

+
+

.4if,
3
1

,
3
4

2
3
1

2

1

;3if,
6
3

6
1

6
3

,
2
3

2
6
3

6
1

2

1

;2if,
6
1

6
3

,
3
5

2
6
3

6
1

2

1

;1if,
3
1

,22
3
1

2

1

:,

1
1

1
1

1
1

1
1

kyx

kyxyx

kyxyx

kyx

yx

p
p

p
p

p
p

p
p

n

(see Fig. 4)
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Fig. 4

Example 4 (The attractors circles-infinite). Let =



=

2
3

,0BX







 ≤∈

2
3

:2 xx R  the closed ball centered at 0 of radius 
2
3

 ( ⋅

represent the Euclidean norm on 2R ).

Let 0>C  be a constant and we consider the points

...,1,0,
2

sin,
2

cos =






+
π

+
π= n

Cn
n

Cn
n

Pn

on the unitary circle, ( ).0,10 =P

Also, one can consider a sequence ( ) 



⊂≥ 3

1
,00nnr  and the maps

,: XXn →ω  defined by

( ) ....,1,0,
2

sin,
2

cos, =






+
π+

+
π+=ω n

Cn
n

yr
Cn

n
xryx nnn

It is not difficult to observe that the definition is correct and ( ) 0≥ω nn

is a sequence of contractions on the compact metric space X.

In Figure 5, we have presented an example for ...,,2,1,0=n

.0,
92

1
,30,600 ≥

+
== n

n
rC n
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Fig. 5
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