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Abstract 

We consider a technique for deriving exact analytic coherent structure 
(pulse/front/domain wall) solutions of general NLPDEs via the use of 
truncated invariant Painlevé expansions, and prove that these solutions 
satisfy the corresponding traveling wave reduced ODE (as conjectured 
by Powell et al. [57]). Thus, they not only provide ‘partial integrability’ 
in Painlevé’s original sense but also a parameterization of the 
homoclinic or heteroclinic structures of the traveling wave reduced 
ODEs. Coupling this to Melnikov theory, we then consider the 
breakdown to chaos of such analytic coherent structure solutions of 
various long-wave and reaction-diffusion equations under forcing. We 
also demonstrate that similar treatments are possible for integrable 
systems (where the soliton/kink solutions represent the homoclinic/ 
heteroclinic structures of the reduced ODEs) using the well-studied 
forced sine-Gordon equation as the main example. A method of treating 
the dynamics of the system prior to the onset of chaos by the use of 
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intrinsic harmonic balance, multiscale or direct soliton perturbation 
theory is briefly discussed. It is conceivable that resummation of such 
perturbation series via the use of Pade approximants or other 
techniques may enable one to analytically follow the homoclinic or 
heteroclinic tangling beyond the first transversal intersection of the 
stable and unstable manifolds and into the chaotic regime. 

1. Introduction 

There has been considerable interest in coherent structure solutions 
of nonintegrable nonlinear partial differential equations (NLPDEs) [1, 2, 
6, 20-22, 31-34, 44, 50, 51,] since these provide an organizing structure to 
the space of solutions. In a very rough sense, this is somewhat analogous 
to the way in which families of soliton solution act as basic building 
blocks for the solution space of integrable equations. Recent work, 
primarily in the context of generalized Ginzburg-Landau amplitude 
equations in pattern-forming systems, has included the existence of pulse 
(solitary wave), front (shock) and domain wall coherent structures using 
center manifold techniques [28, 42], as well as investigations of periodic 
and quasi-periodic solutions [3, 24-26, 29]. Another, more physics-
oriented, approach was developed by van Saarloos [65, 66] to investigate 
linear and nonlinear marginal stability of fronts. This approach has been 
comprehensively reviewed by van Saarloos and Hohenberg [67] in the 
context of generalized Ginzburg-Landau equations. Using the idea that 
spatio-temporal coherent structure solutions of NLPDEs, whether 
periodic, quasi-periodic, or chaotic must obey the underlying singularity 
structure, Conte and co-workers [19, 20, 46, 50, 51] have used methods 
related to the Painlevé test for integrability [17, 62] and its modifications 
[18] to derive families of solutions of the complex cubic and quintic 
Ginzburg-Landau equation. Also, using phase-plane techniques on the 
ordinary differential equation which must be satisfied by any traveling 
wave solution to the real Ginzburg-Landau equation, Powell et al. [57] 
have re-derived and significantly elucidated several of van Saarloos’ 
results [65, 66] in a completely different manner. In addition, they use 
simple analytic solutions of the PDE obtained using truncated Painlevé 
expansions [13], together with ideas from phase-plane analysis, as well as 
absolute versus convective instability of waves to (a) show that 
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front/pulse solution of the PDE must satisfy the traveling wave reduced 
ODE asymptotically, and (b) derive conditions for the accessibility of the 
solutions from compact support initial conditions. 

To date, the approaches to the analysis of coherent structures may 
broadly be classified into three groups. First, there is the phase-plane/ 
center manifold qualitative analysis of traveling wave reduced ODEs to 
prove existence and stability of coherent structures [58]. The second 
approach consists of actual construction of coherent structures via 
numerical simulation of the traveling wave reduced ODEs. The third 
approach comprises containment arguments wherein, starting from the 
correct boundary condition at one end of the interval, one shows that at 
the other end the solution asymptotes to a constant value and thus 

corresponds to a coherent structure, rather to shooting off to ±∞ — these 

may often involve tricky analysis. 

In this paper, we shall primarily consider two things. The first is a 
proof that certain, constant celerity, classes of solutions (whether pulses 
(solitary waves) or fronts (shocks or kinks)) obtained using truncated 
Painlevé expansions (or regular Painlevé expansions) are indeed 
traveling waves and thus satisfy the corresponding reduced ODE. The 
motivation for looking for this comes from the conjecture in [57], as well 
as its applicability in various areas of nonlinear science. 

The second main focus in this paper will be to use the above result to 
develop a new, direct method of treating the behavior of coherent 
structure solutions of both nonintegrable and integrable NLPDEs under 
stresses such as forcing. The primary advantage of the method developed 
here will be its simplicity. However, a key assumption that will go into 
this approach is the assumption that a coherent structure which has the 
functional form of a traveling wave would remain a traveling wave under 
stress, and also not be disrupted by phenomena such as resonances [69] 
so that one could deal directly with the forced traveling-wave-reduced 
ODE system. In addition, one needs to be in regimes where the dynamics 
is dominated by interactions among stable coherent structures [14]. 
These are motivated by a large body of accumulated evidence. However, 
the results still need to be validated ‘a posteriori’. Note that this approach 
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is clearly not expected to capture the full dynamical behavior of the PDE 
in all regimes — that would require numerical or perturbative treatment 
of the PDE. However, it will be seen to treat the evolution of coherent 
structures accurately and also capture the dynamics in regimes 
dominated by their interactions. 

The approach here is, in a sense, an attempt to connect the first two 
approaches to coherent structures mentioned above by providing explicit 
expressions for non-trivial coherent structures, which are indeed 
traveling waves. These are then considered in the context of modeling 
forced nonintegrable and integrable systems. 

Note also that the modeling aspect considered here is the actual 
transition to chaos, since this provides a non-trivial and direct application 
of the coherent structure solutions. However, the bifurcations and 
dynamics in the pre-chaotic regime may be treated by diverse techniques, 
including possible extensions into the chaotic regime. This is considered 
in Section 6 and will be the subject of future work. 

The remainder of this paper is organized as follows. Section 2 
considers some classes of analytic solutions obtained via invariant 
Painlevé analysis of various long-wave and reaction-diffusion equations. 
Section 3 considers a simple proof that the conjecture in [57] is valid for 
such classes of solutions. In fact, once the class of solutions is identified, 
the proof is trivial in the regular Painlevé formalism, although it is less 
so in the invariant Painlevé formalism whence solutions are usually 
derived. These solutions are then used in Section 4 in the modeling of 
forced nonintegrable NLPDEs, while Section 5 considers a related 
treatment of forced integrable systems. Finally, Section 6 summarizes the 
results and conclusions and also briefly considers possible future work. 

2. Some Classes of Invariant Painlevé Solutions 

In this section, we first briefly summarize the invariant Painlevé 
formalism [17]. 

2.1. Invariant Painlevé formalism 

For an NLPDE that is algebraic in U and its derivatives 
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( ) ,0,, =txUE  

around a movable singular manifold 

 00 =φ−φ  (2.1) 

one looks, in the invariant Painlevé formulation [17], for a solution as an 
expansion of the form 

 ,
0
∑
∞

=

α− χχ=
j

j
jUU  (2.2) 

where the coefficients jU  are invariant under a group of homographic 

(Möbius) transformations on φ. The expansion variable χ, which must 

vanish as ( )0φ−φ  is chosen to be 
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The variable χ satisfies the Ricatti equations 

 ,
2
1

1 2χ+=χ Sx  (2.3a) 

 ( ) ,
2
1 2χ+−χ+−=χ xxxt CCSCC  (2.3b) 

while the variable ψ satisfies the linear equations 

 ,
2
1

ψ−=ψ Sxx  (2.4a) 

 .
2
1

xxt CC ψ−ψ=ψ  (2.4b) 

Note that the systems of Eqs. (2.3) and (2.4) are equivalent to each 

other. In (2.3) and (2.4), the quantities S (Schwarzian derivative) and C 
(the “dimension of velocity” or celerity) are defined by 
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 xtC φφ−≡  (2.5b) 

and are invariant under the group of homographic (Möbius) or fractional 
linear transformations [44] 

 .1, =−
+φ
+φ

→φ bcad
dc
ba

 (2.6) 

These homographic invariants are linked by the cross-derivative 

condition ( )txxxxxxt φ=φ  

 .02 =+++ xxxxxt CSSCCS  (2.7) 

This formalism has been used to derive various classes of exact 
coherent structure solutions for various equations. The general procedure 
involves substituting truncated invariant Painlevé expansions into the 
governing NLPDE(s). In other words, if the leading-order analysis 

indicates a dominant singularity of order α−φ  about the arbitrary 

singularity manifold ( ) ,0, =φ tx  then one substitutes a truncated version 

of (2.2), i.e., 

 .
1

10
m

mUUU
U

−α−αα χ
++

χ
+

χ
=  (2.8) 

This typically yields coupled systems of NLPDEs for the coefficients 

( )txUm ,  in (2.8). For subsequent use in Section 3, we stress here that, 

within the invariant Painlevé formalism, these coefficients are thus 

functions of the homographic invariants C and S and their derivatives. 
Note also that, unlike for non-invariant Painlevé expansions, no 

derivatives of χ occur in these equations since these are eliminated in the 

invariant formalism by the use of the Ricatti equations (2.3). However, 

quite often, the NLPDEs for the ( ) s
,

, txUm  are too hard to solve in 

general and so solutions are typically (though not always) obtained by 

making the assumptions that the homographic invariants C and/or S are 
constants (see [17, 18] and the references therein for further details). 
Certain other classes of solutions of these equations may sometimes be 
obtained without this assumption (using Painlevé’s method of 
subequations for instance). It is these classes of invariant Painlevé 
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solutions which we shall mainly consider here. In particular, we shall 
prove that, as conjectured by Powell et al. [57] for arbitrary solutions 
obtained from Painlevé analysis, these classes of exact solutions of the 
NLPDE resulting from a direct application of Painlevé analysis to the 
PDE are indeed traveling wave solutions. Thus, they satisfy the traveling 
wave reduced ODE and thereby provide explicit parameterizations of its 
homoclinic / heteroclinic structures. 

In the next two subsections, we summarize such classes of analytic 
solutions of various long-wave and reaction-diffusion equations obtained 
by the above procedure and which we shall use subsequently. Following 
that, we then prove in Section 3 that such solutions must indeed satisfy 
the traveling wave reduced ODE. 

2.2. Solutions for the long-wave equations 

Following the above procedure, several classes of solutions have been 
obtained for various important NLPDEs using truncated invariant 
Painlevé expansions. We first consider various long-wave equations [5, 
27, 70], followed by some reaction-diffusion equations. The Benjamin-
Bona-Mahoney (BBM) equation (sometimes known as the regularized 
long-wave (RLW) equation) 

 0=−++ xxtxxt UUUUU  (2.9) 

was derived by Benjamin et al. as a description of long waves in shallow 
water in lieu of the famous Korteweg-de Vries (KdV) equation [14], which 
is a soliton equation solvable by inverse scattering. The modified 
Benjamin-Bona-Mahoney (MBBM) equation 

 02 =+++ xxtxxt cUUbUaUU  (2.10) 

is, similarly, an alternative to the modified KdV (MKdV) equation, which 
is also an integrable equation solvable by the inverse-scattering 
transform. The symmetric regularized long-wave (SRLW) equation 

 ( ) 0
2
1 2 =+++ xxttxtxxtt cUUbaUU  (2.11) 

arises in various physical applications, including ion-acoustic wave 
propagation in neutral plasmas. It is an alternative to the Boussinesq 
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equation, which also arises in numerous contexts and is also completely 
integrable by the inverse-scattering transform. 

The BBM equation has the analytic solution (see [15, 16, 37, 40, 41]): 

 ,BBM
II DNU =  (2.12a) 

with 

( ){ }22
2

2
1 201 CQCccN −−+=  

{ }{( ) ( ) ( )},,2,14 2211
2
2

2
1

2 txycctxyccCCQ −−−++  (2.12b) 

( ) ( ){ } ,sincos2 2
1 ξβ−ξ= QQcD  (2.12c) 

where 

 ,CTx −≡ξ  (2.12d) 

 ( ) ( ),2cos,1 ξ≡ Qtxy  (2.12e) 

 ( ) ( ),2sin,2 ξ= Qtxy  (2.12f) 

and C, Q, 1c  and 2c  are arbitrary. 

Another class of solutions is: 
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22

1
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=
C

C
txy  (2.13c) 

and 

 ( ).Ctx −≡ξ  (2.13d) 

Similarly, use of an invariant truncated Painlevé expansion yields the 

following class of solutions of the SRLW equation (2.11) with ,1== ba  
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:1−=c  
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 ( ) ,
120

sin,5 





−

ξ
=

C
txy  (2.14b) 

 ( ) ,
120

cos,6 





−
ξ

=
C

txy  (2.14c) 

where ( ),Ctc −=ξ  1c  and 2c  are arbitrary constants, and C is a root of 

the cubic equation 

,0209201 32 =−+− CCC  

i.e.,  

0510393.0=C   or  .969456.019948.0 iC ±=  

The BBM and SRLW equations also possess other well-known 
analytic solutions which we summarize briefly here for the sake of 
comparison. First, there are the well-known families of one-parameter 
traveling wave pulse solutions 
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The use of non-invariant Painlevé expansions truncated at different 
levels yields additional solutions 
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2.3. Solutions for various reaction-diffusion equations 

In a similar manner, one may obtain classes of solutions of various 
interesting reaction diffusion equations (see [16, 57, 62] for the original 
references where these equations were considered): 

 ( ) ( )UUb
b
U

UU xxt −++= 1  (2.19) 

 ( ) xxt DUUUU +−β= 12  (2.20) 

 ( ) .1 2
xxt UUUU +−=  (2.21) 

Of these, (2.20) and (2.21) are the well-known Fisher-Kolmogorov 
equation and the real Ginzburg-Landau (also known as Newell-
Whitehead) equation. Invariant Painlevé expansions truncated at various 
levels yield the following solutions of the above equations. 

For (2.19), we have the solution 

 ( ) ( ),222
6
121 bCb

b
U −−+

χ
±=  (2.22) 

where 

 
( ) ( )

[ ] ,
sincos

sincos

12

21
ξ+ξ−

ξ−ξ
=χ

QcQcQ
QcQc

 (2.23a) 

 Ctx −=ξ  (2.23b) 

and C has one of the values 
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 1
2

222
C
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b
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A class of solutions of (2.20) is given by 
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χ
β

±=
D

DCDD
U

∓
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where χ is given by (2.23), with 
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For instance, with ,2,1 =β=D  we obtain ,1−=C  or .2=C  

Finally, for (2.21), we have the class of solutions [13] 
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2
12

2
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6

2323
Ctx

Ctx

ecc

ecCcC
U   for .23±=C  (2.28) 

3. Proof that Invariant Painlevé Solutions Satisfy the  

Traveling Wave Reduced ODE 

In this section, we shall show that certain classes of analytic solutions 
obtained by the use of invariant Painlevé expansions in fact satisfy the 
traveling wave reduced ODE. Thus, they not only provide ‘partial 
integrability’ in Painlevé’s original sense, but also provide explicit 
parameterizations of the homoclinic or heteroclinic structures of the 
traveling wave reduced ODE. Such solutions directly obtained for the 
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PDE will therefore satisfy the conjecture of Powell et al. [57] which was 
discussed in Section 1 (and tested out in [16]). We shall see that this 
feature of such analytic solutions will also be very useful in our 
subsequent treatment of forced NLPDEs. 

In particular, let us consider the classes of solutions corresponding to 

,0=xC  i.e., solutions where the celerity is a function of t alone. Equation 

(2.7) then shows that 

 ( ).CtxSS −=  (3.1) 

Using this, both (2.4a) and (2.4b) imply that 

 ( ).Ctx −ψ=ψ  (3.2) 

Hence 

 ( ).Ctx
x

−χ=
ψ
ψ

≡χ  (3.3) 

As stressed in Section 2.1, the expansion coefficients ( )txUm ,  in the 

truncated expansion (2.8) are functions of C, S, and their partial 

derivatives. Thus, if 0=tC  as well, i.e., for classes of solutions with 

 C = constant (3.4) 

these expansion coefficients are functions of ( )Ctx −  as well. Using this 

and (3.3) shows that any classes of constant C solutions obtained from 
truncated invariant Painlevé expansions like (2.8) will explicitly be 

functions of ( ),Ctx −  and hence satisfy the traveling wave reduced ODE. 

Note that, as mentioned in Section 2.1, most classes of analytic solutions 

are derived assuming constant C for operational purposes, although other 
classes may sometimes also be obtained (for instance by Painlevé’s 
method of subequations or by iterating Bäcklund transformations). 
However, most classes of smooth solutions obtained by these other 

methods turn out to have constant C, except for non-smooth solutions 
such as the cuspons and peakons of the Camassa-Holm equation. They 
will thus provide explicit expressions or parameterizations for the 
heteroclinic or homoclinic structures of the traveling wave reduced ODE 
(corresponding to front (shock) or pulse (solitary wave) solutions of the 
PDE respectively). 
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Two generalizations of the above result are immediate. The first is for 
solutions of equations in more than one spatial dimension and the second 
is for NLPDEs whose Painlevé analysis yields more than one singularity 
branch. 

For NLPDEs in ( )12 +  for instance, (2.7) is supplemented by the 

conditions 

 ,02 =+++ xxxxxy KSSKKS  (3.5) 

 0=−+− xxty CKKCKC  (3.6) 

and (2.4) is supplemented by 

 ,
2
1

xxy KK ψ−ψ=ψ  (3.7) 

where 

 .xyK φφ−≡  (3.8) 

Now, for classes of solutions with C and K constant, (3.6) is trivially 
satisfied, while (2.7) and (3.5) show that 

 ( ).CtKyxSS −−=  (3.9) 

Using this, (2.4) and (3.7) show that 

 ( )CtKyx −−ψ=ψ  (3.10) 

and hence 

 ( ).CtKyx
x

−−χ=
ψ
ψ≡χ  (3.11) 

Thus, by the same reasoning as above, all coefficients as well as χ in the 

truncated invariant Painlevé expansion for the solution (the series is 
similar to (2.8) except that all quantities occurring in it are also functions 

of y) are functions of ( ).CtKyx −−  Thus such classes of solutions 

corresponding to constant C and K will indeed be traveling wave 
reductions and satisfy the traveling wave reduced ODE. 

The second extension corresponds to solutions which are constructed 
using more than one singularity branch (if the PDE admits more than 
one branch of singularities). There are of course a very large number of 
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such cases, such as the bright soliton of the Nonlinear Schrödinger 
Equation which is most easily constructed using two branches (while the 
dark soliton requires only a single branch [19, 56]. Say that a solution is 
constructed based on a truncated invariant expansion with two 

singularity manifolds iχ  and coefficients ( )i
kU  for branches ,2,1=i  i.e., 

 
( ) ( )

∑ ∑
= =

+α+α χ
+

χ
=

1 2

0 0 2

2

1

1

.
m

k

m

k
k

k
k

k UU
U  (3.12) 

As for the cases above with one singularity branch, the coefficients 

depend on the homographic invariants iS  and iC  and their derivatives. 

For classes of solutions where the s
,

iC  are constants, the analogs of (2.7) 

for each branch show that 

 ( ) ...,2,1, =−= itCxSS iii  (3.13) 

while the analogs of (2.4) for each branch reveal that 

 ( ) ...,2,1, =−ψ=ψ itCx iii  (3.14a) 

 ( ) ....,2,1, =−χ=χ itCx iii  (3.14b) 

Thus, when (3.13-3.14) and =iC  constant are used, the coefficients in 

(3.12) take the form 

( ) ( )( ( ) ( ) ( ) ...;,,,, 1111111 tCxStCxStCxSCUU xt
i

k
i

k −−−=  

( ) ( ) ( ) )tCxStCxStCxSC xt 2222222 ,,, −−−  

( )( )., 21 tCxtCxU i
k −−=  (3.15) 

From (3.12), (3.14) and (3.15), it is now apparent that such classes of 

solutions corresponding to the s
,

iC  constant will be functions of 

( ),tCx i−  and thus will satisfy the traveling wave reduced ODE. Also, as 

is quite well known, this also indicates that such solutions may 
correspond to bidirectional waves for any NLPDE, such as the Boussinesq 
equation, where two of the singularity branches may have celerities 

( )s
,

iC  of opposite signs. 
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This completes the proof. In the next section, we consider forced 
NLPDEs where the classes of invariant Painlevé solutions we have 
considered in this section will be seen to be important. 

4. Forced Nonintegrable Systems 

Forced systems arise in many areas (see [36, 38, 52, 54, 61] for 
instance), such as the famous Stokes layer problem [68], surface waves 
due to time-dependent pressure [60, 74], surface waves in viscous fluids 
moving down an inclined plane with an uneven bottom [8, 59], or a very 
large variety of configurations involving forced systems of oscillators ([36, 
38, 52, 54, 61] for example). In addition, there have also been marginally 
related studies of forced integrable systems, such as the forced KdV, 
forced Nonlinear Schrödinger Equation, and forced Sine-Gordon systems 
(see [9-11, 30, 55, 63] for instance). While studies of forced integrable 
systems have made extensive use of the geometry, studies of forced non-
integrable systems have usually involved numerical simulations 
supplemented by perturbative/geometric perturbative approaches. 

In this section, we shall see that use of the ideas we have considered 
earlier allows us to analytically treat the breakdown (to chaos) under 
forcing of coherent structure solutions of both integrable and non-
integrable systems. For the sake of accuracy, this statement should be 
supplemented with the coda that we shall be able derive the threshold for 
the onset of chaos under forcing. However, the analytical consideration of 
the actual dynamics prior to the onset of chaos would still require the use 
of multiscale perturbation theory (for forcings which are fast compared to 
the intrinsic system timescale) [54], or direct soliton perturbation theory 
(see [71]-[73] and the references therein for instance for recent reviews) 
for forced integrable systems. It is also conceivable that resummation of 
these perturbation series [4, 7] may enable one to analytically follow the 
homoclinic or heteroclinic tangling beyond the first transversal 
intersection of the stable and unstable manifolds and into the chaotic 
regime (see [64] for instance). 

In order to set the stage, we shall first consider a forced reaction 
diffusion system which is of relevance in modeling stirred-tank open 
reactor systems [23, 35] used in studies of nonlinear chemical systems, 
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two-dimensional Turing pattern formation and so on. It will be seen that 
the analysis goes through relatively smoothly in this example, although 
even here a particular ordering of the various terms is essential. 
However, subsequent examples will illustrate the possible complications, 
and show how these may be circumvented by the use of the ideas and 
classes of coherent structure solutions which were considered in Sections 
2 and 3.  

Consider the forced reaction diffusion system 

 ( ) tFUfUU xxt ω++= cos  (4.1) 

for various possible nonlinear reaction terms ( ).Uf  If we consider 

coherent structure (pulse (or solitary wave), and front (or kink or shock)) 
solutions of this equation in the form of traveling waves (this is the 
typical situation, see [49] for example), then we have 

 ( ) ( )




 −ω

++=−
c

zx
FUf

dz

Ud
dz
dU

c cos
2

2
 (4.2) 

for the ODE governing them and where .ctxz −=  If the parameters c 

and F, corresponding to the wave speed and the forcing amplitude, are 
ordered as (the motivation for this is to ensure that the unforced ODE 
may be integrated relatively simply, and similar orderings are thus fairly 
common for various forced systems, including forced integrable systems 
such as in [30]): 

 0Cc ε=  (4.3a) 

 ,0FF ε=  (4.3b) 

where ε is a small parameter, equation (4.2) becomes 

 ( ) ( )
.cos 0

0
02

2





 +









ε
−ω

ε−=+
dz
dU

c
c

zx
FUf

dz

Ud
 (4.4) 

Picking the reaction function to be the real Ginzburg-Landau (Newell-
Whitehead) one (see [13, 27]) 

 ( ) ( )UUUf 12 −±=  (4.5) 

and defining 
 Ux ≡1  (4.6a) 
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 ,2 dzdUx ≡  (4.6b) 

equation (4.4) may be written in the standard perturbed Hamiltonian 
form suited to setting up a Melnikov integral [36, 52] 

 ,gfx ε+=  (4.7) 
where 

 [ ( )]Txxxf 1, 2
112 −= ∓  (4.8) 

 
( )

.cos,0 0
0

0

T

dZ
dU

c
c

zx
Fg 



 −









ε
−ω

−=  (4.9) 

Hence, we may set up the Melnikov integral as 

( ) ( ) ( )∫
∞

∞−
θ+×=θ dzzgzfM  

( ) ( ) ( )∫
∞

∞− 



 ±









ε
θ−−ω

= dzzc
c
zx

Fz 2sech2cos2sech2 2
0

0
0

2∓  

( )[ ] ( ) ( )∫
∞

∞−
αθ−α= dzzzxF 2sechcoscos2 2

0∓  

( )[ ] ( ) ( )∫ ∫
∞

∞−

∞

∞−
−αθ−α zdzcdzzzxF 2sech42sechsinsin2 4

0
2

0∓  

( )[ ] ( ) ( ) ,
3
8

2sechcoscos2 0
2

0 ∫
∞

∞−
−αθ−α= cdzzzxF∓  (4.10) 

where 
 0cεω≡α  (4.11) 

and we have used [36, 52] the standard closed-form expressions for the 

heteroclinic orbits of the unperturbed Hamiltonian system in (4.7) and 
associated values of various integrals in (4.10) which occur commonly in 

Melnikov analyses. For typical parameter values 1,1.0,1.0 0 ==ε=ω c  

for instance, (4.10) yields 

 ( ) ( ) .
3
8

cos188276.0 −θ−=θ xM ∓  (4.12) 

Thus, for ( ) 1cos ±=θ−x  for the upper/lower signs respectively, the 

Melnikov function has a simple zero. As is well known, this corresponds 
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to the first transversal intersection of the stable and unstable manifolds 
of the saddle points of the unperturbed Hamiltonian system in (4.7) and 
corresponds to the onset of chaos. For the above parameters, this occurs 

at a value of the forcing .4747.10 =F  Of course, as the forcing amplitude 

is turned up, one could numerically track the actual breakdown of the 
heteroclinic half-orbit in the usual way [36, 52,]. If we consider 

parametric forcing, for instance if F in (4.2) is replaced by uF, the above 
computation may be redone yielding 

( ) ( )[ ] ( ) ( ) ( )∫
∞

∞−
αθ−α=θ dzzzzxFM 2sech2tanhsinsin2 2

0  

∫
∞

∞−
− zdzc 2sech4 2

0  

( ) .
3
8sin452068.0 00 cxF −θ−α−=  (4.13) 

For the same parameters as above, the onset of chaos now occurs at 

larger values of forcing, i.e., .899.50 >F  

Before we leave this first, elementary example, we should stress two 
features. First, consideration of traveling wave coherent structures of the 
PDE (4.1) effectively reduces our problem to an ODE. However, the 
unforced ODE in this example is easily integrable in terms of elementary 
functions, and this yields expressions for the heteroclinic orbits of the 
unforced system in (4.7). Secondly, the original PDE is an infinite-

dimensional system which couples all x values in the domain of the 
problem. However, in considering the forced traveling-wave reduced ODE 
(4.2/4.7), we are in fact assuming that the coherent structures retain 
their traveling wave form well into the forced regime. Strong support for 
this comes from the robustness of the coherent structures under 
perturbation ([8, 12, 38, 43, 47, 54, 59-61, 68, 74,] for instance), but 
results need ‘a posteriori’ validation. Note that this is provided that we 
are in regimes dominated by stable coherent structures [14] in the 
absence of resonances [69]. In computing and interpreting the Melnikov 
function, we thus take the point of view that we are in fact dealing with 

an ODE, with the x taking one, but arbitrary, value. Carrying this 

further, if the Melnikov function goes to zero now at any x, then there will 
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be onset of chaos. Note that the important point above is that x may take 
any value. In a very imprecise sense, this is analogous to the ‘method of 
normal modes’ in hydrodynamic stability analysis, where one allows the 

wavenumber k to take one, but arbitrary, value and then sees whether 

the system may be unstable at any k (except that linear systems are dealt 

with there). This k value is then the one mode among the infinity of 
wavenumber values for the various modes which is most unstable, or goes 
unstable first. Note that the traveling wave reduced ODE is not expected 
to predict full dynamical or bifurcation behavior of the PDE accurately. 
As discussed, this needs numeric or perturbative work on the PDE. 
However, as we shall check ‘a posteriori’, it captures the qualitative 
evolution of coherent structures accurately. 

Let us consider a second example next in order to see possible 
complications, as well as ways around them. Considering traveling wave 
solutions of the real Ginzburg-Landau (Newell-Whitehead) [13, 27] 
system (2.21) [47, 57, 62] as above, it is straightforward to verify that the 
resulting ODE cannot be integrated in terms of elementary functions, but 
one requires the use of elliptic functions. Of course, elliptic functions 
solutions are widely used in different contexts, such as water waves and 
various other areas in general (see [45, 48] for instance). However, the 
solutions obtained from invariant Painlevé analysis give direct ‘partial 
integrability’ in terms of elementary functions, and, as discussed in 
Section 3, they are in fact traveling wave reductions. Hence, we may use 
these direct solutions in (2.28) for the PDE (2.21) as a simple explicit 
parameterization for the heteroclinic orbits of its traveling wave reduced 
ODE (connecting the saddle points at ( ).0,1±  Notice too that one need 

not order some of the terms to be smaller than others, as was needed in 
the earlier example. Hence, for the forced version of (2.21), i.e., (4.1) with 

( ) ( )21 UUUf −=  (4.14) 

and forcing function of the form ( ) ,cos 21 FtF +ω  the corresponding 

traveling wave reduced ODE (4.2) may be written in the form (4.7) (using 
(4.6) and setting )1=ε  with 

 
T

xxxxf 



 −+−= 2

3
112

2

3
,  (4.15) 
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( ) ( )

.
3

2
sin

3
2

cos,0 21

T
zx

F
zx

Fg 














 −ω

−






 −ω

−=  (4.16) 

Thus, the corresponding Melnikov function is 

 ( ) ( ) ( ) 22111 sincos FIxFIxFM −θ−α−θ−α−=θ  (4.17a) 

 ∫− 



















 +

−α=
0

1 1

2
1

1
ln2cos dU

U
U

c
c

nI  (4.17b) 

 ∫− 



















 +

−α=
0

1 1

2
2 .

1
ln2sin dU

U
U

c
c

nI  (4.17c) 

Here, ,32 ω=α  and we have chosen U for the case 23=C  in (2.28) 

for ,1x  and its derivative (with respect to Ctxz −= ) for .2x  Thus, for 

the typical parameter values below, the Melnikov integral goes through a 
simple zero for 

a. 567.921 ≥FF   for  ,1,1,
2

3
21 ===α=ω cc   (4.18) 

b. 9092.121 ≥FF   for  .1,
3
2

,1 21 ===α=ω cc  (4.19) 

The above approach may clearly be used for any nonintegrable PDE 
where nontrivial families of coherent structure solutions are obtained by 
invariant Painlevé analysis, e.g., for the long-wave equations. Thus, for 

the solutions BBM
IU  in (2.13) of the BBM equation (2.9), under forcing of 

the form ( ) ,cos 21 FtF +ω  for typical parameter values 1c  arbitrary, 

,02 =c  the onset of chaos occurs at: 

a. 839.212 ≥FF   for  π=ω 21   (4.20) 

b. 4.65712 ≥FF   for  .1=ω   (4.21) 

Clearly, the other solutions to the long-wave equations in Section 2 may 
be treated in a similar fashion. 

At this point, before concluding the discussion of forced nonintegrable 
systems, it is worth briefly mentioning one other related point, which is of 
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crucial importance in actual physical modeling applications. In [22] and 
[34], the typical approach taken to invariant Painlevé analytical solutions 
of nonintegrable PDEs was to consider their real parts for real values of 

the arbitrary constants in the solutions (e.g., the s,ic  in (2.12)). However, 

for these to be meaningful physical solutions of the physical PDEs, these 
constants need to be chosen such that the full analytical solutions are 

themselves real. For instance, the solutions BBM
IU  in (2.12) may be 

shown to be real if 

 ,2121 iirr cccc −=  (4.22) 

where the r and i subscripts denote the real and imaginary parts of the 

constants 1c and 2c . An example is shown in Figure 1 for the real solution 

BBM
Iu  for parameter values ,5.0=C  ( ),2151 ic −=  ic += 22  

satisfying these conditions. The solution is a real solitary wave or pulse 

with asymptotic value ( ) 213 −C  at both ends. 

 

Figure 1. BBM
IU  in (2.13) for ,5.0=C  ( ),2151 ic −=  and ic += 22  

satisfying (4.22). In the ( )BBM
I, Uξ  plane, it is a pulse with asymptotic 

values ( ) 213 −C  as .±∞→ξ  
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Similarly, a fairly involved calculation reveals that, for 

 ,ir iqqQ +=  (4.23) 

the solutions BBM
IIU  are real for: 

 0=rq  (4.24a) 

and 

irir cccc 2112 , −=−=  

or 

irir cccc 2112 , ==  

or 

irir cccc 1122 , =−=  

or 

., 1122 irir cccc −==  (4.24b) 

OR 

 0=iq  (4.25a) 

and 

irir cccc 2112 ,0 ±===  

or 

iriiir cccccc 212122 ,, ±==−= ∓  

or 

iriiir cccccc 212122 ,, ∓∓ ===  

or 

iirr cccc 2112 , ∓∓ ==  

or 

riir cccc 1122 , ∓∓ ==  
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or 

 ., 1221 iirr cccc ∓∓ ==  (4.25b) 

In (4.25b), either the upper or the lower signs apply, but one should 
not mix an upper and a lower sign. Note too that the cases in (4.24) have 

0=rq  and will be genuine real and spatially confined coherent structure 

solutions of the BBM equation, while those in (4.25) with 0=iq  really 

correspond to solutions which are periodic and thus not spatially confined 
coherent structures. An example of the former is shown in Figure 2 for 

parameters ,5.0=C  ,iQ =  ( ) ,11 π−= ic  ( ) π+= ic 12  satisfying (4.24). 

The solution is a solitary wave with asymptotic values 

 ,14lim 2BBM
II −+=

±∞→
CCQU

z
 (4.26) 

and this would be readily apparent in a ( )BBM
II, Uξ  plot. Figure 3 shows a 

periodic, non-coherent structure wave-train for ,2=C  ,1=Q  ,0=iq  

and ( ) π−== icc 121  corresponding to (4.25). 

 

Figure 2. BBM
IIU  in (2.12) for ,5.0=C  ,iQ =  ( ) ,11 π−= ic  and 

( ) π+= ic 12  satisfying (4.24). In the ( )BBM
II, Uξ  plane it is a pulse with 

asymptotic values ( )14 2 −+ CCQ  as .±∞→ξ  
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Figure 3. Periodic case of BBM
IIU  in (2.12) for ,2=C  ,1=Q  ,0=iq  and 

( ) π−== icc 121  corresponding to (4.25). In the ξ, BBM
IIU  plane, it is a 

periodic wave-train. 

This concludes our discussion of forced nonintegrable systems, and we 
next briefly consider forced integrable systems in a similar fashion. 

5. Forced Integrable Systems 

Given the above, the effects of forcing on multisoliton solutions of 
integrable PDEs may now be treated in a manner analogous to Section 4. 
Note that there is an extra issue here, viz. the compatibility of the forcing 
and the initial conditions [54]. 

Consider the forced damped driven nonlinear Sine-Gordon equation 
which has been considered extensively before, although from a completely 
different perspective using its rich geometry and also using direct 
numerical simulations [9-11, 30, 55, 63] 

 [ ].sinsin tUUUU txxtt ωΓ+α−ε=+−  (5.1) 

Note that we have ordered the terms as in earlier studies, i.e., both the 
damping and driving (the perturbation or stress terms) are weak or 

ordered to be ( )εO  for the reasons discussed in Section 4, i.e., so that the 
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unperturbed or unstressed system is easily integrable. Several earlier 
studies focused on cases where the initial unperturbed, i.e., undamped 
and unforced, configuration was the breather solution of the Sine-Gordon 
equation. Since our approach is very direct, we shall consider cases where 
this unperturbed configuration is either the 1-kink, 2-kink, or the 
breather solution of the SG equation. 

For the one-soliton (kink) solution of the unperturbed system (the 
Sine-Gordon equation) 

 
( )

























−

−−
= −

2
01

1
exptan4

c

zctx
U  (5.2) 

we may, exactly as in Section 4, cast the traveling wave reduced ODE in 
Hamiltonian form and hence set up the Melnikov integral 

( )
( )

















−

−

−

α
−

−

ε
=θ ∫

∞

∞−
dz

c

zz

c

c

c
M

2
02

222
1

sech
1

4

1
 

( ) ∫
∞

∞− 











−

−






 ωθ−ω

−

Γ
+ dz

c

zz
c
z

c
x

c 2
0

2 1
sechcossin

1

2
 

( )
.

1
sechsincos

1

2
2

0
2 

















−

−






 ωθ−ω

−

Γ
− ∫

∞

∞−
dz

c

zz
c
z

c
x

c
 (5.3) 

Here, z is the usual traveling wave reduced variable ( ).ctx −  Picking 

parameters ,87.0=ω  ,04.0=εα  1.0=ε  corresponding to [9-11, 30, 55, 

63], the Melnikov function has a simple zero corresponding to the onset of 
chaos for 

a.  98.16≥
α
Γ   for  0,9.0 0 == zc  (5.4) 

b.  48.164≥
α
Γ   for  .0,98.0 0 == zc   (5.5) 

Repeating the process when the initial unperturbed configuration is 
the two-kink solution 

 ( )



 φ−φ








−
+

= −
12

12

211
2 4

1
tantan4

aa
aa

U  (5.6a) 
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 ...,2,1,exptan4 1 =











 τ

−ξ−=φ − i
a

a
i

ii  (5.6b) 

 
( ) ( )

2
,

2
txtx +

=τ
−

=ξ  (5.6c) 

for 2,5.1 21 −== aa  (so that ( ) ( ) )01221 >−+ aaaa  shown in Figure 3, 

the simplest way to formulate the Melnikov integral now is to recast the 

system in terms of the characteristic variables ξ and τ of (5.6c) using the 

chain rule. Once this is done, one may then consider the equation 

 ξ−=τ x  (5.7) 

resulting from (5.6c) at fixed, but arbitrary x (as in Section 4) to obtain 
the damped, forced system (4.6)/(4.7) with 

 [ ]Txxf 12 sin, −=  (5.8) 

 ( )
T

x
v

q 



 ξ−ωΓε+

εα
= 2sin

2
,0  (5.9) 

and the overdot representing .ξdd  The Melnikov integral may now be 

readily evaluated as 

( ) ( ) ( )




ξωξθ−ωΓ+ξ
α

ε=θ ∫ ∫
∞

∞−

∞

∞−
ξξ dUxdUM 2cos2sin

2 2
2
2  

( ) ( ) ,2sin2cos 2



ξωξθ−ωΓ− ∫

∞

∞−
ξ dUx  (5.10) 

where the subscript ξ indicates a partial derivative with respect to ξ. 

Evaluating this at both ends and the midpoint of an interval of length 24 
(as in [30]) for the parameters mentioned above yields the onset of chaos 
for 

 605.13≥
α
Γ  at 0=x  (5.11a) 

 113.6≥
α
Γ  at 12=x  (5.11b) 

 94.3≥
α
Γ  at .24=x  (5.11c) 
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Clearly, as for the numerical studies, one must take slices at different x 

values and see where the lowest 
α
Γ  threshold occurs. 

Finally, repeating the above for the case where the initial unstressed 
configuration is the breather solution 

[( ) ( ) ( ) ( ) ( )]vtxvxtU −ω−γ−ωγωω−= −− 212121
3 1sechsin1tan4  (5.12)  

with 

 ( ) 2121 −−=γ v  (5.13) 

and we pick ,95.0=v  so that the solution is close to a pure traveling 

wave. The Melnikov integral may be computed in a manner analogous to 
that for the simple one-kink case yielding 

( ) ( )










 ωθ−ω

Γ+α
−

ε
=θ ∫ ∫

∞

∞−

∞

∞−
dz

c
z

x
c

x
dzxc

c
M cossin

1
2

2
22

 

( )
.sincos 2










 ωθ−ω

Γ− ∫
∞

∞−
dz

c
z

x
c

x
 (5.14) 

For 87.0=ω  as above, the onset of chaos under forcing occurs at 

 779.3≥
α
Γ  for 3.0=c  (5.15a) 

 047.14≥
α
Γ  for 6.0=c  (5.15b) 

 0445.36≥
α
Γ  for .9.0=c  (5.15c) 

This concludes our treatment of the damped, driven Sine-Gordon 
equation and we proceed next to briefly discuss our results, consider the 
features, validity, and scope of the treatment we have developed here, 
and also comment on possible future extensions. 

6. Summary and Conclusions 

In this paper, we have primarily done two things. The first is a proof 
that certain, constant celerity, classes of solutions (whether pulses 
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(solitary waves) or fronts (shocks or kinks)) obtained using truncated 
Painlevé expansions (or regular Painlevé expansions) are indeed 
traveling waves and thus satisfy the corresponding reduced ODE. As 
mentioned earlier, the motivation for looking for this comes from its 
applicability in various areas of nonlinear science. 

The second main focus in this paper was to use the above result to 
develop a new, direct method of treating the behavior of coherent 
structure solutions of both nonintegrable and integrable NLPDEs under 
stresses such as forcing. The primary merit of this approach was of course 
its simplicity. However, a key assumption that went into this approach 
was the assumption that a coherent structure which had the functional 
form of a traveling wave would indeed remain a traveling wave under 
stress so that one could deal directly with the forced traveling-wave-
reduced ODE system. As mentioned earlier, this was motivated by a body 
of accumulated evidence to this effect [8, 12, 38, 43, 47, 54, 59-61, 68, 74]. 
Let us now briefly consider how this assumption stacks up, i.e., whether 

the results obtained from it validate it a posteriori or not. 

In particular, note how close the agreement obtained using this point 
of view is qualitatively between the result in (5.15a) and that in [9-11, 30, 
55, 63] where the onset of chaos occurs at 105.0=Γε  and ,04.0=εα  or 

for 

 .625.2
04.0
105.0 =≥

α
Γ  (6.1) 

When comparing these, note that we have chosen a breather initial 
condition as in [9-11, 30, 55, 63]; however, the breather parameters could 
not be exactly matched to those used in [9-11, 30, 55, 63] since the latter 
are not completely specified save the localization length and number of 

peaks per period). This may be considered to be strong a posteriori 
evidence that the direct approach developed in this paper in treating the 
evolution of coherent structure solutions under forcing (or other stresses 
or perturbations) is accurate. In particular, this does indicate that the 
key assumption which was made in this treatment, i.e., coherent 
traveling wave pulse and front structures retaining their traveling wave 
forms well into the forced regime, is indeed valid. In addition, they 
control the dynamics and are not disrupted by resonance effects [14, 69]. 
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Finally, let us conclude by making some remarks regarding possible 
extensions of this work which are in progress. We have considered 
thresholds for the onset of chaos in this paper. However, the 
consideration of the actual dynamics prior to the onset of chaos is 
something that is worth studying further analytically and checking 
against existing numerical studies of forced NLPDEs. Possible 
approaches that could be tried include multiscale perturbation theory (for 
forcings which are fast compared to the intrinsic system timescale) [6, 
53], or direct soliton perturbation theory (see [7, 72, 73] and the 
references therein for instance for recent reviews) for forced integrable 
systems. Another fruitful approach may be to consider both static and 
dynamic (Hopf or Flutter) bifurcations in the pre-chaotic regime via the 
intrinsic Harmonic Balance Method developed by Huseyin [39]. It is also 
conceivable that resummation of these perturbation series [4, 64] may 
enable one to analytically follow the homoclinic or heteroclinic tangling 
beyond the first transversal intersection of the stable and unstable 
manifolds and into the chaotic regime (see [64] for instance). One other 
simple possibility, although unlikely to yield results correlated to those 
for the actual forced NLPDE and hence of questionable value, would be to 
integrate the forced traveling wave reduced ODEs numerically, and study 
the results using the standard numerical diagnostics [52]. 
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